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Abstract It is well-known that there are so many examples of infinite-dimensional
groups. We study infinite-dimensional groups which have non-trivial homotopy
types. Especially we are interested in symplectic diffeomorphism groups and their
quantization. Several characteristic forms are useful to construct non-trivial cycles
and cocycles.

1 Introduction
As well-known, the concept of infinite-dimensional group has a long history.
It originated from Sophus Lie who initiated the systematic investigation of
group germs of continuous transformations. It is also known that he seemed
to be motivated by the followings:

$\bullet$ To construct a theory for differential equation similar to Galois theory.
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$\bullet$ To investigate groups such as continuous transformations that leave
various geometrical structure invariant.

The most striking impression of theory of infinite-dimensional groups is how
different in treating from theory of finite-dimensional case. When first en-
countered, we are perplexed for lack of techniques, other than the implicit
function theorem and the IFlrobenius theorem, to handle the geometrical,
topological problems relating to them. Under the situation above, in the
present article, we are concerned with examples of infinite-dimensional groups
which have non-trivial homotopy types. Moving on the argument for main
objects, we give several examples of infinite-dimensional groups.

1. $U(\mathcal{H})=$ { $u$ : unitary operators on a Hilbert space $\mathcal{H}$ }.

2. $U(\infty)=infinite$ unitary group.

3. LG $=1oop$ group. (See [25] for details).

4. $Diff(M)=$ {diffeomorphisms on a smooth manifold $M$}.

5. $Diff(M, vol)=$ {volume preserving diffeomorphisms on a smooth manifold $M$}.

6. $Diff(M, \omega)=$ {symplectic diffeomorphisms on a symplectic manifold $M$}.

7. $Diff(S^{*}N, \theta)=$ {contact diffeomorphisms on a contact manifold $S^{*}N$ }.

8. GFIO$(N)=invertible$ Fourier integral operators on a smooth manifold
$N$ with appropriate amplitude functions.

9. $G\Psi DO(N)=invertible$ pseudo-differential operators on a smooth man-
ifold $N$ with appropriate symbol functions.

10. $Aut(\Lambda’I, *)=$ automorphisms of $a*$-product (star product) on a sym-
plectic manifold $AI$ .

11. Aut(A#, $*$ ) $=$ { $\Psi\in Aut(M,$ $*)|\Psi$ induces the identity map on the base manifold}.

Relating to these examples, we give miscellaneous remarks. First note that

(1) $1arrow G\Psi DO(N)arrow GFIO(N)arrow Diff(S^{*}N, \theta)arrow 1$
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is exact [1, 8, 20]. As for topology of $U(\mathcal{H})$ , according to Kuiper’s theorem,
it is known that it is contractible. On the other hand, thanks to Bott’s
periodicity,

(2) $\pi_{k}(U(\infty))\cong\{\begin{array}{ll}\mathbb{Z} (k=odd),0 (k=even).\end{array}$

As for the diffeomorphism groups, we know that the inclusion maps
$SO(2)\subset Diff_{+}(S^{1}),$ $SO(3)\subset Diff_{+}(S^{2}),$ $SO(4)\subset Diff_{+}(S^{8}),$ $T^{2}\subset Diff_{0}(T^{2})$

give homotopy equivalences. On the contrary, if $m\geq 2,$ $SO(2m)$ and
$Diff_{+}(S^{2m+1})$ are not homotopy equivalent. Except the diffeomorphism groups
of Riemann surfaces 1 it seems very difficult to determine homotopy types
of the diffeomorphism groups as far as I know.

Although determination of homotopy types of all the examples above is
far beyond the scope of the current article, we try to show non-triviality
of homotopy types of the groups of symplectic diffeomorphisms and their
quantization. The main results of this article are as follows:

Theorem 1.1 Homotopy type of the symplectic diffeomorphism group $Diff(M, \omega)$

is not trivial in general.

Quantizing the argument employed to show Theorem 1.1, we have

Theorem 1.2 Homotopy type of the automo$\eta$hism group $Aut(M, *)of*-$
product is not trivial in general.

While preparing the paper [17], which the current article is based on, Pro-
fessor Akira Yoshioka informed me that there are mistakes relating to the
arguments of the preliminary version of [17] which is concerned with con-
struction of lifts of symplectic diffeomorphisms $as*$-automorphisms. In the
revised version of [17] and this article, I used completely different arguments
based on Fedosov quantization to construct lifts.

2 Deformation quantization

2.1 $*$-product, Moyal product

The concept of quantization as deformation theory seems to have been intro-
duced by Weyl, who constructed a map from classical observables (functions

lThese exceptional phenomena support the development of $th\infty ry$ of surface bundles
with the mapping class groups and the MiUer-Morita-Mumford classes.
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on the phase space) to quantum obsevables (operators on Hilbert space).
The inverse map was constructed by Wigner by interpreting functions (clas-
sical observables) as symbols of operators. It is known that the exponent
of the bidifferential operator (Poisson bivector) coincides with the product
formula of Weyl type symbol calculus developed by H\"ormander who estab-
lished theory of pseudo-differential operators $\bm{t}d$ used them to study partial
differential equations (cf. [14] and [19]).

In the $1970s$ , supported by the mathematical developments above, Bayen,
Flato, Ronsdal, Lichnerowicz and Sternheimer [3] considered qurtization as
adeformatIon of the usual commutative product of classical observables into
anoncommutative associative product which is parametrized by the Planck
constant $\hslash$ and satisfies the correspondence principle. Nowadays deformation
quantization, or more precisely, $*$-product has gained support from geome-
tricians and mathematical physicists. In fact, it plays $\bm{t}$ importrt role to
give passage $hom$ Poisson algebras of classical observables to noncommuta-
tive aesociative algebras of quantum observables. In the approach above, the
precise definition of the space of quantum observables $and*$-product is given
in the following way(cf. [3]):

Definition 2.1 $A*$ -product of Poisson manifold $(M, \pi)$ is a product, de-
noted $by*$ , on the space $C^{\infty}(M)[[\hslash]]$ of formal power series of parameter $\hslash$

with coefficients in $C^{\infty}(M)$ , defined by

$f*g=fg+\hslash\pi_{1}(f, g)+\cdots+\hslash^{n}\pi_{n}(f, g)+\cdots$ , $\forall f,$ $g\in C^{\infty}(M)[[\hslash]]$

satisfy ing
$(a)*is$ associative,
(b) $\pi_{1}(f, g)=^{1}\sqrt{2-}\{f, g\}$ ,
(c) each $\pi_{n}(n\geq 1)$ is a $\mathbb{C}[[\hslash]]$ -bilinear and bidifferential operator,
where $\{$ , $\}$ is the Poisson bracket defined by the Poisson structure $\pi$ .

A deformed algebra (resp. a deformed algebra structure) is called a star
algebra (resp. a $*$-product). Note that on a symplectic vector space $\mathbb{R}^{2n}$ ,
there exists the “canonical” deformation quantization, the so-called Moyal
product:

(3) $f*g=$ $f$ exp $[ \frac{\nu}{2}\partial_{x}\wedge\partial_{y}]garrowarrow$

$\sum_{\alpha\beta}\frac{(\nu/2)^{|\alpha+|\beta|}}{\alpha!\beta}!\partial_{x}^{\alpha}\partial_{y}^{\beta}f\partial_{x}^{\beta}(-\partial_{y})^{\alpha}g$ ,
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where $f,$ $g$ are smooth functions of a Darboux coordinate $(x, y)$ on $\mathbb{R}^{2n}$ and
$\nu=i\hslash$ .

Because of its physical origin and motivation, the problems of deforma-
tion quntization was first considered for symplectic manifolds, however, the
problem of deformation quantization is naturally formulated for the Poisson
manifolds as well. The existence and classification problems $of*$-products
have been solved by succesive steps from special classes of symplectic man-
ifolds to general Poisson manifolds. Finally, Kontsevich showed that defor-
mation quantization exists on any Poisson manifold. (cf. [3], [4], [5], [6], [7],
[9], [12], [21], [22], [26] and [27]).

2.2 Fedosov quantization
In this subsection, we recall the fundamentals for Fedosov quantization.

Definition 2.2 Let $(M,\omega)$ be a symplectic manifold.
1. Set $W_{M}$ $:=$ $(T” M)\otimes R[[v]]$ , where means symmetric tensor prod-

uct. In order to distinguish between a $symmetr\dot{\tau}c$ tensor and an anti-
symmetric tensor $dz_{f}^{k}$ we denote a generator of symmetric tensor by
$Z^{k}$ .

2. For elements $a(z, Z, \nu),$ $b(z, Z, \nu)\in W_{M}$ (where $z$ denotes a point in
the base manifold), set

$a(z, Z, \nu)*Mb(z, Z, \nu)$

$a(z, Z, \nu)e^{[]_{b(z,Z’,\nu)|_{Z’=Z}}}z^{\partial_{z:}\Lambda^{ij}\partial_{Z^{i’}}}\nu$

This gives a fibe$7\eta vise$ Moyal product. fhom this product, we naturally
obtain a $product*\wedge$ on the space of smooth sections. Hence we obtain
a noncommutative associateve $R\cdot\acute{e}chet$ algebm. This is called a Weyl
algebra bundle.

3. For any element $a=\nu^{l}Z^{\alpha}dz^{\beta}\in\Gamma(W_{M}\otimes\Lambda_{M})$ , we define several oper-
ators by

$a_{0}=a(z, Z, dz, \nu)|_{Z=0}$ , $a_{00}=a(z, Z, dz, \nu)|_{Z=0,\ =0}$ ,
$\sigma(a)$ $=a_{0}=a_{00}(a\in\Gamma(W_{M}))$ ,

$\delta a=dz^{k}\wedge\frac{\partial a}{\partial Z^{k}}$ , $\delta^{-1}a=\{\begin{array}{ll}\frac{1}{|\alpha|+|\beta|}Z^{k}\iota_{\partial_{*}}k (|\alpha|+|\beta|\neq 0),0 (|\alpha|+|\beta| =0),\end{array}$

$W\ell-$ $deg(a)=|\alpha|+|\beta|+2l$ .

71



Under the notations above, we see

Proposition 2.3 1. The definitions of $\delta$ and $\delta^{-1}$ does not depend on the
choice of Darboux coordinate.

2. Hodge decomposition $a=\delta\delta^{-1}a+\delta^{-1}\delta a+a_{00}$ .

3. $\delta a=-\frac{1}{\nu}[\omega_{ij}Z^{i}dz^{j}, a]$ .
Let $\nabla$ be a symplectic connection. We define a conncetion $D$ by

$D$ $=$ $\nabla-\delta+\frac{1}{\nu}[\gamma, \bullet]$

$=d+[ \frac{1}{2\nu}\sum\Gamma_{ijk}z^{i}z^{j}dz^{k}, \bullet]+[\frac{1}{\nu}\omega_{ij}Z\dot{d}z^{j}, \bullet]+[\frac{1}{\nu}\gamma, \bullet]$ .

where $\gamma\in\Gamma(W_{M}\otimes\Lambda_{M})$ . We would like to find $\gamma$ such that $D^{2}=0$ .

Theorem 2.4 ([9, 10]) There exists an element $\gamma$ satisfying the above con-
dition, which is unique under the following conditions.

(4) $deg\gamma\geq 2$ , $\delta^{-1}\gamma=0$ .

The connection obtained as above is called a Fedosov connection. Relating
to this connection, we obtain the following.

Proposition 2.5 ([9, 10]) Let $D$ be the Fedosov connection defined as above.
Then there exists a linear isomorphism $\sigma$ between the space $\Gamma^{F}(W_{M})$ of par-
allel sections with respect to the Fedosov connection and $C^{\infty}(M)[[\nu]]$ . We
can also construct the inverse map $\tau=\sigma^{-1}$ explicitly. In fact, for a fimc-
tion $f\in C^{\infty}(AI)$ , we define a parallel section $\tau(f)$ by solving the following
equation.

$\tau(f)_{0}=f$,
(5)

$\tau(f)_{\epsilon+1}=\delta^{-1}(\nabla r_{\epsilon}+\frac{1}{\nu}\sum_{t=1}^{\epsilon-1}ad(r_{t+2})\tau(f)_{\epsilon-t})$.
According to the linear isomo$rp$hism above, a product $f*g=\sigma(\tau(f)*\tau(g))$

gives an example $of*$ -produet.

Proof A proof is given by the following steps.
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1. Using the property $D^{2}=0_{f}$ we show that there exists a linear isomor-
phism

(6) $\sigma$ : $\Gamma^{F}(W_{M})=\{s\in\Gamma(W_{M});Ds=0\}^{1-1}rightarrow C^{\infty}(M)[[\nu]]$ .

2. We show that $\Gamma^{F}(W_{M})$ is closed $under*\wedge$ .
S. Define a $product*F$ on the space $C^{\infty}(M)[[\nu]]$ by

(7) $a*Fb=\sigma(\sigma^{-1}(a)*\sigma^{-1}(b))$ .

Then we can $show*F$ satisfies the propenies $of*$ -product on $C^{\infty}(M)[[\nu]]$ .

Summarizing what mentioned above, we obtain the proposition.

As $for*$-product on a symplectic manifold, we have the following.

Theorem 2.6 ([5], [11], [21]) Let $M$ be a symplectic manifold. Then

{Poincar\’e-Cartan class on $M$} $\cong\check{H}(M)[[\nu^{2}]]\cong\{*-product\}/\sim$ .

where the equivalent $relation\sim is$ defined as follows.

Definition 2.7 $Let*0,$ $*1be*$ -products of a symplectic manifold. Then a
map $T$ : $(C^{\infty}(M)[[\nu]], *0)arrow(C^{\infty}(M)[[\nu]], *\iota)$ is called an equivalence iso-
morphism if it satisfies the following conditions:

1. $T:\mathbb{R}[[\nu]]$ -linear isomorp hism,

2. $T(f*0g)=T(f)*1T(g)$ ,

S. $Tf$ has an $e\varphi ansionTf=f+T_{1}f+\cdots+T_{k}f+\cdots$ , and each $T_{k}$ is a
differential operator.

We $denote*0\sim*\iota$ if there enists an equivalence isomorphism $T:(C^{\infty}(M)[[\nu]], *0)$

$arrow(C^{\infty}(M)[[\nu]], *1)$ .

Remark As seen as above, the Poincar\’e-Cartan class is a complete invariant
$of*$-product. It was introduced in [21] independent of Deligne’s characterist$ic$

class $of*$-product introduced in [5].
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3SymplectIc diffeomorphisms and automor-
phisms of $*$-product

3.1 Fundamental properties

Under the notations and facts in the previous section, the automorphism
group $of*$-product is defined in the following way.

Definition 3.1

(8) $Aut(M, *)=$ { $\Psi$ : automorp hism $of*$ -product}.

As for this group, we have

Theorem 3.2 ([17]) 1. The groups $Diff(M, \omega)$ and $Aut(M, *)$ are infinite-
dimensional groups which are modeled on a Mackey complete space.

2. $\underline{Aut}(M, *)$ is a closed normal subgroup of$Aut(M, *)$ , where $\underline{Aut}(M, *)$ $:=$

{ $\Psi\in Aut(M,$ $*)|\Psi$ induces the identity map on the base manifold}.
S. The following diagram

(9) $1arrow\underline{Aut}(A,f, *)arrow Aut(M, *)arrow \mathfrak{p}Diff(Af,\omega)arrow 1$

gives a short exact sequence of infinite-dimensional gmups.

4. The group $\underline{Aut}(M, *)$ is regular in the sense $of/15,20,2SJ$.

5. The group $Aut(M, *)$ is also regular.

3.2 Secondary characteristic forms
In this section, we remark about characteristic forms associated with the
infinite-dimensional group of automorphisms of $a*$-product on a symplectic
manifold with a real polarization introduced in [18]. See also [2].

For the purpose, we recall Lagrangian orthonomal ffame bundle associ-
ated with a Lagrangian subbundle. Let $(E,\omega)$ be a symplectic vector bundle
over $X$ of rank $2m$ , and $\mathcal{L}$ be a Lagrangian subbundle of $E$ . Choose a com-
patible complex structure $J$ and set $g( , )$ $=\omega(J , )$ . Fix an orthonormal
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frame $\{e_{1}, \ldots, e_{m}\}$ of $\mathcal{L}$ with respect to $g$ , which is called an C-orthonormal
frame, and set

(10) $\epsilon_{1}.=\frac{1}{\sqrt{2}}(e_{1}-\sqrt{-1}Je_{1}),$
$\ldots,$

$\epsilon_{m}=\frac{1}{\sqrt{2}}(e_{m}-\sqrt{-1}Je_{m})$ .

Then we get a unitary frame $(\epsilon_{1}, \ldots, \epsilon_{m})$ of $E$ called an $\mathcal{L}$-orthogonal $unita\eta$

fiume, and then get an orthogonal frame bundle $\mathcal{O}(E, J, \mathcal{L})$ . Hence, summing
up what mentioned as above we see

Lemma 3.3 Under the above notation, the $unita\eta$ finme bundle $U(m)arrow$

$\mathcal{U}(E, J)arrow X$ detemined by the complex stru cture $J$ is reduced to $O(m)arrow$

$O(E, J, \mathcal{L})arrow X$ .
We define a smooth map $S$ by

(11) $Diff(M,w)\cross M(\psi,p)-arrow$
$(M\cross M^{-}, J\oplus J^{-},\omega\oplus w^{-})$

$(p, \psi(p))$ .

Then we have a symplectic vector bundle over $Diff(M, \omega)\cross M$ .

(12) $S^{*}T(M\cross M^{-})arrow Diff(M,\omega)\cross M$ .

Assume that $\tilde{\mathcal{L}}$ is a Lagrangian subbundle of $T(M\cross M^{-})$ , then $\mathcal{L}_{0}=r\tilde{c}$ is
a Lagrangian subbundle of $\mathfrak{F}^{*}T(M\cross M^{-})$ . On the other hand, because the
graph of $\psi$ is a Lagrangian submanifold of $M\cross M^{-}$ , we can define another
Lagrangian subbundle in the following way:

(13) $\mathcal{L}_{1,(\psi,p)}$ $:=ff^{*}T_{(p,\psi(p))}Graph(\psi)\subset S^{*}T(M\cross M^{-})$ .

Applying Lemma 3.3 to the above cases $\mathcal{L}=\mathcal{L}_{0}$ and $\mathcal{L}=\mathcal{L}_{1}$ , we have

Lemma 3.4 ([18]) Under the above notation, we have two reductions: For
$i=0,1$

$U(2m)$ $arrow$ $\mathcal{U}(S^{*}T(MxM^{-}), J\oplus J^{-})$

$\downarrow$

$Diff(M,\omega)\cross M$

(14)
$r\epsilon\underline{duae:}onO(2m)$ $arrow$ $O(ff^{*}T(M\cross M^{-}), J\oplus J^{-}, \mathcal{L}_{i})$

$\downarrow$

$Diff(M,w)x\Lambda f$.
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Using these reductions with $o(2m)$-valued connections $\theta_{0},$ $\theta_{1}$ , we would like
to define closed forms on $Diff(M, \omega)\cross M$ .
Lemma 3.5 ([18]) Let $\theta_{i}$ be $o(2m)$ -valued connection of $\mathcal{L}_{i}$ -orthogonal uni-
tary frame bundle $(i=0,1)$ . Then

(15) $\mu_{k}(Diff(M, \omega),$ $\mathcal{L}_{0}$ ) $=- \int_{0}^{1}c_{2k-1}(\tilde{\Omega})$

is a closed $(4k-3)$ -form on $Diff(M, \omega)\cross M$ , where
$\tilde{\Omega}=curvature$ of $\tilde{\theta}:=t\theta_{0}+(1-t)\theta_{1}$ ,

and $c_{h}$ is a Chem polynomial with degree $h$ .
Proof Combining the Gauss-Stokes theorem, Bianchi’s identity and skew-
symmetricity of elements of Lie algebm $o(2m)$ completes the prvof of lemma.
Owing to this lemma, we have the following (See Theorems 1.1, 1.2):
Theorem 3.6 Homotopy types of the symplectic diffeomo$7phism$ group $Diff(M, w)$
and the automorphism group $Aut(M, *)of*$ -product are not trivial in gen-
eml.

Proof For an appropriate manifold $M_{f}$ we can construct cycles in $Diff(\Lambda f, \omega)$

whose parings with $\mu_{k}(Diff(M, w),$ $\mathcal{L}_{0}$ ) do not vanish. Moreover making non-
trivial lifts of the cycles with respect to $\mathfrak{p}$ in (9) shows non-triviality of ho-
motopy type of the $automo\varphi hism$ group $of*$ -product. In order to constru $ct$

suitable lifts, we need the following.

Theorem 3.7 ([18]) 1. Assume that $F$ satisfies

(16) $\sum_{k=1}^{\infty}\frac{1}{k!}\sum_{i+j=k-1}\{i;\tilde{D};j\}(\frac{F}{v})=\exp[ad(\frac{F}{\nu})](\frac{1}{\nu}(G-\phi^{-1*}(G)))$

where $\tilde{D},$ $G,$ $\{i;\tilde{D};j\}$ and $\phi$ are given by

(17) $\tilde{D}$ $:=\nabla+ad(\phi^{-1*}G)$ , $G$ $:=\omega_{1j}dz^{i}Z^{j}+\gamma$

(18) $\{i;\tilde{D};j\}$ $:=(ad( \frac{F}{\nu}))^{i}\circ ad(\tilde{D}(\frac{F}{v}))\circ(ad(\frac{F}{\nu}))^{f}$,

(19) $\phi:Marrow M$ : a symplectic diffeomorphism.
Then we have

(20) $D o\phi^{*}o\exp[ad(\frac{1}{\nu}F)]=\phi^{*}o\exp[ad(\frac{1}{\nu}F)]\circ D$ .
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2. For any symplectic diffeomorphism $\phi$ on a symplectic manifold $(M, \omega)$ ,
there exists an element $\hat{\phi}\in Aut(M, *)$ which induces $\phi^{*}\circ\exp[ad(\frac{1}{\nu}F)]$

on $\Gamma(W_{M})$ and the base map $\phi$ on $M$ .

It is known that homotopy types of GFIO $(N)$ and $G\Psi DO(N)$ are not trivial
in general. Furthermore, for a generic manifold $N,$ $GFIO(N)$ is not homo-
topically equivalent to $G\Psi DO(N)$ . However, on the contrast,

Conjecture $Diff(M, w)$ is homotopically equivalent to $Aut(M, *)$ .

4 Appendix
For reader’s convenience, this appendix is devoted to give a brief survey of
regularity of infinite-dimensional groups. For the purpose, we first recall the
definition of Mackey completeness, see the monographs [13] for details.

Definition 4.1 A locally convex space $E$ is called $a$ Mackey complete (MC
for short) if one of the following equivalent conditions is satisfied:

1. For any smooth curve $c$ in $E$ there is a smooth curve $C$ in $E$ with
$C’=c$.

2. If $c:\mathbb{R}arrow E$ is a curve such that $l\circ c:\mathbb{R}arrow \mathbb{R}$ is smooth for all $\ell\in E_{f}^{*}$

then $c$ is smooth.

S. Locally completeness: For every absolutely convex closed boundeP sub-
set $B,$ $E_{B}$ is complete, where $E_{B}$ is a normed space linearly genemted
by $B$ with a no$7mp_{B}(v)= \inf\{\lambda>0|v\in\lambda B\}$ .

4. Mackey completeness: a Mackey-Cauchy net converges in $E$ .

5. Sequential Mackey completeness: a Mackey-Cauchy sequence converges
in $E$ .

where a net $\{x_{\gamma}\}_{\gamma\in\Gamma}$ is called Mackey-Cauchy if there $e$ tists a bounded set $B$

and a net $\{\mu_{\gamma,\gamma’}\}_{(\gamma,\gamma’)\in\Gamma\cross\Gamma}$ in $\mathbb{R}$ converging to $0$ , such that $x_{\gamma}-x_{\gamma’}\in\mu_{\gamma,\gamma’}B=$

$\{\mu_{\gamma,\gamma’}\cdot x|x\in B\}$ .
2A subset $B$ is called bounded if it is absorbed by every O-neighborhood in $E$ , i.e. for

every O-neighborhood $\mathcal{U}$ , there exists a positive number $p$ such that $[0,p]\cdot B\subset \mathcal{U}$ .
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Next we recall the fundamentals relating to infinite-dimensional differen-
tial geometry.

1. Infinite-dimensional manifolds are defined on Mackey complete locally
convex spaces in much the same way as ordinary manifolds are defined
on finite-dimensional spaces. In this article, a manifold equipped with
a smooth group operation is referred to as a Lie group. Remark that in
the category of infinite-dimensional groups, the existence of exponential
maps is not ensured in general, and even if an exponential map exists,
the local surjectivity of it does not hold (cf. Definition 4.2).

2. A kinematic tangent vector (a tangent vector for short) with a foot point
$x$ of an infinite-dimensional manifold $X$ modeled on a Mackey complete
locally convex space $F$ is a pair $(x, X)$ with $X\in F$ , and let $T_{x}F=F$

be the space of all tangent vectors with foot point $x$ . It consists of all
derivatives $d(O)$ at $0$ of smooth curve $c:\mathbb{R}arrow F$ with $c(O)=x$. Remark
that operational tangent vectors viewed as derivations and kinematic
tangent vectors via curves differ in general. A kinematic vector field is
a smooth section of kinematic vector bundle $TMarrow M$ .

3. We set $\Omega^{k}(M)=C^{\infty}(L_{\epsilon k\epsilon w}(TM\cross\cdots\cross TM, M\cross \mathbb{R}))$ and call it the
space of kinematic differential form, where “skew” denotes “skew-
symmetric.” Remark that the space of kinematic differential forms
turns out to be the right ones for calculus on manifolds; especially
for them the theorem of de Rham is proved.

Next we recall the precise definition of regularity (cf. [15], [20], [23] and [24]):

Definition 4.2 An infinite-dimensional gmup $G$ modeled on a Mackey com-
plete locally convex space $\emptyset$ is said to be regular if one of the following equiv-
alent conditions is satisfied

1. For each $X\in C^{\infty}(\mathbb{R}, \emptyset)$ , there exists $g\in C^{\infty}(\mathbb{R}, G)$ satisfy ing

(21) $g(O)=e$ , $\frac{\partial}{\partial t}g(t)=R_{g(t)}(X(t))$ ,

2. For each $X\in C^{\infty}(\mathbb{R}, \emptyset)_{f}$ there exists $g\in C^{\infty}(\mathbb{R}, G)$ satishing

(22) $g(O)=e$ , $\frac{\partial}{\partial t}g(t)=L_{g(t)}(X(t))$ ,
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where $R(X)$ (resp. $L(X)$ ) is the right (resp. left) invariant vector field
defined by the right$(resp. lefl)- tmnslation$ of a tangent vector $X$ at $e$ .

The following lemma is useful (cf. [13], [15], [23] and [24]):

Lemma 4.3 Assume that $N$ is a closed nomal subgroup of infinite-dimensional
gmup $G$ and
(23) $1arrow Narrow Garrow Harrow 1$

is a short exact sequence of infinite-dimensional groups with a local smooth
section3 $j$ fivm a neighborhood $U\subset H$ of $1_{H}$ into G. Suppose that $N$ and $H$

are regular. Then $G$ is also regular.

Actually, Theorem 3.2 is proved by using the lemma above.
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