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1 Introduction
We study the following linear systems of equations:
Az = b (1)
A&y = b, Ai=(A+&D, i=12,.., N-1 2)

where A, 4; € C"*" be nonsingular and nonhermitian matrices, and let & € C™ be such that the
shifted matrices A; is nonsingular. Namely, the linear system (1) is called by seed system. The
coefficient matrices of linear systems (1) and (2) have only different entries on their main diagonal.

In this paper, we propose a new technique that applies AISM (Approximate Inverse with the
Sherman-Morrison formula) method to these linear systems of equations. Using the proposed
technique, we also compare the performance of the preconditioned GMRES(m) algorithm with the
Shifted-GMRES(m) algorithm. At last, numerical experiments are given.

2 Shifted-GMRES(m) algorithm
‘We define the following two Krylov subepaces

Km(A, r) = span{rg, Ary, ..., A™ 5o}
Km(Aia iﬂ) = Spm{*'o, Aii:(h seey A?-li:O}'

If 1o = Boffo, then Kmn(A, ro) = K(A;, 7o) is satisfied.
[ Proof] As for (4;)*#; € K,,(4;, 7o), wherek=0,1,..., m—1

k
(Ao = Bo(A + &) rro = Y Bo(nCit* P} (AVro € Km(4, 7)) O
=0
Therefore, the approximate solutions of all the shifted linear systems can be solved by using

only one Krylov subspace. However, if we use the preconditioner of the coefficient matrix A,
K(AM~1,ro) is not equivalent to K(AM~1rp) and the equality between two Krylov subspaces
is no more satisfied. The disadvantage of this iterative solver is that it is not easy to apply the
preconditioner to these linear systems of equations.

38 Some Preconditioners

In this section, we describe the brief introduction of MR and AISM preconditioner.
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for k=1tondo
select mio) _
for _7 =0 to IMAX do
=ey— Am(’)
?J) = e;, - Amk
= (rb Ar‘é)) / (Arz rg))
a—-(r , ARt )/(A ) AFd)
mm = m(") + ar
9: rﬁ?’ = my; ) + & )
10: endfor
11: endfor

Figure 1. MR method

8.1 MR Method
The preconditioner M~! is computed by the following recurrences
o

md)

= exr— Am,(,j)
= m{ +erd,

where m‘-’) is the k-th column vector of M~ in the j-th step of MR iteration. The scalar a is
determined so that the residual norm ||+’ |, is minimized. It is usually set as

o= (rk), Arg)) / (Arg:’), Arg)).

We present the MR method in Figure 1. The notation “IMAX” means the iterations of MR
method. While the line number 4, 6 and 8 present the computation of preconditioner of the linear
system (1), the line number 5, 7 and 9 present the computation of preconditioner of the linear
systems (2). As the number of the shifted linear systems (2) is more increased, the computation
of this preconditioner becomes more expensive. Therefore, it is not so appropriate to apply this
preconditioner to the shifted linear systems.

'3.2 AISM method

We define p, = e and g, = (a; — sex)”, where a, and e; are the k-th column vector of 4, and
the identity vector, respectively. Using the following three recurrence formula

k-1
(”t)k
o= py-
2
k-1
v = Z(Qk’us)

i=1 Ti

e = 14+ (vg)r/s.



1: fork=1tondo
2 Pr =€
3: qx = a* - sex
4: U =p;
5: Vr =q;
6: fori=1tok—-1do
T Uy = vy — {(v)x / (sri)}u
8: v = vx — {(qx, wi) / (s73)}v;
9: endfor
10: fori=1tondo
11: if [(ux)i] < tolU set (ux); =0
12: if [(vx)i] < tolV  set (w); =0
13: endfor
14: =1+ (va)i/a
15: endfor

Figure 2. The AISM method

The AISM preconditioner is described as follows.
M™l=3l - A" =a"2uQ~ VT
where

U = {ulv uz, "-suﬂ}’
V = {"11 v2, --'1”n}s

and

Q = diag{ry, ra, ...,mn}.
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3)

In Figure 2, we present the AISM method. The computation of ux and v, (k =1,2,...,n) in line
number 5 and 6 can be parallelized partially based on Moriya et al. [5]. Therefore, AISM method is
parallelized in the numerical example. Just like in MR method, the dropping off process is used in
the statement of line number 9 and 10. If the k-th entries of u) and v, are less than the thresholds

tolU and tolV, respectively. About more detail of the AISM preconditioner, see Bru et al.[4].

4 The technique applying AISM method to the shifted linear sys-

tems

While the preconditioner of seed system (1) is given in the equation (3), the preconditioner of

shifted linear systems (2) is described as

M-! a1 A
(a1 —¢HI-A"?

Flr-A"

i
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Therefore, if s and 3 are the same values, the same preconditioner can be used for the linear systems
(1) and (2). We propose the technique that applies only one common preconditioner to all the linear
gystems. In the proposed technique, we set 8 = § and select the appropriate values for both of
preconditioners of linear systems (1) and (2).

According to Bru et al. [4], it is known that the preconditioner M~ performs well, when
s > p(A) is satisfied in system (1), where p(A) is the spectral radius of A. Then all the eigenvalues
near zero point can be moved to the left side of complex plain, and the convergence of the residual
norm is improved. Based on the theorem in Bru et al. (4], the conditions

s> p(A), 8> p(4i), fori=1,2,...,N-1 4)

are satisfied, the AISM method is expected to compute an effective preconditioner for all the shifted
linear systems. One of the appropriate selections that achieve s > p(A) is

8 =15 | Alloc, (8
and just like the same reason, if
8=154Aille, for i=1,2, ..., N-1. (6)

is set, 8 > p(A;) is also satisfied. However, it is impoesible to satisfy both conditions (5) and (6).
Instead of this two conditions, we propose the selection of s so that

8> 1.5 | Al )
and .
8 > 1.5 || Ai}loos fori=1]2 ..., N-1 (8)
are satisfied. If conditions (7) and (8) are satisfied, conditions (4) are also satisfied. We select
s = 15(] Alloo + max &) ®

as the appropriate scholar s for all the shifted linear systems. If the equation (9) is selected, both
conditions (7) and (8) are satisfied.
[Proof]
s = L5(|Allo +max &)
> 1.5 [[Allo> p(A)

and

®
i

= 15(||Alleo +max &)
1.5(max || Alleo +max &)
> I.Sm?x{llA +&illleo}

15max{|| Aillec} > 15{l| dillec} 2 p(4i) O

f

Therefore, if the equation (9) i8 employed as the diagonal shifted value s, we can obtain one
common appropriate preconditioner for all the shifted linear systems of equations.
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5 Numerical results

In this section, we present results of the two numerical experiments. Our computations were done
in the following PC cluster system with 8 CPUs.

cluster Node: IBM Xseries346 (x 4)
CPU: Pentium4 3.6GHz (2 per one node)
O8: Fedora Core 4 Linux

Local memory: 1GB per one node
Communication library: MPI[7]

The main experiments are measuring the speedup ratio of the AISM preconditioner and comparing |
the AISM preconditioned GMRES(m) algorithm with the Shifted-GMRES(m) algorithm. The
preconditioning parameters are as follows.

MR method

¢ Dropping off tolerance: tol=0.1, 0.01
s Iterations: IMAX =1, 2

AISM method

e Dropping off tolerance: tolU = 0.1, 0.01
e Dropping off tolerance: tolV = (.1, 0.01
e Diagonal shifted value: s = 1.5(]|Allcc + max;|&;])

[Example 1] In the square region = [0, 1]2, we now consider the boundary value problem of
PDE

=~ [{exp (-29)}uz); — [{exp (zy)}uy), +10.0(uz + uy) — 60.0u = f(z,y)
u(z, y)lon =1+zy

‘We discretize this problem by using five points differential scheme with 1922 grid points to obtain the
coefficient matrix of order 36,864. We study the eigenvalue problem of the coefficient matrix based
on the Figure 3. We choose the central point ¢ = (0.15, 0) and the radius R = 0.14. The number
of shifted linear systems N is 8. The right hand side b is determined so that all of its entries are
1.0. The shifted linear systems in line 3 of this figure are solved by the preconditioned GMRES(m)
algorithm and the Shifted-GMRES(m) algorithm to compare these iterative solvers. We start the
iterations with the initial approximation of zero vector. Table 1 presents the computation time and
iterations needed for satisfying the stopping criterion '

lirellz / liblla< 1.0 x 107*2 (10)

about all the residual norms, where || r;||2 is the i-th residual norm of GMRES iterations. The
value in bracket “()® means the number of the residual norms that can not converge within one
hour. Only in the case of using AISM method, the residual norms of all the linear systems can
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select ¢, R, N, m and vectors b, d

set w; = c+ Rexp(3Fj), 7=0,1,... ., N -
solve (A — w,I)a, b,]-—Ol ,N—l
set f(w;) = z,, i=0,1,. N 1
compute fi; = 4 Lo (w,, - c)"H flw), 5=0,1,...,2m -1
compute eigenvalues 6,..., 6,, of H,, - )\,

compute A\; =6; +c¢

1

Neoewhe

Figure 3. The algorithm to solve the eigenvalue problem with using the shifted linear systems

precon- Restart cycle
Algorithm ditioner 20 30 40
time time | iter | time | iter | time | iter
“shifted-GMRES(m) 0.0 G | -1 & | -1 |-

GMRES(m)+AISM(tolU, tolV = 0.1) | 89.0 | 135.0 | 74 | 144.0 | 73 | 156.0 | 73
GMRES(m)+AISM(tolU, tolV=0.01) | 920 |138.0| 72 |151.0| 71 | 1600 | 71

GMRES(m)+MR(tol =0.1, imax=1) | 8970 | (6) | - | ® | - | ©) | -
GMRES(m)+MR(tol = 0.1, imax=2) | 23990 | (4 | - | @ | - | @ | -
GMRES(m)+MR(tol = 0.01, imax=1) | 9010 | (6) | - | ® | - | ©) | -
GMRES(m)+MR(tol = 0.01, imax = 2) | 2396.0 | (4) (4) @ | -

(-): The number of the converged residual norms when one hour has pa.saed

Table 1. Example 1: Computation time and iterations of shifted linear systems (time: computa-
tion time (8), iter: iterations)

converge. Some of the residual norms can not converge in cases of MR method and the Shifted-
GMRES(m) algorithm. The computation time of MR preconditioner is much more expensive
than AISM preconditioner, and its cost is not practical. On the other hand, with using AISM
preconditioner, the iterations are terminated at most three minutes. Therefore, we find that it is
effective to apply one common preconditioner to all the linear systems.

Figure 4 presents the number of the converged residual norms as for the computation time.
In the AISM method, all of the residual norms converge almost simultaneously. In case of the
Shifted-GMRES(m) algorithm, the convergence of the 5-th residual norm is about 1,000 seconds
slower than the last converged residual norm. Also, it takes about 1,000 seconds for the first
residual norm to converge. In MR preconditioner, six residual norms converge almost the same
time. However, the run time cost is about 1,000 seconds to converge, and the last two residual
norms do not converge.

‘We measure the parallel performance of AISM method. In Figure 5, up to 4 PEs, the speedup
ratio is almost linear, and it is decreased in the case of using 8 PEs, and the speedup ratio is about
4.5 times.

[Example 23] We consider the matrix, named “ECL32", in the Florida Sparse Matrix Collec-
tion [6]. The order and non zeros of the matrix are 51,993, 347,097, respectively. The right hand
side is determined 80 that all the entries are 1.0. Just like in Example 1, the number of shifted
linear systems N are 8, and we solve the shifted linear systems described in the line 3 of Figure
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Figure 4. Example 1: The relation of the number of converged residual norms and
computation time (A: Shifted-GMRES(40), B: MR+GMRES(40), tol=0.1, IMAX=1, C:
AISM+GMRES(40), tolU, tolV=0.1)
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Figure 5. Example 1: Performance analysis of AISM method, (A: ideal, B: AISM method, tolU,
tolV=0.1)

3. In this example, the central point of ¢ = (1.0, 0) and the radius of R = 0.99 are selected.
Table 2 presents the computation time and iterations needed for stopping criterion (10). According
to this table, AISM method enable all the residual norms to converge about four or five times
faster than MR method. Also the preconditioning cost of AISM method is not so expensive as MR
method. Even if the iterations of MR method “IMAX” is increased, the computation cost can not
be reduced, and rather expensive. The cost of MR method is more than 10 times as expensive as
AISM method.

In the Shifted-GMRES(m) algorithm, only the last residual norm can not converge. Therefore,
we analyze the relation between the converged residual norms and computation time. From Figure
6, the shifted-GMRES(m) algorithm enables seven residual norms to converge much faster than
the other preconditioned GMRES(m) algorithm. However, the last one can not converge. The
Shifted-GMRES(m) algorithm is expensive for not all the linear systems, and the convergence is
rather quick than AISM method. Only one residual norm does not converge. On the other hand,
the preconditioned GMRES(m) algorithm enables all the residual norm to converge.
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precon- Restart cycle
Algorithm ditioner 20 30 40
time time | iter | time | iter | time | iter
Shifted-GMRES(m) 0.0 M (7 )

GMRES(m)+AISM(tolU, tolV =0.1) | 181.0 | 446.0 | 311 | 479.0 | 272 | 551.0 | 276
GMRES(m)+AISM(tolU, tolV =0.01) | 2800 | 517.0 | 208 | 559.0 | 202 | 639.0 | 198
GMRES(m)+MR(tol = 0.1, imax = 1) | 1141.0 | 2078.0 | 558 | 1790.0 | 476 | 1695.0 | 446
GMRES(m)+MR(tol = 0.1, imax = 2) | 2572.0 | 2903.0 | 295 | 2870.0 | 270 | 2944.0 | 267
GMRES(m)+MR(tol = 0.01, imax = 1) | 1144.0 | 2080.0 | 558 | 1793.0 |{ 476 | 1696.0 | 446
GMRES(m)+MR(tol = 0.01, imax = 2) | 2571.0 | 2892.0 | 295 | 2880.0 | 270 | 2932.0 | 267
(-): The number of the converged residual norms when one hour has passed.

Table 2. Example 2: Computation time and iterations of shifted linear systems (time: computa-
tion time (8), iter: iterations)
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Figure 6. Example 2: The relation of the number of Converged residual norms and
computation time (A: Shifted-GMRES(20), B: MR+GMRES(20), tol=0.1, IMAX=1, C:
AISM+GMRES(20), tolU, tolV=0.1)

| Figure 7 shows the speedup ratio of AISM method. In this experiment, the parallel performance
is not so effective as Example 1, since the sparse structure of the matrix is more irregular. In case
of 8 PEs, the speedup of about 4 times is obtained.

6 Concluding remarks

We have proposed a new technique of AISM method for applying the shifted linear systems. In
the original scheme, either the Shifted-GMRES(1m) algorithm without preconditioning or the pre-
conditioned GMRES(m) algorithm with expensive computation cost, like MR method, is usually
used. On the other hand, the proposed technique can compute one common preconditioner of all
the systems. it does not depend on the number of linear systems. From two numerical examples, it
is effective to apply the AISM preconditioner to the shifted linear systems with using the proposed
technique. We can also obtain the speedup ratio of about 4 times by using 8 PEs. Therefore, this
technique can be effective for applying the shifted linear systems.
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Figure 7. Example 2: Performanee analysis of AISM method, (A: ideal, B: AISM, tolU,
tolV=0.1)

In the future work, we plan to study the detailed numerical performance of our algorithm to
allocating each of shifted systems (2) to seed system (1).
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