Mapping theorems for C-spaces

順天堂大学スポーツ健康科学部 菰田智恵子 (Chieko Komoda)

We assume that all spaces are normal unless otherwise stated. We refer the readers to [2] for dimension theory.

In this note we study mapping theorems for C-spaces.

A space X is a C-space (an A-weakly infinite-dimensional space) if for every countable collection $\{\mathcal{G}_i : i \in \mathbb{N}\}$ of open covers (two-element open covers, respectively) of X there exists a countable collection $\{\mathcal{H}_i : i \in \mathbb{N}\}$ of collections of pairwise disjoint open subsets of X such that $\mathcal{H}_i < \mathcal{G}_i$ for every $i \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} \mathcal{H}_i$ covers X (cf. [1]).

Evidently, every C-space is A-weakly infinite-dimensional. However, it is not known whether the converse is true.

Polkowski [5] proved the following theorem.

Theorem 1 (Polkowski [5]). If $f : X \longrightarrow Y$ is a closed mapping of an A-weakly infinite-dimensional countably paracompact space X onto a space Y and there exists an integer $k \ge 1$ such that $|f^{-1}(y)| \le k$ for every $y \in Y$, then Y is A-weakly infinitedimensional.

We proved that the following theorem, which is an analogous result for C-spaces.

Theorem 2. If $f: X \longrightarrow Y$ is a closed mapping of a countably paracompact C-space X onto a paracompact space Y and there exists an integer $k \ge 1$ such that $|f^{-1}(y)| \le k$ for every $y \in Y$, then Y is a C-space.

Problem. Does theorem 1 (or theorem 2) hold for closed mappings with finite fibers? In [4], Pol proved the following theorem.

Theorem 3 (Pol [4]). If $f: X \longrightarrow Y$ is a continuous mapping of a compact metrizable space X onto a metrizable space Y such that $|f^{-1}(y)| \leq \aleph_0$ for every $y \in Y$, then X is an A-weakly infinite-dimensional space (resp. a C-space) if and only if Y is an A-weakly infinite-dimensional space (resp. a C-space).

Does Theorem 3 remain true if we replace $|f^{-1}(y)| \leq \aleph_0$ by $|f^{-1}(y)| < \mathbf{c}$? In [5], Polkowski proved the following theorem.

Theorem 4 (Polkowski [5]). If $f : X \longrightarrow Y$ is a continuous mapping of a compact A-weakly infinite-dimensional space X onto a space Y such that $|f^{-1}(y)| < c$ for every $y \in Y$, then Y is A-weakly infinite-dimensional.

Similarly, the following theorem holds.

Theorem 5. If $f: X \longrightarrow Y$ is a continuous mapping of a compact C-space X onto a space Y such that $|f^{-1}(y)| < c$ for every $y \in Y$, then Y is a C-space.

On the other hand, Hattori and Yamada proved that the following theorem.

Theorem 6 (Hattori and Yamada [3]).

(i) If $f : X \longrightarrow Y$ is a closed mapping of a countably paracompact (or hereditarily normal) space X onto a C-space Y such that $f^{-1}(y)$ is A-weakly infinite-dimensional for every $y \in Y$, then X is A-weakly infinite-dimensional.

(ii) If $f: X \longrightarrow Y$ is a closed mapping of a paracompact space X onto a C-space Y such that $f^{-1}(y)$ is a C-space for every $y \in Y$, then X is a C-space.

Problem. Does Theorem 6(i) remain true if we replace $f^{-1}(y)$ is a C-space' by $f^{-1}(y)$ is A-weakly infinite-dimensional'?

References

- D. F. Addis and J. H. Gresham, A class of infinite-dimensional spaces, Part I: Dimension theory and Alexandroff's Problem, Fund. Math. 101(1978), 195-205.
- [2] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, 1995.
- [3] Y. Hattori and K. Yamada, Closed pre-images of C-spaces, Math. Japonica 34(1989), 555-561.
- [4] R. Pol, On light mappings without perfect fibers on compacta, Tsukba J. Math. 20(1996), 11-19.
- [5] L. Polkowski, Some theorems on invariance of infinite dimension under open and closed mappings, Fund. Math. 119(1983), 11-34.

Chieko Komoda

Department of Health Science, School of Health & Sports Science, Juntendo University Inba, Chiba, 270-1695, Japan

E-mail address: chieko_komoda@sakura.juntendo.ac.jp