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1 Introduction
We study the fOllowing linear systems of equations:

$Ax$ $=$ $b$ (1)
$f_{\iota\dot{\#}}$ $=$ $b$, $A_{i}=(A+\xi_{i}I)$ , $i=1,2,$ $\ldots,$ $N-1$ . (2)

where $A,\tilde{A}_{j}\in\sigma^{x}$ “ be nonsinakular and nonhemitian matrices, and let $\xi_{i}\in \mathcal{O}$ be such that tbe
shifted matriees $\tilde{A}_{1}$ is nonsinakular. Namely, the linear system (1) is ealled by eeed qstm. The
coefficient matriees of linear systems (1) and (2) have only different entries on their main $d_{\dot{\mathfrak{B}}}$onal.

In this paper, rn propose a new teChersique that applies AISM (Appraximate Inverse with tbe
Shuman-Morrison formula) method to these linear systems of equations. Using the prpoeed
techersique, we also compare the $p\epsilon rfomance$ af the preconditioned GMRES$(m)$ algorithm With the
Shifld-GMRRS$(m)$ algorithm. At last, numerical experiments are given.

2 $ShiRed-GMRES(m)$ algorithm

We define the following two Krylov subepaces

$K_{m}(A, r_{0})$ $=8pan\{r_{0}, Ar_{0}, ..., A^{m-1}r_{0}\}$

$\overline{K}_{m}(\overline{A}_{i},\dot{r}_{0})$ $=8pan\{\mathfrak{k}_{0},\tilde{\mathcal{A}}_{1}\tilde{r}_{0}, \ldots,\tilde{A}_{1}^{m-1}\tilde{r}_{0}\}$.
If $r_{0}=h\overline{r}_{0}$ , then $K_{m}(A, r_{0})_{\sim}=\dot{K}(\tilde{A}, \tilde{r}_{0})$ is \epsilon atinfid.

[Proofl As for $(A)^{k}\mathfrak{k}_{0}\epsilon K_{m}(\tilde{A}_{i},\tilde{r}_{0})$, where $k=0,1,$ $\ldots,$ $m-1$

$( \tilde{A}_{1})^{k}\tilde{r}_{0}=h(A+\xi_{i}l)^{k}r_{0}=\sum_{j-\triangleleft}^{l}h\{kC_{j}\xi_{i}^{(k-j)}\rangle(A)^{\dot{f}}r_{0}\in K_{m}(A, r_{0})$ $0$

Therefore, the appraximate solutions of all the shifted linear systems can be solved by using
only one Krylov subspaoe. Hawever, if $m$ use the $prmnditioner$ of the coefficient matrix $A$ ,
$K(AM^{-1},r_{0})$ is not $\eta_{t}rMent$ to A $(\tilde{A}M^{-1}\tilde{r}_{O})$ and the equality betmeen two Krylov subepaces
is no more satisfled. The disadvantage of this iterative solver is that it is not easy to apply tbe
preeonditioner to these linear systems of equations.

3 Some Preconditioners
In this $\varpi tion$, we $d\infty cribe$ the brief introduction of MR and AISM preconditioner.
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1: for $k=1$ to $n$ do
2: eelect河 $m_{k}^{(0)}$

3: for $j=0$ to IMAX do

$4:5$

:
$\tilde{r}^{\int_{k}^{(j)}}j$

)
$=\epsilon_{k}-\tilde{A}\tilde{m}^{\int_{k})}r=\epsilon_{k}-Am(j)$

$6:7$ $\tilde{\alpha}=t^{-\int_{k})}\alpha=(r\prime 0)\lambda^{\sim},_{k}b))/(\tilde{A}f^{\int_{k}^{O)}})A^{tj)}’)/(Ar,\tilde{A}_{k}Ar\tilde{r}^{\int_{)\}}^{0)}}$

$8:9$ $m=m+\alpha r\dot{m}^{\int_{k})}=\tilde{m}^{\int_{k})}+\tilde{\alpha}f^{\int_{k})}(j)C\dot{2})(j)$

10: endfor
11: endfor

Figuoe 1. MR $metk\sim$

3.1 MR Method
The preconditioner $M^{-1}i\epsilon$ computed by the following recurrences

$r_{k,(j)}^{(\dot{g})}$

$=$ $e_{k}-Am_{k}^{(j)}$

$m_{k}$ $=$ $m_{k}^{(j)}+\alpha r_{k}^{[j)}$ ,

where $m_{k}^{[j)}$ is the k-th $\infty lumn$ vector of $M^{-1}$ in tbe j-th step of MR iteration. Tbe oealar $\alpha$ is
daermin$6edd$ so that the residual norm $||r_{k}^{[j)}||_{2}$ is minimized. It is usually set $u$

$\alpha=(r_{k}^{\{\dot{g})}, Ar_{\tilde{k}}^{t\dot{s})})’(Ar_{k}^{(j)}, Ar_{k}^{[\dot{g})})$.
We preM the MR method in Figure 1. The notation “IMAX“ means the iterations of MR
method. Wlile the line number 4, 6 and 8 preeent the computation of preconditioner of the linear
system (1), the line number 5, 7 and 9 P烈簡 em the $\infty mputation$ of preconditioner of the linear
systems (2). As the number of the shifted linear systems (2) is more increased, the $\infty mputati\alpha 1$

of thi8 preconditioner $bemR$ more expenslve. Therefore, it is not so aPpropriate to apply this
preconditioner to the shifled linear systems.

3.2 AISM method
We define $p_{k}=e_{k}$ and $q_{k}=(a_{k}-se_{k})^{T}$ , where $a_{k}$ and $e_{k}$ are the $k\cdot th\infty lumn$ vecter of $A$, and
the identity vector, raepectively. Using the $f_{0}nowing$ three recurrenoe fomula

$u_{k}$ $=p_{k}- \sum_{i=1}^{k-1}\frac{(*)_{k}}{\epsilon r_{1}}*$ ,

$v_{k}$ $=q_{k}- \sum_{1=1}^{k-1}\frac{(q_{k},*)}{\epsilon r_{i}}v_{i}$,

and

$r_{k}$ $=$ $1+(v_{k})_{k}/s$.
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1: for $k=1$ to $n$ do
2: $p_{k}=e_{k}$

3: $q_{k}=a^{k}-\epsilon\epsilon_{k}$

4: $u_{k}=p_{k}$

5: $v_{k}=q_{k}$

6: for $i=1$ to $k-1$ do
7: $u_{k}=u_{k}-\{(v_{i})_{k}/(sr_{i})\}u_{i}$

8: $v_{k}=v_{k}-\{(q_{k}, 4)/(sr_{i})\}v_{i}$

$9$ : endfor
10: for $i=1$ to $n$ do
11: if $|(u_{k})_{i}|<tolU$ 嫁 et $(u_{k})_{i}=0$

$12$ : if $|(v_{k})_{i}|<to1V$ 嫁 et $(v_{k})_{i}=0$

$13$ : endfor
14: $r_{k}=1+(v_{k})_{k}/\epsilon$

15: endhr

Figure 2. Tbe AISM method

The AISM $p\iota mndilion\alpha$ is described ae $fo1]_{oW8}$.
$M^{-1}=sI-A^{-1}=\epsilon^{-2}U\Omega^{-1}V^{T}$ ($)

$wh\alpha e$

$U=$ $\{u_{1}, u_{2}, \ldots,u_{\mathfrak{n}}\}$ ,
$V$ $=$ $\{v_{1}, v_{2}, \ldots,v_{\hslash}\}$ ,

and

$\Omega=diag\{r_{1}, ra, ...,r_{n}\}$ .
In Figuie 2, we preeent tbe AISM method. The $\infty mputation$ of $u_{k}$ and $v_{k},$ $(k=1,2, \ldots,n)$ in line
number 5 and 6 can be prallehzed partially based on Moriya et al. [5]. $Tbek_{R}$ AISM method is
parallelized in the numerical example. Just lilce in MR method, the dropping off procem is used in
the statement of line number 9 and 10. If the k.th entries of $u_{k}$ and $v_{k}$ rea than the throehol&
tolU and tolV, respectively. About more detail of the AISM $pr\alpha nndition\alpha$, see Bru et a1.[4].

4 The technique applying AISM method to the shifted linear $syy$

tems
While the preecmditioner of seed wtem (1) is given in tk equation (3), the preoonditioner of
Aifld linear systems (2) is described as

$\tilde{M}^{-1}$
$=$ $\epsilon^{-1}I-\tilde{A}^{-1}$

$=$ $(s^{-1}-\xi^{-1})I-A^{-1}$

$=$ $\tilde{s}^{-1}I-A^{-1}$ .
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Therefore, if 8 and $\tilde{s}$ are the same values, the same $pre\infty nditioner$ can be used for the linear systems
(1) and (2). We propose the technique that applies only one common preconditioner to all the linear
systems. In the proposed technique, we set $\epsilon=\tilde{\epsilon}$ and select the appropriate values for both of
preeonditioners of linear systems (1) and (2).

$Ac\infty rding$ to Bru et al. [4], it is known that the preconditioner $M^{-1}$ performs well, when
$s>p(A)$ is $8ati\epsilon fid$ in systm (1), where $\rho(A)$ is the spectral radius of $A$. Then all the eigenvalues
near zero point can be moved to the left side of complex plain, and the $\infty nvergence$ of the residual
norm is improved. Based on the theorem in Bru et al. [4], the conditions

$s>\rho(A)$ , $s>\rho(\tilde{A}_{i})$ , for $i=1,2$, ..., $N-1$ (4)

are satisfied, the AISM method is expected to $\infty mpute$ an effective $pr\infty ondition\alpha$ for all the shifted
linear systems. One of the appropriate $\epsilon kctionl$ that achieve $\epsilon>\rho(A)$ is

$\epsilon=1.5||A||_{\infty}$ , (6)

and just like the same reason, if

$\epsilon=1.5||\tilde{A}_{i}||_{\infty}$, for $i=1,2,$ $\ldots,$ $N-1$ . (0)

is set, $\epsilon>\rho(A)$ is also eatisfied. Homm, it is impossible to satisfy both $\infty nditim\epsilon(5)$ and (6).
Insted of this two $\infty ndition\epsilon$, me propoee tbe selection of $\epsilon$ so that

$s>1.5||A||_{\infty}$ (7)

rd
$\epsilon>1.5||\tilde{A}||_{\infty}$ , 景\pi $i=1,2,$ $\ldots,$ $N-1$ (8)

are satisfled. If $\infty nditions(7)$ and (8) $m$ satiSfied, conditions (4) are also $\epsilon at\dot{n}$fld. We select

$\epsilon=1.5(||A||_{\infty}+\max_{1}|\xi_{i}|)$ (9)

$u$ tbe appropriate scholar $\epsilon$ for all the shifled limu systems. If the quation (9) is selected, both
$\infty n\bm{i}tions(7)$ and (8) are satisfied.
$p_{ro}\eta$

$s$ $=$ $1.6(|| \mathcal{A}||_{\infty}+\max_{1}|\xi_{i}|)$

$>$ $1.5||\mathcal{A}||_{\infty}>\rho(A)$

$\epsilon nd$

$\epsilon$ $=$ $1.5(||A||_{\infty}+m_{1}x|\xi:|)$

$=$ $1.5(m_{i}||\mathcal{A}||_{\infty}+m_{i}\alpha|\xi_{i}|)$

$>$ $1.5m_{i}\alpha\{||A+\zeta_{i}I||_{\infty}\}$

$=$ 1.6 $\max_{i}\{||A\cdot||_{\infty}\}>1.5\{\Vert A||_{\infty}\}\geq\rho(A)$ 口

Therefore, if tbe equation (9) $\dot{r}$ emplayed as the diagonal shiftnd value $s$ , we oen obtain one
$\infty mmon$ appropriate $poe\infty n\ tiomr$ for all the ohifld linear $\mathfrak{R}^{tenn}$ of equations.
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5 Numerical results
In this section, we praeent results of the two numerical experiments. Our computations were done
in the following PC cluster system with 8 CPUs.

cluster Node: IBM Xseries346 $(x4)$

CPU: Pentium43.$6GHz$ ($2$ per one node)

OS: Fedora Core 4 Linux

Local memory: IGB $p\alpha$ one node

Communication library: MPI[7]

The main experiments are measuring the speedup ratio of the AISM $pr\epsilon\infty nditionoe$ and $\infty mpa\bm{r}ing$

the AISM preconditioned GMRES$(m)dg\alpha ithm$ With the Shifl\’e-GMRBS(m) algorithm. The
preconditioning parameters are as $fol$]$ow8$.
MR method

$\bullet$ Dropping off tolerance: tol$=0.1,0.01$

$\bullet$ Iterations: IMAX $=1,2$

AI8M method
$\bullet$ Dropping off tolerance: tolU $=0.1,0.01$
$\circ$ Dropping off tolerance: tolV $=0.1,0.01$
$\bullet$ Diagonal shifted value: $\epsilon=1.5(||A||_{\infty}+nlK|\xi_{i}|)$

[Bxmmple 1] In tbe $\Re uare$ region $\Omega=I^{0},1]^{2}$ , we now $\infty n\epsilon ider$ the boundary value problem of
PDE

$-[\{\alpha p(-xy)\}u_{x}]_{x}-[\{\alpha p(xy)\}u_{y}]_{y}+10.0(u_{x}+u_{y})- 0.b=f(x,y)$

$u(x, y)|_{\delta\Omega}=1+xy$

We discretize this problem by using five poinnts differential scheme with 1922 grid points to obtain tbe
coefficieot matrix of order 36,864. We study the eigenvalue problem of tbe coefficient matriX based
on tbe Figure 3. We choose the oentral point $c=(0.15,0)$ and the radius $R=0.14$. The number
of shifted linew systems $N$ is 8. The right hand side $b$ is determined so that all of its $ntri\alpha$ re
1.0. The shifted linear systems in line 3 of this figure are solved by the preconditimed GMRES$(m)$

dgorithm and the $Shiftd\cdot GMRES(m)$ algorithm to $\infty mpue$ these iterative solvere. We $8trt$ tbe
iterations with the initial approocimation of zero vector. ‘Itible 1 presents the $\infty mputation$ time and
iteratians needed for satisfying the stopping criterion

$|\{r_{l}||_{2}/||b||_{2}<1.0x10^{-12}$ (10)

about $n$ the residual norms, where $||r_{i}||_{2}$ is the i-th residual nom of GMRES iterations. Tbe
value in brscket $u()$ means the number of the raeidM norms that can not $\infty nverge$ within one
hour. Only in the case of using AISM method, the residual norms of all the linear systems can
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1: select $c,$ $R,$ $N,$ $m$ and vectors $b,$ $d$

2: set 吻 $=c+R\alpha p(*j),$ $j=0,1,$ $\ldots,$ $N-1$
3: solve $(A-\omega_{j}I)ae_{j}=b,$ $j=0,1,$ $\ldots$ , $N-1$
4: $M$ $f($吻 $)=d^{H_{l_{j}}},$ $j=0,1,$ $\ldots,N-1$

5: compute $\beta_{j}=\pi^{1}\sum_{k=1}^{N-1}(w_{k}-e)^{j+1}f(w_{k}),$ $j=0,1,$ $\ldots,$ $2m-1$
$6$: compute eigenvaiuee $\theta_{0},$

$\ldots,$
$\theta_{m}$ of $ff_{m}-\lambda\overline{H}_{m}$

7: compute $\lambda_{j}=\theta_{j}+c$

Figure 3. The algorithm to solve the eigenvalue problem with using tbe shifted linear $rnteI\infty$

‘Tlible 1. Example 1: Computation time and iterations of shifld $hnA$ systems (time: computa.
tion time (s), iter: iterations)

$\infty nv\Re\Re$. Sme of the residual norms can not $\infty nver\Re$ in cases of MR method and the Shifted-
GMRES$(m)$ algorithm. The mnputation time of MR preconditioner is much more expensive
than AISM $poeconditi\bm{m}\alpha$, and its cost is not practical. On the othoe hand, with uslng AISM
preeonditioner, the iterations are termmated at mest three minutes. Therefore, we find that it is
effective to aPply one common preconditioner to all the linear systems.

Figure 4 presents the number of the converged residual norms $u$ for the $\infty mputation$ time.
In the AISM method, all of the $\varpi idM$ norms $\infty nvaege$ aimost $sim\iota \bm{P}\tan\infty mly$. In case of the
Shifld-GL4RES$(m)$ algorithm, the $\infty n\backslash \alpha genoe$ of the 5th residual nom i8 about 1,000 seeonds
slower than the hst \infty nwrg\’e residual nom. Also, it takes about 1,000 Kon& for the flrst
roeidd mrm to $\infty nv\alpha ae$. In MR $p\iota mnditior$, six residual norms $\infty nv\alpha ge$ almost the same
time. However, tbe run time cost is about 1,000 seconds to $\infty nverge$ , and the last tvve residual
norms do not $\infty n\bm{v}eoe$.

We measure the $pua\mathbb{I}el$ perfiormanoe of AISM method. In Figure 5, uP to 4 PEs, tbe $\Phi^{\ovalbox{\tt\small REJECT} up}$

ratio is almoet linear, and it is decreased in the case of using 8 PEs, and the sPeeduP ratio is about
4.5 tin$loe$.
Rmple $l$] We $\infty n\mathfrak{g}ider$ tbe matrix, $nmdu_{ECL32’}$ in the Florida Sparse $Matr\dot{\alpha}$ 欧化 lleo

tion [6]. The order and non $ger\infty$ of the matrix are 51,993, 347,007, respectively. The right hand
side is determined eo that all the entries are 1.0. Just like in Example 1, the number of shiftd
linear systems $Nue8$, and we solve the shifled linear sygtenn deseribed in the line 3 of Figure
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$\mathfrak{n}rnu\dagger ud\varpi m u\alpha dmi\hslash\ovalbox{\tt\small REJECT}$

Figure 4. Example 1: The relation of the number of converged residual norms and
$\infty mputation$ time ($A$: Shifted-GMRES(40), $B$ : MR+GMRES(40), tol$=0.1$ , IMAX$=1$ , $C$:
AISM+GMRES(40), tolU, tolV$=0.1$ )

Pb

Figure 5. Example 1: Perfomanoe anslysis of AISM method, ($A$:idael, $B$ : AISM method, tolU,
tolV$=0.1$ )

3. In $th\dot{n}\alpha ample$ , the oeIAral point of $c=(1.0,0)$ and tbe radius of $R=0.99$ are selected.
Thble 2 presents the $\infty mputation$ time and iterations needed for stopping criterion (10). Aceording
to this table, AISM method enable all the residual norms to converge about four or five times
faster than MR method. Also the preconditioning cost of AISM method is not so expensive $u$ MR
method. Even if the iteratlom of MR method “IMAX“ is increased, the $\infty mputation$ eost can not
be reduoed, and rather $\alpha p\alpha 1$ sive. The $c\infty t$ of MR method is more than 10 times as apansive $u$

AISM method.
In the Shifld-GMRES$(m)a\Re rithm$, only the last reaidual norm can not convergo. TherdOre,

we analyze the relation between the $\infty nvoeffi$ residual norms and $\infty mputation$ time. Ftom Figure
6, the $\epsilon hiRd- GMhS(m)$ algorithm enables seven residual norms to ecmverge much faster than
tbe other $poe\infty ndition\ovalbox{\tt\small REJECT} GMR\bm{E}S(m)$ algorithm. However, the last one can not $\infty nver\Re$. The
$Shifled- G\mapsto ms(m)$ algorithm is expensive for not all the linear systems, and the $\ovalbox{\tt\small REJECT}$ is
rather quick than AISM metkd. Only one roeiduA mrm does not converge. On the other hand,
the preeonditioned GMRBS$(m)$ algorithm enables all the roeidual nom to $\infty nverge$.
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$\mathbb{R}ble2$ . Example 2: Computation time and iteratiom of shifted linear systms (time: $\infty mputa$.
tion time (s), iter: $it\alpha atiom$)

lhe number of oonvorged residual nerms

Figure 6. Example 2: The relation of the momber of Convergxl $r\alpha idM$ norms and
$\infty mputation$ time ($A$: Shiftd-GMRES(20), $B$: MR+GMRES(20), tol$=01$ , IMAX$=1$ , $C$ :
AISM+GMRES(20), tolU, tolV$=0.1$ )

Figure 7 shovva the speedup ratio of AISM method. In this experinmot, the wallel performanoe
is not so dffective as Example 1, sinoe the gparse structure of the matrix is more irregular. In case
of 8 PEs, the speedup of about 4 times is obtained.

6 Concluding remarks

We have propoeed a new technique of AISM method for applying the shifted linear $\varphi tm$ . In
the original scheme, $eith\alpha$ the Shifid-GMRES(m) algorithm without $pre\infty nditioning$ or the pae$\cdot$

eonditiCned GMRES$(m)$ algorithm with expensive $\infty mputation$ eoet, like MR method, is $\tau nu\triangleleft ly$

used. On the other hand, the proposed technique can $\infty mpute$ one common $pr\infty ondition\alpha$ of ffl
the systems. it does net depend on the momber of linear $\epsilon yst\epsilon m$. $Rom$ two numerical rmples, it
is effective to apply the AISM $proeonditi\bm{m}\varpi$ to tbe shifted linear systms with using tbe propoeed
technique. We can also obtain the speedup ratio of about 4 times by $u\epsilon ing8$ P&. Therebre, this
taehnique can be effective fOr applying the shifted linear systems.
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Pa

Figure 7. Example 2: Perfomanoe analysis of AISM method, ($A$ : ideal, $B$: AISM, tolU,
tolV$=0.1$ )

In the future work, we plan to study the detailed mmerical perfOrmamce of our algorithm to
allocating A of shifted systms (2) to seed systm (1).
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