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1. INTRODUCTION

As well known, in the topological category TOP uniform spaces are studied as
the generalization of metric spaces, compact spaces and topological groups. In the
fibrewise category $TOP_{B}$ with the base space $B$ , the study of fibrewise uniform space
in $TOP_{B}$ is found in James [5] Ch.3 and Konami-Miwa [6], [7]. Especially in [6] and
[7], they studied the fibrewise uniform spaces by using coverings, and proved in [7]
the equivalence of flbrewise uniform spaces by using entourages (in [5]) and their
one (in [7]). The study of metrizable maps in $TOP_{B}$ is found in [11], [9], [2], [8] and
[3]. But for a metrizable map $p$ : $Xarrow B$ , the study of fibrewise uniformity on $X$

has not been done.
In this paper, we announce the existence of fibrewise uniformities on some metriz-

able maps, and study the relations between the completeness induced by a trivial
metric and the one defined by fibrewise uniformities. Further, we discuss the rela.
tions between completely metrizable maps and $\check{C}$ech-complete maps.

2. PRELIMINARIES

In this section, we refer to the notions and notations in Fibrewise Topology. For
the definitions of undefined terms and notations, see [4], [3], [7] and [5].

Throughout this paper, we will use the abbreviation $nbd(s)$ for neighborhood$(s)$ .
Let $B$ be a topological space with a fixed topology $\tau$ . For each $b\in B,$ $N(b)$ is the
family of all open nbds of $b$ , and $N,$ $Q,$ $R$ and $I$ are the sets of all natural numbers,
all rational numbers, all real numbers and the unit interval, respectively. In this
paper, we assume that $(B, \tau)$ is a regular space, all spaces are topological spaces
and all maps are continuous.

For a map $p:Xarrow B$ and each $b\in B$ , the fibre over $b$ is the subset $X_{b}=p^{-1}(b)$

of $X$ . Also for each subset $B’$ of $B$ , we denote $X_{B’}=p^{-1}B’$ . For a filter $\mathcal{F}$ on $X$ ,
by a b-filter on $X$ we mean a pair $(b, \mathcal{F})$ such that $b$ is a limit point of the filter
$p_{*}(\mathcal{F})$ on $B$ , where $p_{*}(\mathcal{F})$ is the filter generated by the family $\{p(F)|F\in \mathcal{F}\}$ . By
an adherence point of a b-filter $\mathcal{F}(b\in B)$ on $X$ , we mean a point of the fibre $X_{b}$
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which is an adherence point of $\mathcal{F}$ Is afilter on X. For aprojection $p:Xarrow B$ and
$W\subset B$ , we use the notation $X_{W}\cross X_{W}=X_{W}^{2}$ and $X\cross X=X^{2}$ . For $D,$ $E\subset X^{2}$ ,
$D\circ E=$ { $(x,$ $z)|\exists y\in X$ such that $(x,$ $y)\in D,$ $(y,$ $z)\in E$} and $D(x)=\{y|(x, y)\in D\}$ .
For afamily $\mathcal{U}$ of subsets of aset $X$ and asubset $A$ of $X,$ $\mathcal{U}|_{A}=\{U\cap A|U\in \mathcal{U}\}$ .

Next, according to [11] let us refer to (completely) trivially metrizable maps. For
amap $p:Xarrow B$ with apseudometric $\rho$ on $X$ is called atrivial $met’\dot{v}c(T- met\dot{n}c$ ,
for short) on $p$ if the $r\infty triction$ of $\rho$ to every fibre $p^{-1}(b),$ $b\in B$ , is ametric td
$p^{-1}\tau\cup\tau_{\rho}$ , where $\tau_{\rho}$ is the topology on $X$ generated by $\rho$ , is asubbase of the topology
of X. Amap $p:Xarrow B$ is called $tr\dot{\tau}vially$ metrizable (a $TM$-map, for short) if there
exists a $T$-metric on $p$ . A $T$-metric on amap $p$ : $Xarrow B$ is caJled complete (a
$CT- metr\dot{\tau}c$, or short) if

$(^{*})$ For any $k$filter $\mathcal{F},$ $b\in B$ , on $X$ containing elements of arbitrary small diameter,
$\mathcal{F}$ has adherence points.

Amap $p:Xarrow B$ is called completely trivially metrizable (acomplete TM-map,
for short) if there exists a $CT$-metric on it.

Amap $p:Xarrow B$ is called (resp. closedly) pamllel to aspace $Z$ if there exists $\bm{t}$

embedding $e:Xarrow B\cross Z$ such that (resp. $e(X)$ is closed in $B\cross Z\bm{t}d$ ) $p=\pi oe$ ,
where $\pi$ : $B\cross Zarrow B$ is the projection (see [10]).

The foUowing are proved in [11]: Amap $p$ : $Xarrow B$ is aTM-map if and only
if $p$ is parallel to ametrizable map, $\bm{t}dp$ is acomplete $TM$-map if and only if it
is closedly parallel to acompletely metrizable (i.e., metrizable by complete metric)
space.

Remark: By these, for a $TM$-map $p$ : $Xarrow B$ there erists ametric space $(M, \rho)$

$\bm{t}d\bm{t}$ embedding $e:Xarrow B\cross M$ such that $p=\pi\circ e$ . Then it is eaey to see that
we ct define a $T$-metric(pseudometric) $\rho’$ on $X$ by $\rho’(x, y)=\rho(\pi oe(x), \pi oe(y))$ ,
and vice versa. So, we ct $identi6^{r}\rho$ on $M\bm{t}d\rho’$ on $X$ in the above meting. In
latter sections, we use the same notation $\rho$ on $M_{\bm{t}}d$ on $X$ .

We shaf conclude this section by referring to fibrewise uniformitiae accordin$g$ to
[7]. First, we recall the foUowing definition.

Definition 2.1. Let $p:Xarrow B$ be a projection, and $\Delta$ be the diagonal.of $X\cross X$ .
A fibrewise entourage uniformity on $X$ is a filter $\Omega$ on $X\cross Xsatisy_{\dot{i}}g$ the following
four conditions:

(J1) $\Delta\subset D$ for every $D\in\Omega$ .
(J2) Let $D\in\Omega$ . Then for each $b\in B$ there exist $W\in N(b)$ and $E\in\Omega$ such that

$E\cap X_{W}^{2}\subset D^{-1}$ .
(J3) Let $D\in\Omega$ . Then for each $b\in B$ there exist $W\in N(b)$ and $E\in\Omega$ such that

$(E\cap X_{W}^{2})o(E\cap X_{W}^{2})\subset D$

(J4) If $E\subset X\cross X$ satisfies that for each $b\in B$ there exist $W\in N(b)$ and $D\in\Omega$

such that $D\cap X_{W}^{2}\subset E$ , then $E\in\Omega$ .
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Note that in [5] Section 12, a filter $\Omega$ on $X\cross X$ satisfying (JI),(J2) and (J3) is
called a fibrewise uniform structure on $X$ . So, the notion of a fibrewise entourage
uniformity is slightly stronger than one of a fibrewise uniform structure.

For a projection $p:Xarrow B$ and $W\in\tau$ , let $\mu_{W}$ be a non-empty family of coverings
of $X_{W}$ . We say that $\{\mu_{W}\}_{W\in\tau}$ is a system of coverings of $\{X_{W}\}_{W\in\tau}$ . (For this, we
briefly use the notations $\{\mu_{W}\}$ and $\{X_{W}\}$ ). Let $\mathcal{U}$ and $\mathcal{V}$ be families of subsets of a
set $X$ . If $\mathcal{V}$ refines $\mathcal{U}$ in the usual sense, we denote $\mathcal{V}<\mathcal{U}$ . Let us define the notion
of fibrewise covering uniformity.

Definition 2.2. Let $P$ : $Xarrow B$ be a projection, and $\mu=\{\mu_{W}\}$ be a system of
coverings of $\{X_{W}\}$ . We say that the system $\{\mu_{W}\}$ is a fibrewise covering unifor-
mity (and a pair (X, $\mu$) or (X, $\{\mu_{W}\})$ ) is a fibrewise covertng uniform space) if the
$f_{0}nowing$ conditions $are$ satisfied:
(C1) Let $\mathcal{U}$ be a covering of $X_{W}$ and for each $b\in W$ there exist $W’\in N(b)$ and

$\mathcal{V}\in\mu_{W’}$ such that $W\subset W$ and $\mathcal{V}<\mathcal{U}$ . Then $\mathcal{U}\in\mu_{W}$ .
(C2) For each $u\in\mu_{W},$ $i=1,2$ , there exists $\mathcal{U}_{3}\in\mu_{W}$ such that $\mathcal{U}_{3}<\mathcal{U}_{i},$ $i=1,2$ .
(C3) For each $\mathcal{U}\in\mu_{W}$ and $b\in W$ , there exist $W’\in N(b)$ and $\mathcal{V}\in\mu_{W’}$ such that

$W’\subset W$ and $\mathcal{V}$ is a star refinement of $\mathcal{U}$ .
(C4) For $W’\subset W,$ $\mu_{W’}\supset\mu_{W}|x_{W}$, , where

$\mu_{W}|_{X_{W}},$ $=\{\mathcal{U}|_{X_{W}},|\mathcal{U}\in\mu_{W}\}$ and $\mathcal{U}|_{X_{W}},$ $=\{U\cap X_{W’}|U\in \mathcal{U}\}$ .
For a fibrewise entourage uniformity $\Omega$ on X, $D\in\Omega$ and $W\in\tau$ , let $\mathcal{U}(D, W)=$

$\{D(x)\cap X_{W}|x\in X_{W}\}$ . FUrther let $\mu_{W}(\Omega)$ be the family of coverings $\mathcal{U}$ of $X_{W}$

satisfying that for each $b\in W$ there exist $W’\in N(b)$ and $D\in\Omega$ such that $W\subset W$

and $\mathcal{U}(D, W’)<\mathcal{U}$ . Then the system $\mu(\Omega)=\{\mu_{W}(\Omega)\}$ is a fibrewise covering
uniformity ([7] Proposition 3.7).

Conversely, for a fibrewise covering uniformity $\mu=\{\mu_{W}\}$ , we can constructed a
fibrewise entourage uniformity $\Omega(\mu)$ as follows ([7] Construction 3.8): For $\mathcal{U}\in\mu_{W}$ ,
$D(\mathcal{U})=\cup\{U_{\alpha}\cross U_{\alpha}|U_{\alpha}\in \mathcal{U}\}$ . Let $\Omega(\mu)$ be the family of all subsets D C $X\cross X$

satisfying the following condition:
$\Delta\subset D$ , and for every $b\in B$ there exist $W\in N(b)$ and $\mathcal{U}\in\mu_{W}$ such
that $D(\mathcal{U})\subset D$ .

Then $\Omega(\mu)$ is a fibrewise entourage uniformity ([7] Proposition 3.10). Fhrther, we
proved the following:

Theorem 2.3. ([7] Theorem 3.11) For a projection $p$ : $Xarrow B$ and a fibrewise
entourage uniformity $\Omega$ on X, we have $\Omega=\Omega(\mu(\Omega))$ .

For a fibrewise entourage uniformity $\Omega$ on X and a fibrewise covering uniformity
$\mu$ on X, let $\tau(\Omega)$ be the fibrewise topology induced by $\Omega$ ( $[5]$ Section 13) and $\tau(\mu)$

be the fibrewise topology induced by $\mu$ ([7] Proposition 3.8). Then $\tau(\Omega)=\tau(\mu(\Omega))$

and $\tau(\mu)=\tau(\Omega(\mu))$ ( $[7]$ Proposition 3.12).
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3. FIBREWISE COVERING UNIFORMITIES ON $TM$-MAPS

For a TM-map $p:Xarrow B$ parallel to a metric space $(M, \rho)$ , let $e:Xarrow B\cross M$

be the embedding. For each $n\in N$ , let $\mathcal{U}_{n}$ be the family $\{U(x, \frac{1}{n})|x\in M\}$ , where
$U(x, \frac{1}{n})=\{y\in M|\rho(x, y)<\frac{1}{n}\}$ and $\mathcal{W}_{n}=\{e^{-1}(B\cross U)|U\in \mathcal{U}_{n}\}$ . Then for each
$W\in\tau$ , let $\mu w=\{\mathcal{U}|\cup \mathcal{U}=X_{W}$ and for each $b\in W$ there exists $n\in N$ and
$W\in N(b)$ with $W\subset W$ such that $\mathcal{W}_{n}|X_{W’}<\mathcal{U}$}.

Since $\mu_{W}$ and $\mu$ constructed above are induced by the metric $\rho$ on $M$ (on $X$), we
call this $\mu=\{\mu_{W}\}$ a fibrewise covering uniformity on $X$ induced by the metric $\rho$ ,
and denoted by $\mu_{\rho}=\{\mu_{W}\}_{\rho}$ . Further, by the construction of $\{\mathcal{W}_{n}|n\in N\}$ in the
above, we say that the farnily $\{\mathcal{W}_{n}|n\in N\}$ is the standard developable covereng (s&
covering, for short) on $X$ induced by $\rho$ . (Note that we exclusively use the notation
$\{\mathcal{W}_{n}|n\in N\}$ as sd-covering induced by $\rho$ in this paper.)

Theorem 3.1. For a TM-map $p$ : $Xarrow B$ with a T-metric $\rho$ , the system $\mu_{\rho}=$

$\{\mu_{W}\}_{\rho}$ is a fibrewise covering uniformity on X induced by $\rho$ .

4. EQUIVALENCE OF SOME COMPLETENESS ON TM-MAPS

Definition 4.1. ([5] Definition 14.1) For a map $p$ : $Xarrow B$ , let $\Omega$ be a fibrewise
entourage uniformity on $X$ .
(1) A subset $M$ of $X$ is said to be D-small, where $D$ $cX^{2}$ , if $M^{2}$ is contained in $D$ .
(2) A bfiler $\mathcal{F}$ , where $b\in B$ , is Cauchy if $\mathcal{F}$ contains a D-small members for each
$D\in\Omega$ . (We $caU\mathcal{F}$ J-Cauchy with respect to $\Omega$ (w.r.t. $\Omega$ , for short), for convenience’
$s$ake.)

We shaf define a new notion of Cauchy bfilter in fibrewise covering uniformity
$\mu=\{\mu_{W}\}$ on $X$ .

Definition 4.2. For a map $p$ : $Xarrow B$ , let $\mu=\{\mu_{W}\}$ be a fibrewise covering
uniformity on $X$ . A b-filer $\mathcal{F}$ , where $b\in B$ , is Cauchy if for each $W\in N(b)$ and
$\mathcal{U}\in\mu_{W}$ there exist $F\in \mathcal{F}$ and $U\in \mathcal{U}$ such that F C U. (We call $\mathcal{F}$ CU-Cauchy
with respect to $\mu$ (w.r.t. $\mu$ , for short), for convenience’ sake.)

Theorem 4.3. For a map $p$ : $Xarrow B$ , let $\Omega$ be a fibrewise entourage uniformity
on $X$ . Then for each $b\in B$ , a bfiler $\mathcal{F}$ is J-Cauchy w.r. $t$ . $\Omega$ if and only if it is
CU-Cauchy w.r. $t$ . $\mu(\Omega)$ .

For a space $X$ , let $\prime r=\{\Phi_{\alpha}|\alpha\in\Lambda\}$ be a family of families of subsets of $X$ . We
say that a family $\Psi$ of subsets of $X$ is subordinated to the family $\prime r$ if for each $\alpha\in\Lambda$

there exists $U_{\alpha}\in\Phi_{\alpha}$ and $V\in\Psi$ such that V C $U_{\alpha}$ .
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Definition 4.4. Let $p:Xarrow B$ be a TM-map with a T-metric $\rho$ .
(1)([11]) The map $p$ is complete if for any b-filter $\mathcal{F},$ $b\in B$ , on $X$ subordinated to
the sd-covering $\{\mathcal{W}_{n}|n\in N\}$ induced by $\rho$ , it has adherence points. (We call this
“complete” P-complete, and also call this b-filter satisfying this condition P-Cauchy
w.r. $t\rho.$ )
(2)( $[5]$ Definition 14.10) The map $P$ is complete if for each $b\in B$ any J-Cauchy
b-filter $\mathcal{F}$ w.r.t. $\Omega(\mu_{\rho})$ converges. (We call this “complete” J-complete.)

Theorem 4.5. For a TM-map $p:Xarrow B$ with a T-metric $\rho$ and each $b\in B$ , a
bfiler $\mathcal{F}$ is a P-Cauchy w.r. $t$ . $\rho$ if and only if it is a J-Cauchy w.r. $t$ . $\Omega_{\rho}$ .

5. COMPLETE $TM$-MAPS AND $\check{C}$ECH-COMPLETE MAPS

Definition 5.1. A $T_{2}$-compactifiable map $p:Xarrow B$ is Oech-complete if for each
$b\in B$ , there exists a countable family $\{\mathcal{A}_{n}\}_{n\in N}$ of open (in $X$ ) covers of $X_{b}$ with
the property that every b-filter $\mathcal{F}$ which is subordinated to the family $\{A_{n}\}_{n\in N}$ has
an adherence point.

Proposition 5.2. (1) ([1] Theorem 6.1) Every locally compact map is $\check{C}$ech-complete

(2) ([1] Theorem 4.1) For $T_{2}$-compactifiable maps $p$ : $Xarrow B,$ $q$ : $Yarrow B$ and a
pefect morphism $f$ : $Parrow q,$ $p$ is $Ce\bm{i}$-complete if and only if $q$ is \v{C}ech-complete.

Lemma 5.3. Every TM-map $p:Xarrow B$ is a $T_{3:}$ -map.

By this lemmm, every TM-map is $T_{3_{5}^{1}}$ -compactifiable. For complete TM-maps,
we can prove the fonowing.

Theorem 5.4. If $p:Xarrow B$ is a complete TM-map, then $p$ is Cech-complete.

6. $MT$-MAPS AND SOME PROBLEMS

About the relations of $TM$-maps and MT-maps, we have the following.
(a) A closed $TM$-map is an MT-map.
(b) There exists a compact MT-map which is not a TM-map.
(c) There exists (complete) TM-maps which are not closed, so not MT-maps.

Theorem 6.1. If $p:Xarrow B$ is a closed TM-map, then $P$ is an MT-map.
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As discussed in section 5, there seems to exist many problems about relations
between metrizable maps and completeness. As an attempt to the problems, we
define a new notion of D-complete MT-maps. For an MT-map $p:Xarrow B$, we use
the following notation: $\{\{\mathcal{U}_{n}(b)\}_{n\in N}|b\in B\}$ is a P-development, where $\{\mathcal{U}_{n}(b)\}_{n\in N}$

is a b-development. First, we recall some definitions and theorems of MT-maps
according to [3].

Definition 6.2. (1)( $[3]$ Def. 2.8) For a map $p:Xarrow B$ , a sequence $\{\mathcal{U}_{n}\}_{n\in N}$ of open
(in $X$ ) covers $ofX_{b},$ $b\in B$ , is said to be a b-development if for every $x\in X_{b}$ and every
$U\in N(x)$ , there exists $n\in N$ and $W\in N(b)$ such that $x\in st(x,\mathcal{U}_{n})\cap X_{W}\subset U$ . The
map $p$ is $s$aid to have a p-development if it has a b-development for every $b\in B$ .
(2)( $[3]$ Def. 2.9) A closed map $p$ : $Xarrow B$ is said to be an MT-map if it is
collectionwise normal and has a p-development.

Definition 6.3. For an MT-map $p:Xarrow B$ equipped with p-development
$\{\{\mathcal{U}_{n}(b)\}_{n\in N}|b\in B\}$ , we call $p$ D-complete with respect to the p-development if for
eacf $b\in B$ every $k$filter $\mathcal{F}$ subordinated to $\{lk(b)\}_{n\in N}$ has adherence points.

Problem 6.4. For an MT-map $p$ : $Xarrow B$ , let $\{\{u(b)\}_{n\in N}|b\in B\}$ be a p-
development.
(1) Is there a fibrewise (covering) uniformity on $X$ related to the p-development?
(2) If Problem (1) had an affirmative answer, then is the J-completion of $p$ w.r.t.
the fibrewise (covering) uniformity on $X$ equivalent to D-completion?
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