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1 Introduction

This article is designed to give a perspective to a series of results in [MY]
[GY] by the author and his collaborators in the past several years. We
start with the definition of almost-minimal sets. Let a set $E$ be a closed
set contained in an open set $U\subset R^{n}$ , satisfying the finite d-dimensional
Hausdorff measure condition;

$\mathcal{H}^{d}(E\cap B)<\infty$

for every compact ball $B\subset U$ . To set up a variational formulation,
we introduce a class of “competitors” for the set $E$ as follows. Let
$\phi_{t}$ : $Uarrow U$ be a one-parameter family of continuous functions such
that for some compact ball $B\subset U$ ,

$\phi_{0}(x)=x$ for $x\in U\backslash B$

$\phi_{t}(B)\subset B$

$(t, x)\vdasharrow\phi_{t}(x)$ is continuous in $t$ and $x$ .
$\phi_{1}$ is Lipschitz ( $\phi_{1}$ may not be injective.)

We consider then the set $\phi_{1}[E]$ , called a deformation of $E$ in $B$ as a
competitor in the following variational setting;

Definition For a set $E$ as described above, it is called almost-minimal
in $U$ , with gauge function $h$ if

$\mathcal{H}^{d}(E\backslash F)\leq \mathcal{H}^{d}(F\backslash E)+h(r)r^{d}$
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when $F$ is a deformation of $E$ in a compact ball $\overline{B}_{r}(x)\subset U$ .

Note that the above definition is a slight variation of Almgren’s
$(M, \epsilon, \delta)$ -minimal set [Alm], where $\delta$ is the size of the support of non-
trivial variation, and $\epsilon$ is the growth rate for $h$ , and the mass $M$ stands
for the two-dimensional Hausdorff measure.

In this note, we consider the special case when $h\equiv 0$ (corresponding
to the case $\epsilon=0,$ ) $d=2,$ $n=3$ . Then an almost-minimal set is a mini-
mizer of the functional $\int_{E}d\mathcal{H}^{d}$ under topological constraints that allow
deformations on small balls $B\subset U$ . The following theorem by Jean Tay-
lor [T], whose free boundary regularity is later improved $homC^{1,\alpha}$ to
$C^{\omega}$ by Kinderlehrer-Nirenberg-Spruck [KNS], gives a strong restriction
on the topological type of the local structure for the almost-minimal set.

Theorem (J. Taylor) If $E$ is an almost-m\’inimal set of dimension 2 in
$R^{3}$ , with $h(r)\leq Cr^{\alpha}$ , every point of $E$ has a neighborhood where $E$ is
$C^{1}$ -equivalent to a plane, a Y-singularity, or a T-singularity, with the
one-dimensional free boundary being real analytic.

The purpose of the project undertaken by C.Mese and the author
(cf. [MY]) is to describe the set $E$ as a harmonic image of a 2-simplex,
where the harmonic map is conformal in a suitable sense. In particular,
in this article we restrict ourselves to a question of finding a local re-
placement. Recall that energy minimizing map is a map where $no$ local
replacement of the given map around a point $p$ would decrease the total
energy. Here a local replacement is to satisfy the Dirichlet condition
on the boundary of the ball around the point $p$ . Hence the goal is to
identify a piece of $(M, 0, \delta)$-minimal set around a singular point $p$ as a
locally area minimizing map of a suitable simplicial complex. We re-
mark that in [LM] Lawlor and Morgan considered a similar issue, but

the replacement concerned there is restricted to the disc type.

In order to carry out this idea, we need to specify the “energy”

functional to be minimized, and the “Teichm\"uller space” of the simplex,

which parameterizes the various conformal structures, compatible with

the induced metric of the singular surface. There is a quote from one of

Yau’s open problem section [Y], which is relevant to the framework of

our investigation;
“How does one give a robust description on irregular geometric ob-

jects, especially the singular set of geometric objects defined by vari-

ational principles’;’ For example, how regular are the singular sets of
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harmonic maps and minimal varieties? Can one generalize the Douglas-
Rado mapping approach to minimal surfaces to the case when the bound-
ary is not a Jordan curve but the one-dimensional skeleton of a com-
plex? One should replace the disk by a simplicial complex with minimal
complexity.”

What makes this problem distinct from much of the work on the min-
imal surface literature is the fact that the “surfaces” concerned here has
no orientation a-priori, and thus there is no so-called “boundary oper-
ator” so often associated to elliptic variational problems, which enables
to integrate by parts. The variational definition of the almost minimal
sets introduced in the beginning is thus an attempt by Almgren [Alm]
to overcome the lack of elliptic variational formulations.

As an attempt to get around the obstacles, we set up the following
formulation [MY].

2 Douglas-Rado formulation ofminimal tri-discs

Let $A_{i},\tilde{A}_{i}$ be the x-axis of Euclidean unit half-discs $\triangle_{i},$
$\triangle_{i}\sim$ We suppress

the index for $A_{i}’ s$ as we identify them and call them $A$ $hom$ now on.)
Let Id$A$ : $Aarrow\tilde{A}_{i}$ and $Id_{\triangle_{i}}$ be identity maps. Define the moduli space
of conformal structures on the disjoint discs of the three half discs as

$\mathcal{P}=\{\Phi=(\phi_{1}, \phi_{2}, \phi_{3})\}$

where each $\phi_{i}$ are quasiconformal maps smooth up to the boundaw,
$\phi_{i}|_{A}$ : $Aarrow A_{i}$ are smooth quasi-symmetric functions, and $\phi_{1}=Id_{A}$ .
We let $X_{\Phi}$ be the space $\cup\triangle_{i}\sim/\sim\Phi$ where $\sim\Phi$ defines an identification
of $\tilde{A}_{i}$ and $\tilde{A}_{j}$ via the gluing map $\phi_{j}\circ\phi_{i}^{-1}$ : $\tilde{A}_{j}arrow\tilde{A}_{i}$ . Let $Y$ be a
real analytic manifold, for example $R^{n}$ . Let $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ be so that
$\alpha_{i}$ : $\triangle_{i}\simarrow Y$ in the function space $W^{1,2}\cap C^{0}$ . For $\Phi$ in $\mathcal{P}$ , we say that
$\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ satisfies the $\Phi$-matching condition if

$\alpha_{i}0\phi_{i}=\alpha_{1}o$ Id$A$ .

Let $\mathcal{F}(\Phi)$ be the set of $\alpha’ s$ satisfying the $\Phi$-matching condition. Note
that $\alpha$ in $\mathcal{F}(\Phi)$ can be considered as a map defined on the $X_{\Phi}$ whose
restriction to each $\triangle_{i}\sim$ equals to $\alpha_{i}$ .

Next, define a space of weights for the Dirichlet energy fUnctionals;

$C=$ { $(c_{1},$ $c_{2},$ $c_{3})\in R^{n}$ : $c_{1}+c_{2}+c_{3}=1$ , 砺 $\geq 0(i=1,2,3)$ }
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For $c\in C$ , we say that $\alpha\in \mathcal{F}(\Phi)$ is compatible with $c$ if $E(\alpha_{i})=0$

whenever $c_{i}=0$ . Otherwise we say $\alpha$ is incompatible with $c$ . We define
the area of $\alpha$ as $A( \alpha)=\sum_{i}A(\alpha_{i})$ and the c-weighted energy as

$E_{c}( \alpha)=(\Sigma_{c_{i}\neq 0}\frac{1}{c_{i}}(E(\alpha_{i}))^{2})^{1/2}$

if $\alpha$ is compatible with $c$, otherwise $\infty$ .
In [MY], we introduced the variational problem;

inf inf $infE_{c}(\alpha)$
$\Phi\in \mathcal{P}c\in C\alpha\in \mathcal{F}(\Phi)$

and showed that its minimizing element exists when the quasi-conformality
induced by the minimizing conformal $structure/gluing$ function $\Phi$ is
bounded, and that then the energy minimizing map $\alpha$ is the area-
minimizer, namely the value of the energy coincides with the 2-dimensional
Hausdorff measure of the harmonic image in the ambient space.

Let $(\Phi, c, \alpha)$ be the minimizing triple. By a slight modification of
the proof of Theorem 9 and Lemma 10 of [MY] we have that

$c_{i}= \frac{E(\alpha_{i})}{\Sigma^{c}E(\alpha_{i})}$

and $\alpha_{i}$ is weakly conformal. The matching condition implies

$\phi_{i}=\alpha_{i}^{-1_{O}}\alpha i^{\circ Id_{A}:A}arrow\tilde{A}_{i}$ .

Define $\beta_{i}=\alpha_{i^{\circ}}\phi_{i}$ : $\triangle_{i}arrow R^{n}$ . Then $\beta_{i}$ is a conformal harmonic map.
as $\alpha\iota$ is conformal and harmonic, and $\phi_{i}$ is an isometry by definition. It
was shown [MY] that the map has a continuous hee boundary.

3 Restricting the local topological type

We adapt this harmonic map formulation to construct a local replace-
ment for a given $(M, 0, \delta)$-minimal set. In order to gain control over
the topological type of the singular surface, we need to choose a scale
which is sufficiently smffi, so that the structure of the tangent cone is
reflected on the local structure of the small piece of the surface. We
consider the case when the center of the ball is a Y-singularity of the
$(M,0, \delta)$-minimal surface.

Suppose that we have an embedded graph $\Gamma$ in $R^{n}$ which is a union
of arcs $a_{k}$ meeting at vertices $q_{j}$ , each of which has valence at least
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two. The valence of a vertex $q$ is the number of times $q$ occurs as an
endpoint among all of the l-simplices $a_{i}$ . Each l-simplex $a_{i}$ is assumed
to be $C^{2}$ , and to meet its end points with $C^{1}$ smoothness; thus there is
a well-defined tangent vector $T_{i}(q)$ to each l-simplex $a_{i}$ at a vertex $q$ ,
pointing into $a_{i}$ . At a vertex $q$ of valence $d$ , we consider the contribution
to total curvature at $q$ :

$tc(q)$ $:= \sup_{e\in R^{n},||e||=1}\{\sum_{a_{k}:q\in a_{k}}(\frac{\pi}{2}-\angle_{q}(T_{k}(q), e))\}$ (1)

where $\angle_{q}(T_{k}(q), e)$ is the angle between the tangent vector $T_{k}(q)$ and
the direction $e$ . We define the total cumature of $\Gamma$ as

$C_{tot}(\Gamma)$ $:= \int_{\Gamma^{reg}}|\check{k}|ds+\sum_{q}$ {$tc(q)$ : $q$ a vertex of $\Gamma$ }. (2)

where $\vec{k}$ is the geodesic curvature vector of each $a_{i}$ as a curve in $R^{n}$ ,
and $\Gamma^{reg}=\Gamma\backslash \{vertices\}$ . It should be noted that our definition of total
curvature coincides with the standard defimition in the case when $\Gamma$ is
a piecewise smooth Jordan curve: the integral of the norm of $g\infty desic$

curvature vector plus the sum of the exterior angles at the vertices.
Namely, in that case, every vertex $q$ of the graph $\Gamma$ is of valence two,
and the supremum in equation (1) is assumed at vectors $e$ lying in the
smaller angle between the tangent vectors $T_{1}$ and $T_{2}$ to $\Gamma$ , so that $tc(q)$

is then the exterior angle at $q$ .
The type of surfaces we will consider is the immersed image $\Sigma$ of

a union of three $C^{2}$-smooth open discs $\Sigma_{i},$
$C^{1}$ up to the piecewise $C^{1}$

boundary $\partial\Sigma_{i}$ . We further restrict ourselves here so that the graph $\Gamma$ is
a union of three arcs, each of which is a part of l-skeleton $S$ of $\Sigma_{i}$ . We
call such a graph theta-type. $S$ is defined as the union of the piecewise
$C^{1}$ curves $\partial\Sigma_{i}$ . The class of such strongly stationary surfaces $\Sigma$ will be
denoted by $S_{\Gamma}$ .

Note that J. Taylor’s results imply that for a Y-singularity point
$p$ of $(M, 0, \delta)$-minimal surface $M$ , and for a small value $\rho>0$ , the
set $M\cap B_{\rho}(p)$ is a union of three minimal surfaces meeting along a
real analytic curve, hence the set $M\cap B_{\rho}(p)$ is an element of $S_{\Gamma}$ with
$\Gamma=\partial B_{\rho}(p)\cap M$ , which is a theta graph.

Let $\Gamma\subset R^{3}$ be a theta graph, and let $Sr$ be the class of singular
surfaces containing F. We will consider the surfaces $\Sigma\in S_{\Gamma}$ satisfying
the following property.
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Definition [EWW] A rectifiable varifold $\Sigma$ in $R^{3}$ is called strongly
stationary with respect to $\Gamma$ if for all smooth $\phi$ : $R\cross R^{n}$ with $\phi(0, x)\equiv x$ ,
we have

$\frac{d}{dt}(Area(\phi(t, \Sigma))+Area(\phi([0, t]\cross\Gamma)))|_{t=0}\geq 0$ .

In [GY], a criterion was obtained to restrict the type of singulari-
ties belonging to a strongly stationary surfaces in $S_{\Gamma}$ with respect to its
boundary in terms of the total curvature of the boundary.

Theorem [GY] Suppose $\Gamma$ is a graph in $R^{3}$ with $C_{tot}(\Gamma)\leq 2\pi C_{T}$ where
$C_{T}\approx 1.8245$ is the area density of the T-singularity cone, and let $\Sigma\in S_{\Gamma}$

be embedded as an $(M, 0, \delta)$ -minimizing set with respect to $\Gamma$ . Then $\Sigma$

has possibly $Y$ singula$\gamma\dot{\eta}ties$ but no other singularities, unless it is a sub-
set of the $T$ stationary cone, with planar faces.

As the total curvature of the link $\partial B_{1}(p)\cap Y_{p}$ where $Y_{p}$ is the tangent
cone of $M$ at $p$ , which is isometric to the Y-singularity cone, is strictly
less than $2\pi C_{T}$ , there exists a $\rho 0>0$ such that for any $\rho<\rho 0$ , the
boundary $M\cap\partial B_{\rho}(p)$ of the surface $M\cap B_{\rho}(p)$ had total curvature less
than $2\pi C_{T}$ and thus the set $M\cap B_{\rho}(p)$ is a collection of three minimal
surfaces diffeomorphic to the simplicial complex $X_{Id}$ . Note that the
boundary $M\cap\partial B_{\rho}(p)$ as well as the hee boundary where the three real
analytic surfaces meet are piecewise-real-analytic curves. Furthermore,
for $\rho$ chosen sufficiently small, one can have $M\cap B_{\rho}(p)$ conformal to $X_{\Phi}$

for $\Phi$ in $\mathcal{P}(D)$ with a finite dilatation $D$ . We fix such a $\rho$ for the given
$p\in M$ .

4 Local replacement of a $(M, 0, \delta)$-minimal set
by harmonic images

The fact that at a small scale around a Y-singularity point $p$ , an $(M, 0, \delta)-$

minimal set is a union of three minimal surfaces with conformal struc-
tures with bounded dilatation in the sense of the Douglas-Rado con-
struction as described above, can be interpreted as the local piece $M\cap$

$B_{\rho}(p)$ of $(M, 0, \delta)$-minimal set $M$ is represented as a competitor of the
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variational scheme of finding a minimizer for

inf inf $infE_{c}(\alpha)$
$\Phi\in \mathcal{P}(D)c\in C\alpha\in \mathcal{F}(\Phi)$

for some finite number $D>0$ . Of course this says in turn that the
area of the set $M\cap B_{\rho}(p)$ is bounded below by the value of inf inf inf
above. This is because the triple of the harmonic maps $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$

parameterizing the three minimal surfaces are conformal on each open
semi-discs $\Delta_{i}$ , and also the weights $c=(c_{1}, c_{2}, c_{3})$ of $E_{c}$ energy is chosen
so that

$E_{c}( \alpha)=\mathcal{H}^{2}(\alpha[\bigcup_{i=1}^{3}\Delta_{i}])$ .
as well as the fact that

$\inf_{\Phi\in \mathcal{P}(D)}\inf_{c\in C}\inf_{\alpha\in \mathcal{F}(\Phi)}E_{c}(\alpha)\leq E_{c}(\alpha)$

5 Open Problems
To achieve the goal of finding a local replacement of a $(M, 0, \delta)$-minimal
set by harmonic map images, we need to show the other inequality,
namely;

$\mathcal{H}^{2}(\alpha[\bigcup_{i=1}^{3}\Delta_{i}])\leq\inf_{\Phi\in \mathcal{P}D)}\inf_{c\in\alpha}\inf_{\in \mathcal{F}\Phi)}E_{c}(\alpha)$ .

It should be noted that as was demonstrated in [MY], the space
$\mathcal{P}(D)$ is sequentially compact, and thus one can find a minimizing se-
quence of triples $(\alpha, c, \Phi)$ , which is convergent. However, the limit thus
obtained may have little to do with the $(M, 0, \delta)$-minimal set $M\cap B_{\rho}(p)$ .

At this point one would hope to construct a minimizing sequence
in the inf inf inf scheme which approximate the set $M\cap B_{\rho}(p)$ in a
suitable sense, to ensure a convergence of the sets. Then the lower
semi-continuity of the energy should be utilized to obtain the desired
inequality above.

We make two concluding remarks here. The first is that the lower
dimensional analogue $(d=1, n=2,)$ namely one-dimensional minimal
network, in the sense of $(M, 0, \delta)$-minimal sets where mass $M$ here is
the one-dimensional Hausdorff measure, in $R^{2}$ (or more generally in
$R^{n})$ can be completely characterized locally by the Douglas-Rado for-
mulation [MY] as presented in Section 2. The difference from the
$d=2,$ $n=3$ case is the moduli space of gluing minimal curve is trivial,
and thus $\mathcal{P}$ consist of a point.
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The second concluding remark is related to the first. The essence of
this problem of dealing with singular sets, which are inevitably present
$hom$ variational viewpoints, is the understanding of the space of con-
formal structure, or equivalently the space of gluing functions $\Phi$ along
the singular sets. We expect in order to carry out the convergence of
suitably chosen minimizing triples $(\alpha, c, \Phi)$ , one needs to find a con-
nection between the extrinsic geometry of the minimal sets to the in-
$trinsic/conformal$ geometry of the induced metrics. The former would
involve tools like Reifenberg Approximation Theorem [Re][DT] which
would provides a criterion for scale-invariant Hausdorff convergence to
a tangent $space/cone$. The latter would require a good understanding
of the relationship between the regularity of the gluing functions and
that of the resulting metrics, which would be then enables to use the
free boundary PDE’s tools as in [KNS].

Those remaining tasks may not be simple, but the author believes
that there should be an intense effort to understand the connection be-
tween the viewpoint of geometric measure theory, which have resulted in
beautiful results such as Taylor’s [T], and the approach using nonlinear
partial differential equations such as the harmonic map theory.
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