Swaption pricing： A Binomial Approach

法政大学•工学部 浦谷 規（Uratani Tadashi）
Department of Industrial and System Engineering
Engineering School of Hosei University

1 Introduction

The Libor market model and Swap market model are inconsistent with each other in that they can not be simultaneously described by log－normal processes．

The market quots the at－the－money caps in term of their Black implied volatilities．From these，one can infer caplet volatilites．Caplet implied volatilities give information about the distribution of forward Libor．The market seems to assume that it is log－normal with volatility． At－the－money European swaptions are also quoted in term of their Black implied volatilities which give information about distribution of swap rate．The Black model pricing is assumed that forward swap rate follows \log－normal distribution．

The purpose of this paper is to build an arbitrage－free lattice model for swaption，which is consistent with Libor market model and which provides an implementation method for the theoretical closed－form formula which is difficult to get numerical solution．We furthermore compare the approximations of swaption pricing between swap market model and binomial lattice in theoretical and numerical aspect．

There are several papers on solving inconsistency of two market models．We can see the swap volatility approximation by Libor volatility in Rebonate［5］or Brigo［1］．These approaches are mainly to adjest the swap volatility by using Libor volatilty．Recently，however，Davis and Mataix－Pastor［2］have shown the possibility of negative forward Libor rate from coexistence of Libor market model and Swap market model．This negative forward Libor could give us arbitrage opportunity．Our approximation by lattice would make it possible to get arbitrage opportunity．

The rest of this paper is organized as follows．In Section 2 we provide notation and introduce Libor market model which is based on HJM model．In Section 3，we derive European payer swaption price formula for Gaussian volatility．The formula is a weighted average of discount bonds with Gaissian distribution weight．However，it is not easy task to find numerical solution of function which satisfy positivity of swaption．In section 4 ，we propose the numerical method to get a solution of this function by binomial lattice，which uses the change of measure techique based on Jamishidan［3］．In Section 5 is devoted to numerical example of flat term structure of Libor and volatility．After providing Swap market model with European payer swaption formula，we compare numerical values of coefficeient for discount bonds in the portfolio of bonds replicating the swap．Finally，we discuss the replication strategy for arbitrage and closing remarks．

2 Libor model

We assume HJM－model for discouted bond prices of maturity $T_{i},\left\{B_{i}(t)\right\}_{0 \leq t \leq T_{i}}$ under risk neutral measure Q ，

$$
d B_{i}(t) / B_{i}(t)=r(t) d t+\sigma^{i}(t) d W(t)
$$

where the time span is $\delta=t_{i+1}-t_{i}$, for $i=0, \cdots, N-1$. Let $r(t)$ be spot rate and $\sigma^{i}(t)$ be the volatility of discount bond. The bond price of maturity of T_{i} at time T_{m} is, for $t \leq T_{m} \leq T_{i}$

$$
\begin{equation*}
B_{i}\left(T_{m}\right)=B_{i}(t) \exp \left(\int_{t}^{T_{m}} r(s) d s+\int_{t}^{T_{m}} \sigma^{i}(s) d W(s)-\frac{1}{2} \int_{t}^{T_{m}}\left|\sigma^{i}(s)\right|^{2} d s\right) \tag{2.1}
\end{equation*}
$$

and for the bond price of maturity T_{i+1} is

$$
\begin{equation*}
B_{i+1}\left(T_{m}\right)=B_{i+1}(t) \exp \left(\int_{t}^{T_{m}} r(s) d s+\int_{t}^{T_{m}} \sigma^{i+1}(s) d W(s)-\frac{1}{2} \int_{t}^{T_{m}}\left|\sigma^{i+1}(s)\right|^{2} d s\right) \tag{2.2}
\end{equation*}
$$

Let $L_{i}(t)$ be a forward Libor from T_{i} to T_{i+1}, then the Libor process is defined as

$$
L_{i}(t)=\delta^{-1}\left(\frac{B_{i}(t)}{B_{i+1}(t)}-1\right)
$$

Dividing (2.1) by (2.2) and from the definition of Libor we get

$$
\begin{equation*}
\frac{1+\delta L_{i}\left(T_{m}\right)}{1+\delta L_{i}(t)}=\exp \left(\int_{t}^{T_{m}}\left[\sigma^{i}(s)-\sigma^{i+1}(s)\right] d W(s)-\frac{1}{2} \int_{t}^{T_{m}}\left[\left|\sigma^{i}(s)\right|^{2}-\left|\sigma^{i+1}(s)\right|^{2}\right] d s\right) \tag{2.3}
\end{equation*}
$$

In HJM-model the forward process of settlement time T is modeled as

$$
d f_{T}(t)=\mu_{T}(t) d t+\sigma_{T}(t) d W(t)
$$

where σ_{T} is the volatility of forward process $\left\{f_{T}(t)\right\}$. For the settlement time T_{i} we write the volatility $\sigma_{i}(t)$ instead of $\sigma_{T_{i}}(t)$. The bond price at t of maturity T in (2.1) divided by (2.2) and let $B_{t}(t)=1$, then

$$
B_{T}(t)=\frac{B_{T}(0)}{B_{t}(0)} \exp \left(\int_{0}^{t}\left(\sigma^{T}(s)-\sigma^{t}(s)\right) d W(s)-\frac{1}{2} \int_{0}^{t}\left(\left|\sigma^{T}(s)\right|^{2}-\left|\sigma^{t}(s)\right|^{2}\right) d s\right)
$$

Forward rate is defined as $f_{T}(t)=-\frac{\partial}{\partial T} \log B_{T}(t)$ and then

$$
d f_{T}(t)=\sigma^{T}(t) \frac{\partial}{\partial T} \sigma^{T}(t) d t-\frac{\partial}{\partial T} \sigma^{T}(t) d W(t)
$$

By Itô's division rule

$$
\frac{d\left(B_{i}(t) / B_{i+1}(t)\right)}{B_{i}(t) / B_{i+1}(t)}=\left(\sigma^{i}(t)-\sigma^{i+1}(t)\right)\left(d W(t)-\sigma^{i+1}(t) d t\right)
$$

Under the risk adjusted measure Q^{i+1}

$$
\frac{d L_{i}(t) \delta}{1+\delta L_{i}(t)}=\left(\sigma^{i}(t)-\sigma^{i+1}(t)\right) d W^{i+1}(t)
$$

when we define the risk adjested Measure Q^{i+1} by $d Q^{i+1} / d Q=\mathcal{E}\left(\int_{0}^{T_{i+1}} \sigma^{i+1}(t) d W(t)\right)$, then $W^{i+1}(t)=W(t)-\int_{0}^{t} \sigma^{i+1}(s) d s$ is Brownian motion under Q^{i+1} where $\mathcal{E}(\cdot)$ is stochastic exponential.
Therefor Libor $L_{i}(t)$ is Q^{i+1}-martingale as,

$$
E_{t}^{i+1}\left[L_{i}\left(T_{m}\right)\right]=L_{i}(t)
$$

The Bond Volatility $\sigma^{T}(t)=-\int_{t}^{T} \sigma_{s}(t) d s$ and let $v_{i}(t)$ be the volatility of Libor $L_{i}(t)$;

$$
v_{i}(t)=\sigma^{i}(t)-\sigma^{i+1}(t)=-\int_{t}^{T_{i}} \sigma_{u}(t) d u+\int_{t}^{T_{i+1}} \sigma_{u}(t) d u=\int_{T_{i}}^{T_{i+1}} \sigma_{u}(t) d u
$$

In section 4 of binomial lattice model we assume v_{i} is constant for (T_{i}, T_{i+1}) and in numerical experiment section 5 assume a constant $v=v_{i}, \forall i$. Libor process is expressed under Q^{i+1} from (2.3) as follows,

$$
L_{i}\left(T_{m}\right)=\delta^{-1}\left(1+\delta L_{i}(t)\right) \exp \left\{\int_{t}^{T_{m}} v_{i}(s) d W^{i+1}(s)-\frac{1}{2} \int_{t}^{T_{m}}\left|v^{i}(s)\right|^{2} d s\right\}-1
$$

3 Swaption price of Gaussian volatility

The payer swaption is the option with strike swap rate k and the maturity T_{n}, where the underlying swap contract starts from T_{n} to T_{N} and payment period $\delta=T_{i}-T_{i-1}, \quad i=$ $n+1, \cdots, N$. The payment at the maturity is

$$
A\left(T_{n}\right)=\max \left(B_{n}\left(T_{n}\right)-B_{N}\left(T_{n}\right)-k \delta \sum_{i=n+1}^{N} B_{i}\left(T_{n}\right), 0\right)
$$

where, $B_{i}\left(T_{j}\right)$ denotes the price at T_{j} of bond of maturity time T_{i}.
The bond price of maturity T_{n} is 1 at time T_{n} then $A\left(T_{n}\right)=\max \left(1-V\left(T_{n}\right), 0\right)$ is a put option on bonds portfolio, where

$$
V\left(T_{n}\right)=B_{N}\left(T_{n}\right)+k \delta \sum_{i=n+1}^{N} B_{i}\left(T_{n}\right)
$$

Under risk neutral measure Q, the price of swaption at time 0 is

$$
S(0)=E^{Q}\left[\exp \left\{-\int_{0}^{T_{n}} r(s) d s\right\} A\left(T_{n}\right)\right]
$$

Theorem 1 The swaption price of Gaussian volatility HJM model is given as follows,

$$
\begin{equation*}
S(0)=B_{n}(0) N\left(d_{n}\right)-B_{N}(0) N\left(d_{N}\right)-k \delta \sum_{i=n+1}^{N} B_{i}(0) N\left(d_{i}\right) \tag{3.1}
\end{equation*}
$$

where $d_{i}=d_{n}-\int_{0}^{T_{n}}\left(\sigma^{i}(s)-\sigma^{n}(s)\right) d s, \quad i=n+1, \cdots, N$ and d_{n} is the solution of equation;

$$
\begin{align*}
f(x) & =\frac{B_{N}(0)}{B_{n}(0)} \exp \left\{v\left(0, T_{n}, T_{N}\right) \sqrt{T_{n}} x-\frac{1}{2} v\left(0, T_{n}, T_{N}\right)^{2} T_{n}\right. \\
& +k \delta \sum_{i=n+1}^{N} \frac{B_{i}(0)}{B_{n}(0)} \exp \left\{v\left(0, T_{n}, T_{i}\right) \sqrt{T_{n}} x-\frac{1}{2} v\left(0, T_{n}, T_{i}\right)^{2} T_{n}\right\}-1=0 \tag{3.2}
\end{align*}
$$

where let the variance process $v\left(t, T_{n}, T_{i}\right)^{2}=\frac{1}{T_{n}-t} \int_{t}^{T_{n}}\left|\sigma^{i}(t)-\sigma^{n}(t)\right|^{2} d t$.

Proof. Taking $B_{n}(t)$ as the numeraire for the payoff at time T_{n};

$$
\begin{aligned}
\frac{V\left(T_{n}\right)-1}{B_{n}\left(T_{n}\right)} & =\frac{B_{N}(0)}{B_{n}(0)} \exp \left\{\int_{0}^{T_{n}}\left(\sigma^{N}(t)-\sigma^{n}(t)\right) d W^{n}(t)-\frac{1}{2} \int_{0}^{T_{n}}\left|\sigma^{N}(t)-\sigma^{n}(t)\right|^{2} d t\right. \\
& +k \delta \sum_{i=n+1}^{N} \frac{B_{i}(0)}{B_{n}(0)} \exp \left\{\int_{0}^{T_{n}}\left(\sigma^{i}(t)-\sigma^{n}(t)\right) d W^{n}(t)-\frac{1}{2} \int_{0}^{T_{n}}\left|\sigma^{i}(t)-\sigma^{n}(t)\right|^{2} d t\right\}-1
\end{aligned}
$$

Let U_{n} be a standarad normal distributed variate, i.e. $U_{n} \sim N(0,1)$ and define the function;

$$
\begin{aligned}
f\left(U_{n}\right) & =\frac{B_{N}(0)}{B_{n}(0)} \exp \left\{v\left(0, T_{n}, T_{N}\right) \sqrt{T_{n}} U_{n}-\frac{1}{2} v\left(0, T_{n}, T_{N}\right)^{2} T_{n}\right. \\
& +k \delta \sum_{i=n+1}^{N} \frac{B_{i}(0)}{B_{n}(0)} \exp \left\{v\left(0, T_{n}, T_{i}\right) \sqrt{T_{n}} U_{n}-\frac{1}{2} v\left(0, T_{n}, T_{i}\right)^{2} T_{n}\right\}-1
\end{aligned}
$$

where the normal variate $\int_{0}^{T_{n}}\left(\sigma^{i}(t)-\sigma^{n}(t)\right) d W^{n}(t) \sim N\left(0, v\left(0, T_{i}, T_{N}\right)^{2} T_{n}\right)$.
The swaption price under risk neutral becomes as follows, with using the change of numeraire technique as $d Q^{i} / d Q=B_{i}\left(T_{n}\right) / B_{i}(0) \exp \left\{-\int_{0}^{T_{n}} r(s) d s\right\}, \quad i=n, \cdots, N$;

$$
\begin{aligned}
S(0) & =E^{Q}\left[\exp \left\{-\int_{0}^{T_{n}} r(s) d s\right\} \max \left(1-V\left(T_{n}\right), 0\right)\right] \\
& =E^{Q}\left[\exp \left\{-\int_{0}^{T_{n}} r(s) d s\right\}\left(1-V\left(T_{n}\right)\right) 1_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right] \\
& =E^{Q}\left[\exp \left\{-\int_{0}^{T_{n}} r(s) d s\right\}\left(B_{n}\left(T_{n}\right)-B_{N}\left(T_{n}\right)-k \delta \sum_{i=1}^{n} B_{i}\left(T_{n}\right)\right) 1_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right] \\
& =B_{n}(0) Q^{n}\left(V\left(T_{n}\right) \leq 1\right)-B_{N}(0) Q^{N}\left(V\left(T_{n}\right) \leq 1\right)-k \delta \sum_{i=n+1}^{N} B_{i}(0) Q^{i}\left(V\left(T_{n}\right) \leq 1\right)
\end{aligned}
$$

To compute $Q^{i}\left(V\left(T_{n}\right) \leq 1\right)$ we use the function $f(x)$,

$$
Q^{n}\left(V\left(T_{n}\right) \leq 1\right)=Q^{n}\left(f\left(U_{n}\right) \leq f\left(d_{n}\right)\right)
$$

Since $f\left(d_{n}\right)=0$ and $f(\cdot)$ is a montone increasing function and U_{n} is a standard normal variate,

$$
Q^{n}\left(V\left(T_{n}\right) \leq 1\right)=N\left(d_{n}\right)
$$

On the other hand, $Q^{i}\left(V\left(T_{n}\right) \leq 1\right)=Q^{i}\left(f\left(U_{n}\right) \leq f\left(d_{n}\right)\right)$,

$$
\begin{aligned}
\left.\frac{d Q^{i}}{d Q^{n}}\right|_{\mathcal{F}_{t}} & =\frac{B_{i}(t)}{B_{i}(0)} \exp \left\{-\int_{0}^{t} r(s) d s\right\} /\left(\frac{B_{n}(t)}{B_{n}(0)} \exp \left\{-\int_{0}^{t} r(s) d s\right\}\right) \\
& =\frac{B_{i}(t)}{B_{n}(t)} \frac{B_{n}(0)}{B_{i}(0)} \\
& =\exp \left\{\int_{0}^{t}\left(\sigma^{i}(s)-\sigma^{n}(s)\right) d W^{n}(s)-\frac{1}{2} \int_{0}^{t}\left|\sigma^{i}(s)-\sigma^{n}(s)\right|^{2} d s\right\}
\end{aligned}
$$

By Girsanov theorem, $W^{i}(t)=W^{n}(t)-\int_{0}^{t}\left(\sigma^{i}(s)-\sigma^{n}(s)\right) d s$ is Brownian motion under Q^{i}.

$$
\begin{aligned}
Q^{i}\left(V\left(T_{n}\right) \leq 1\right) & =Q^{i}\left(f\left(U_{n}-\int_{0}^{T_{n}}\left(\sigma^{i}(s)-\sigma^{0}(s)\right) d s\right) \leq f\left(d_{n}-\int_{0}^{T_{n}}\left(\sigma^{i}(s)-\sigma^{0}(s)\right) d s\right)\right) \\
& =N\left(d_{n}-\int_{0}^{T_{n}}\left(\sigma^{i}(s)-\sigma^{0}(s)\right) d s\right)=N\left(d_{i}\right)
\end{aligned}
$$

4 Lattice model

The above described one factor swaption model has difficulty to find the solution of equation (3.2) but we can easily get the numerical solution by Binomial approximation of Libor model. First see the main theorem of Libor model.

Theorem 2 The following equations are satisfied in transition probability in Libor binomial model between Q^{i} and Q^{i+1} which are respectly martingale measures for $L_{i}(t)$ and $L_{i+1}(t)$, where q_{i} is upward transitinal probality in binomial tree in the measure Q^{i}, and q_{i+1} is that in Q^{i+1}.

$$
\begin{align*}
q_{i} & =q_{i+1} \frac{1+\delta L_{i}^{u}(t)}{1+\delta L_{i}(t)} \tag{4.1}\\
1-q_{i} & =\left(1-q_{i+1}\right) \frac{1+\delta L_{i}^{d}(t)}{1+\delta L_{i}(t)}, \tag{4.2}
\end{align*}
$$

where the binomial states are $L_{i}^{u}(t)$ and $L_{i}^{d}(t)$.
Proof. From Jamshidian's theorem*

$$
E_{t}^{i}\left[L_{i}(t+\Delta t)\right]=E_{t}^{i+1}\left[L_{i}(t+\Delta t) \frac{1+\delta L^{i}(t+\Delta t)}{1+\delta L^{i}(t)}\right]
$$

Since $L_{i}(t)$ is Q^{i+1}-martingale,

$$
E_{t}^{i}\left[L_{i}(t+\Delta t)\right]=\frac{L_{i}(t)+\delta E^{i+1}\left[L_{i}^{2}(t+\Delta t)\right]}{1+\delta L_{i}(t)}
$$

By Binomial modeling assumption, the Libor moves in one step for measures Q^{i+1} and Q^{i};

$$
L_{i}(t+\Delta t)=\left\{\begin{array}{ccc}
L^{u} & Q_{t}^{i+1}\left(\omega_{u}\right)=q_{i+1} & Q_{t}^{i}\left(\omega_{u}\right)=q_{i} \\
L^{d} & Q_{t}^{i+1}\left(\omega_{d}\right)=1-q_{i+1} & Q_{t}^{i}\left(\omega_{d}\right)=1-q_{i}
\end{array}\right.
$$

To simplify notations, we use L^{i} instead of $L_{i}(t)$.

$$
\begin{aligned}
q^{i} L^{u}+\left(1-q^{i}\right) L^{d} & =\frac{L_{i}}{1+\delta L_{i}}+\frac{\delta}{1+\delta L_{i}}\left(\left(L^{u}\right)^{2} q_{i+1}+\left(L^{d}\right)^{2}\left(1-q_{i+1}\right)\right) \\
q_{i}\left(L^{u}-L^{d}\right) & =\frac{L_{i}-L^{d}\left(1+\delta L_{i}\right)+\delta\left(L^{d}\right)^{2}}{1+\delta L_{i}}+\delta q_{i+1} \frac{\left(L^{u}\right)^{2}-\left(L^{d}\right)^{2}}{1+\delta L_{i}}
\end{aligned}
$$

Using the martingale measure $q_{i+1}=\left(L_{i}-L^{d}\right) /\left(L^{u}-L^{d}\right)$,

$$
q_{i}=q_{i+1}\left(\frac{1-\delta L^{d}}{1+\delta L_{i}}+\frac{\delta L^{u}+\delta L^{d}}{1+\delta L_{i}}\right)
$$

Then we get (4.1). The equation (4.2) is also obtained by using the martingale measure,

$$
1-q_{i}=1-q_{i+1} \frac{1+\delta L^{u}}{1+\delta L_{i}}=\left(1-q_{i+1}\right) \frac{1+\delta L^{d}}{1+\delta L_{i}}
$$

The forward bond price from T_{n} to T_{N} a t is

$$
B\left(t ; T_{n}, T_{N}\right)=\frac{B_{N}(t)}{B_{n}(t)}=\frac{1}{\prod_{i=n}^{N-1}\left(1+\delta L_{i}(t)\right)}, \quad t \leq T_{n}
$$

In the binomial lattice, the forward bond price at $t+\Delta t$ has two states,

$$
\begin{aligned}
B_{N}^{u} & =\frac{1}{\prod_{i=n}^{N-1}\left(1+\delta L_{i}^{u}\right)} \\
B_{N}^{d} & =\frac{1}{\prod_{i=n}^{N-1}\left(1+\delta L_{i}^{d}\right)}
\end{aligned}
$$

Q^{N} is called the terminal measure and the transition prbability Q^{n} of Libor L_{n} is changed to Q^{N},

$$
q_{n} / q_{N}=\prod_{i=n}^{N-1} \frac{1+\delta L_{i}^{u}}{1+\delta L_{i}}
$$

for upward state and

$$
\left(1-q_{n}\right) /\left(1-q_{N}\right)=\prod_{i=n}^{N-1} \frac{1+\delta L_{i}^{d}}{1+\delta L_{i}}
$$

for the downward state. Swaption payoff at T_{n} is $\max \left(1-V\left(T_{n}\right), 0\right)$ and the price at time 0 is

$$
\begin{aligned}
S(0) / B_{n}(0) & =E^{n}\left[\frac{\left(1-V\left(T_{n}\right)\right)^{+}}{B_{n}\left(T_{n}\right)}\right] \\
& \left.=E^{n}\left[1_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right]-E^{n}\left[\frac{B_{N}\left(T_{n}\right)}{B_{n}\left(T_{n}\right)} \mathbf{1}_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right]-k \delta \sum_{i=n+1}^{N} E^{n}\left[\frac{B_{i}\left(T_{n}\right)}{B_{n}\left(T_{n}\right)} \mathbf{1}_{\left\{1 \geq V\left(T_{n}\right\}(4\}\right\}}\right] 3\right)
\end{aligned}
$$

Using change of measure as (4.1),

$$
\begin{aligned}
E^{n}\left[B\left(t+\Delta t ; T_{n}, T_{N}\right) 1_{\left\{1 \geq V\left(T_{n}\right)\right\}} \mid \mathcal{F}_{t}\right] & =\left(q_{n} B_{N}^{u}+\left(1-q_{n}\right) B_{N}^{d}\right) 1_{\left\{1 \geq V\left(T_{n}\right)\right\}} \\
& =\frac{q_{N} \mathbf{1}_{\left\{1 \geq V\left(T_{n}\right)\right\}}^{u}+\left(1-q_{N}\right) 1_{\left\{1 \geq V\left(T_{n}\right)\right\}}^{d}}{\prod_{i=n}^{N-1} 1+\delta L_{i}(t)} \\
& =B\left(t ; T_{n}, T_{N}\right) Q^{N}\left(\mathbf{1}_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right)
\end{aligned}
$$

Then the unconditional expectation becomes

$$
E^{n}\left[\frac{B_{N}\left(T_{n}\right)}{B_{n}\left(T_{n}\right)} \mathbf{1}_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right]=B\left(0, T_{n}, T_{N}\right) Q^{N}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)
$$

In general, by change of measure to Q^{i} from Q^{n},

$$
E^{n}\left[\frac{B_{i}\left(T_{n}\right)}{B_{n}\left(T_{n}\right)} \mathbf{1}_{\left\{1 \geq V\left(T_{n}\right)\right\}}\right]=B\left(0, T_{n}, T_{i}\right) Q^{i}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)
$$

Therefore (4.3) becomes
$S(0) / B_{n}(0)=Q^{n}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)-B\left(0, T_{n}, T_{N}\right) Q^{N}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)-k \delta \sum_{i=n+1}^{N} B\left(0, T_{n}, T_{i}\right) Q^{i}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)$
Then we get swaption pricing formula like (3.1),

$$
\begin{equation*}
S(0)=B_{n}(0) Q^{n}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)-B_{N}(0) Q^{N}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right)-k \delta \sum_{i=n+1}^{N} B_{i}(0) Q^{i}\left(\left\{1 \geq V\left(T_{n}\right)\right\}\right) \tag{4.4}
\end{equation*}
$$

Theorem 3 The payer swaption price is in binomial model as foolows,

$$
\begin{equation*}
S(0)=B_{n}(0) F_{n}\left(l^{*}\right)-B_{N}(0) F_{N}\left(l^{*}\right)-k \delta \sum_{i=n}^{N} B_{i}(0) F_{i}\left(l^{*}\right) \tag{4.5}
\end{equation*}
$$

where l^{*} is the smallest integer which satisfies

$$
\begin{align*}
1-\frac{1}{\prod_{i=n}^{N-1} 1+\delta L_{i}\left(T_{n}\right)} & -k \delta \sum_{i=n}^{N} \frac{1}{\prod_{i=n}^{j-1} 1+\delta L_{i}\left(T_{n}\right)} \geq 0 \tag{4.6}\\
1+\delta L i\left(T_{n}\right) & =1+\delta L_{i}(0) u_{i}^{l^{*}} d_{i}^{n-l^{*}}
\end{align*}
$$

where $L_{i}^{u}\left(T_{k+1}\right)=L_{i}\left(T_{k}\right) u_{i}$ and $L_{i}^{d}\left(T_{k+1}\right)=L_{i}\left(T_{k}\right) d_{i}$ are for $k \leq i$. The binomial distribution function is defined as

$$
F_{i}(l)=1-\sum_{j=0}^{l}\binom{n}{j} q_{i}^{i}\left(1-q_{i}\right)^{n-i} .
$$

Proof. For binomial lattice the probability in (4.4) is binomial distribution $F_{i}(l)$. The positive payoff condtion $1 \geq V\left(T_{n}\right)$ satisfies

$$
1-B\left(0, T_{n}, T_{N}\right)-k \delta \sum_{i=n+1}^{N} B\left(0, T_{n}, T_{i}\right) \geq 0
$$

and it is (4.6).

5 Example of flat term structure and volatilty

The simplest case is of flat term strucure and flat volatility structure so as $L i(t)=L(t)$ and $u_{i}=u, \quad d_{i}=d$. The bond price at time 0 is for the maturity T_{i} due to flat term structure,

$$
B_{i}(0)=\frac{1}{(1+\delta L(0))^{i}}
$$

The Libor is at T_{n} is

$$
L_{i}\left(T_{n}\right)=L(0) u^{l} d^{n-l}, \quad l=0, \cdots, n
$$

Because of assumption of flat volatility structure, the forward bond price at T_{n} is

$$
B\left(T_{n}, T_{n}, T_{j}\right)=\frac{1}{\prod_{i=n}^{j} 1+\delta L_{i}\left(T_{n}\right)}=\frac{1}{\left(1+\delta L(0) u^{l} d^{(n-l)}\right)^{j-n}}, \quad j=n+1, \cdots, N
$$

The minimal integer to satisfy (4.6) is

$$
\begin{aligned}
& 1-\frac{1}{\left(1+\delta L(0) u^{l} d^{(n-l)}\right)^{N-n}}-k \delta \sum_{j=n+1}^{N} \frac{1}{\left(1+\delta L(0) u^{l} d^{(n-l)}\right)^{j-n}} \\
= & \left(1+\delta L(0) u^{l} d^{(n-l)}\right)^{N-n}-k \delta \sum_{j=n+1}^{N}\left(1+\delta L(0) u^{l} d^{(n-l)}\right)^{N-j}-1 \geq 0
\end{aligned}
$$

Let $a_{0}=-(1+k \delta), a_{N-n}=1, a_{i}=-k \delta$, and $x=\left(1+\delta L(0) u^{l} d^{(n-l)}\right)$, then

$$
\sum_{i=0}^{N-n} a_{i} x^{i}=0
$$

There exist a positive solution x^{*} because only $a_{N-n}>0$ and others $a_{i}<0$, by Decartes' rule of signs. The number of upward moves becomes

$$
\left.l^{*}=\min \left\{l \geq \log \left(x^{*}-1\right) / \delta L(0)\right)-n \log d /(\log u-\log d)\right\}
$$

From (4.5) for flat term and volatility structure, the positive payment condition l^{*} is same for all binominal distributions. Thus

$$
\begin{equation*}
S(0)=B_{n}(0) F_{n}(l *)-B_{N}(0) F_{N}(l *)-k \delta \sum_{i=n}^{N} B_{i}(0) F_{i}\left(l^{*}\right) \tag{5.1}
\end{equation*}
$$

where $F_{i}\left(l^{*}\right)=1-\sum_{j=0}^{l^{*}}\binom{n}{j} q_{i}^{j}\left(1-q_{i}\right)^{n-j}$ and $q_{n}=(1-d) /(u-d), q_{i}=q_{i+1}(1+\delta L u) /(1+\delta L)$

5.1 Swap market model

Swap market model is utilized for calbration of implied volatility term structure. Let $B_{n N}(t)$ the portfolio value of discount bonds whose maturities are from T_{n+1} to T_{N}.

$$
B_{n N}(t)=\sum_{i=n+1}^{N} B_{i}(t)
$$

There exists the martingale measure $Q^{n N}$ whose numeraire is this portfolio. For any attainable portfolio process $\{C(t)\}$

$$
E^{n N}\left[\left.\frac{C(T)}{B_{n N}(T)} \right\rvert\, \mathcal{F}_{t}\right]=\frac{C(t)}{B_{n N}(t)}
$$

Payer Swaption payoff of swap rate k at Maturity T_{n} is $\max \left(B_{n}\left(T_{n}\right)-B_{N}\left(T_{n}\right)-k \delta B_{n N}\left(T_{n}\right), 0\right)$, by taking the portfolio $B_{n N}(t)$ as numeraire, the swaption premium at 0 is

$$
\begin{aligned}
\frac{C(0)}{B_{n N}(0)} & =E^{n N}\left[\frac{\max \left(B_{n}\left(T_{n}\right)-B_{N}\left(T_{n}\right)-k \delta B_{n N}\left(T_{n}\right), 0\right)}{B_{n N}\left(T_{n}\right)}\right] \\
& =\delta E^{n N}\left[\max \left(S_{n N}\left(T_{n}\right)-k, 0\right)\right]
\end{aligned}
$$

where $S_{n N}(t)=\frac{B_{n}(t)-B_{N}(t)}{\delta B_{n N}(t)}$ is swap rate at $t\left(0 \leq t \leq T_{n}\right)$. The swap rate is also $Q^{n N}$-martingale and in the swap market model the swap rate is assumed to be the \log normal process;

$$
d S_{n N}(t)=\theta(t) S_{n N}(t) d W_{n N}(t)
$$

where $W_{n N}(t)$ is Brownian process under $Q^{n N}$. The swap rate at T_{n} is

$$
S_{n N}\left(T_{n}\right)=S_{n N}(0) \exp \left\{-\frac{1}{2} \int_{0}^{T_{n}} \theta^{2}(s) d s+\int_{0}^{T_{n}} \theta(s) d W_{n N}(s)\right\}
$$

From this simplified assumption the swaption price is given by Black formula,

$$
C(0)=\delta B_{n N}(0)\left(S_{n N}(0) N\left(d_{1}\right)-k N\left(d_{2}\right)\right)
$$

where $d_{1}=\log \left(S_{n N}(0) / k\right) / v_{n N}\left(T_{n}\right)+v_{n N}\left(T_{n}\right) / 2, d_{2}=d_{1}-v_{n N}\left(T_{n}\right)$. The volatility is $v_{n N}\left(T_{n}\right)=$ $\int_{0}^{T_{n}} \theta^{2}(s) d s$. We compare the swaption premium (3.1)

$$
\begin{align*}
C(0) & =\frac{\delta B_{n N}(0)}{\delta B_{n N}(0)}\left(B_{n}(0)-B_{N}(0)\right) N\left(d_{1}\right)-k \delta B_{n N}(0) N\left(d_{2}\right) \\
& =B_{n}(0) N\left(d_{1}\right)-B_{N}(0) N\left(d_{1}\right)-\delta k \sum_{i=n+1}^{N} B_{i}(0) N\left(d_{2}\right) \tag{5.2}
\end{align*}
$$

The difference is coeffients of bond prices $B_{i}(0)$.

$$
\begin{aligned}
& d_{1}=\left(\log \left(B_{n}(0)-B_{N}(0)\right)-\log \left(k \delta B_{n N}\right)\right) / v_{n N}\left(T_{n}\right)+\frac{1}{2} v_{n N}\left(T_{n}\right) \\
& d_{2}=d_{1}-v_{n N}\left(T_{n}\right)
\end{aligned}
$$

The payer swaption price could take the general equation form;

$$
\begin{equation*}
C(0)=B_{n}(0) c_{n}-B_{N} c_{N}-k \delta \sum_{i=n+1}^{N} B_{i} c_{i} \tag{5.3}
\end{equation*}
$$

We juxtapose coeffients of discount bonds in equations of (3.1),(4.5) and(5.2) in Table 1.

Bond maturity	T_{n}	T_{N}	T_{i}	
coeffient	c_{n}	c_{N}	c_{i}	equation
Gaussian closed-form	$N\left(d_{n}\right)$	$N\left(d_{N}\right)$	$N\left(d_{i}\right)$	(3.1)
Binomial approx.	$F_{n}\left(l^{*}\right)$	$F_{N}\left(l^{*}\right)$	$F_{i}\left(l^{*}\right)$	(4.5)
Swap market model	$N\left(d_{1}\right)$	$N\left(d_{1}\right)$	$N\left(d_{2}\right)$	(5.2)

Table 1: Payer swaption coeffients

5.2 The hedging strategy and numerical example

We calculate the payer swaption of 3×7 and 5×5 cases of flat Libor and volatilities strucure, where Libor are (i) 2% (ii) 5% and the volatilities are (a) 0.4 (b) 0.2 . These maturities are 3×7 swaption for strike swap-rates for case of (i) are $1 \%, 2 \%$ and 3%. For the case of (ii) strike swap-rates are $4 \%, 5 \%$ and 6%. We compare the binomial lattice, Monte Carlo method and Black formula which assumption is Swap market model.

Table 2: Payer Swaption prices

Vol=40\%	3×7 Swaption		
Initial Libor $=2 \%$	0.01	0.02	0.03
Lattice	672.23	335.85	173.34
M.C.	660.20	331.33	173.03
Black	665.76	335.63	176.31
Vol=20\%	3×7 Swaption		
Strike rate			
Initial Libor $=5 \%$	0.04	0.05	0.06
Lattice	647.42	360.99	188.38
M.C.	625.22	346.17	179.56
Black	648.30	363.39	191.06
Vol=40\%	5×5 Swaption		
Strike rate			
Initial Libor $=2 \%$	0.01	0.02	0.03
Lattice	491.18	289.99	182.16
M.C.	495.04	297.95	191.95
Black	496.43	298.72	192.08
Vol=20\%	5×5 Swaption		
Initial Libor $=5 \%$	0.04	0.05	0.06
Lattice	485.65	308.81	191.81
M.C.	475.94	302.70	188.79
Black	489.86	313.75	196.87

all swaption prices are Basis point($1 / 100 \%$) unit and M.C.are Monte Carlo Method which are provided by Dr. Yasuoka, Mizuho Information \& Reseach Insitute, (100,000 runs))
Lattice method prices are 1000 node for a year and total steps are $1000 \times x$ for swaption maturity x years.

From inconsistency of Libor market model and Swap market model, we could have arbtrage opportunity if we had constructed a hedging strategy. Davis [2] has shown the existence of negative libor rate in the case of coexistense of Libor and swap market models.

For the swaption if we take Gaussian model, the hedging strategy is as follows,

$$
d C(t)=N\left(d_{n}\right) d B_{n}(t)-N\left(d_{N}\right) d B_{N}(t)-k \delta \sum_{i=n+1}^{N} N\left(d_{i}\right) d B_{i}(t)
$$

which is easily shown. Delta hedging is change of the portfolio which is $N\left(d_{i}\right)$ unit of bond of maturity T_{i}.

The hedging strategy of swap market model is obtained from (5.2)

$$
d C(t)=N\left(d_{1}\right) d B_{n}(t)-N\left(d_{1}\right) d B_{N}(t)-k \delta \sum_{i=n+1}^{N} N\left(d_{2}\right) d B_{i}(t)
$$

Provided the longer term interest is changed, the delta hedging of swap market model is not senstive due to the same delta $N\left(d_{2}\right)$ for all $d B_{i}(t)$. The price differences are caused by coeffients c_{i} as Table 1. We calculate coefficient for $3 x 7$ swaption (volatity $=40 \%$, interest $=2 \%$, strike $=2 \%$).

Bond maturity	T_{3}	T_{10}	$T_{i}(i=3.5, \cdots, 10)$
coeffient	c_{n}	c_{N}	c_{i}
Binomial approx.	0.57170	0.53369	$0.56919, \cdots, 0.53643$
Swap market model	0.63819	0.63819	0.36723

Table 3: Payer swaption coeffients
In this data case, we can see in Table 3 the $B_{n}(t)$ trading amount is excessive and other maturity bonds trading is insufficient in swap market model. For this case we could take arbitrage opportunity if change of longer term interest shift upward and we trade swaption and the hedging strategy of bonds.

References

[1] Brigo, D Interest Rate Models Theory and Practice, Springer 2001
[2] Davis, M.H.A., and Mataix-Pastor, V. Negative Libor Rates in the Swap Market Model. Finance and Stochastics 11(2), pp 181-193, (2007)
[3] Jamshidian, F. Libor and Swap Market Models and Measures, Sakura Global Capital, 1996
[4] Jamshidian, F. Bivariate support of forward Libor and swap rates. Univ. of Twente working paper, (2005)
[5] Rebonato, R Modern pricing of interest-rate derivatives, Princeton Univesity Press, 2002

