BRAUER CORRESPONDENCE AND GREEN CORRESPONDENCE＊

Sasaki，Hiroki
佐々木洋城
Shinshu University，School of General Education
信州大学全学教育機構

1 Introduction

Let k be an algebraically closed field of prime characteristic p ．Let G be a finite group of order divisible by p ．We are concerned with cohomology algebras of block ideals which are in Brauer correspondence and block varieties of modules in Green correspondence．

2 Cohomology of blocks and Brauer correspondence

Let B be a block ideal of $k G$ ．Proposition 2.3 of Kessar，Linckelmann and Robinson［5］ implies

$$
H^{*}(G, B) \subseteq H^{*}(H, C)
$$

where C is a suitably taken block ideal of a suitably chosen subgroup H of G ．To understand such an inclusion via transfer map between the Hochshild cohomology algebras of the block ideals B and C we discussed in Kawai and Sasaki［4］under the following situation．
－B has D as a defect group
－H is a subgroup of G and C is a block ideal of $k H$
－Brauer correspondent C^{G} is defined and $C^{G}=B$ and D is also a defect group of C
We had considered the（ C, B ）－bimodule $M=C B$ and gave a necessary and sufficient con－ dition for M to induce the transfer map from $H H^{*}(B)$ to $H H^{*}(C)$ which restricts to the inclusion map of $H^{*}(G, B)$ into $H^{*}(H, C)$ ．

Here we discuss under the following situation：
Situation（BC）
－B has D as a defect group
－H is a subgroup of G such that $D C_{G}(D) \leqslant H$ and C is a block ideal of $k H$
－$C^{G}=B$ and D is also a defect group of C

[^0]We shall denote by $G^{\text {op }}$ the opposite group of the group G and consider the group algebra $k G$ as a $k\left[G \times G^{\text {op }}\right]$-module through

$$
(x, y) \alpha=x \alpha y \text { for } x, y \in G \text { and } \alpha \in k G .
$$

We have a $k\left[G \times G^{\text {op }}\right]$-isomorphism

$$
k G \simeq k\left[G \times G^{\mathrm{op}}\right] \otimes_{k[\Delta G]} k,
$$

where $\Delta G=\left\{\left(g, g^{-1}\right) \mid g \in G\right\}$.
Definition 2.1. Under Situation (BC), the Green correspondent of C with respect to ($G \times H^{\mathrm{op}}, \Delta D, H \times H^{\mathrm{op}}$) is defined, which turns out to be a (B, C)-bimodule; we denote it by $L(B, C)$.

The module $L(B, C)$ will play crucial role, depending on the following fact.
Theorem 2.1. Under Situation (BC) let $L=L(B, C)$.
(i) The relatively projective elements $\pi_{L} \in Z(B)$ and $\pi_{L^{*}} \in Z(C)$ are both invertible.
(ii) Every (B, A)-bimodule is relatively L-projective; every (C, A)-bimodule is relatively L^{*}-projective, where A is a symmetric k-algebra.

Following Alperin, Linckelmann and Rouquier [1], we recall the definition of source modules of block ideals.
Definition 2.2. ([1, Definition 2]) There exists an indecomposable direct summand X of $G \times D^{\text {op }} B$ having ΔD as a vertex. The $k\left[G \times D^{\mathrm{op}}\right]$-module X is called a source module of the block B.

We shall write $H^{*}(G, B ; X)$ for the block cohomology of B with respect to the defect group D and the source idempotent i such that $X=k G i$.

Green correspondence between indecomposable $k\left[G \times D^{\text {op }}\right]$-modules and indecomposable $k\left[H \times D^{\mathrm{op}}\right]$-modules relates source modules of the blocks B and C in the following way.

Proposition 2.2. Under Situation (BC) let Y be a source module of C. Then the Green correspondent X of Y with respect to ($G \times D^{\text {op }}, \Delta D, H \times D^{\text {op }}$) is a source module of B.
Proposition 2.3. Under Situation (BC) take a source module X of B as a direct summand of $G \times D^{\text {op }} L(B, C)$. Then the $G r e e n ~ c o r r e s p o n d e n t ~ Y ~ o f ~ X ~ w i t h ~ r e s p e c t ~ t o ~(~ G ~ × ~ D ~ o p ~, ~ \Delta D, ~ H \times ~$ $D^{\circ \mathrm{P}}$) is a source module of C.

Thus, under Situation (BC) we can take a source module X of the block B and a source module Y of the block C in order that X and Y are in the Green correspondence with respect to ($G \times D^{\mathrm{op}}, \Delta D, H \times D^{\mathrm{op}}$). We refer to such situation as Situation (XY).
Situation (XY)

- B has D as a defect group
- H is a subgroup of G such that $D C_{G}(D) \leqslant H$ and C is a block ideal of $k H$
- $C^{G}=B$ and D is also a defect group of C
- a source module X of the block B and a source module Y of the block C are in the Green correspondence with respect to ($G \times D^{\mathrm{op}}, \Delta D, H \times D^{\mathrm{op}}$)

Then the (B, C)-bimodule $L=L(B, C)$ links the source modules X and Y in a similar way to induction and restriction of modules.

Theorem 2.4. Under Situation (XY) the following hold.
(i) $L^{*} \otimes_{B} X \equiv Y \oplus O\left(\mathscr{Y}\left(G \times D^{\circ p}, \Delta D, H \times D^{\mathrm{op}}\right)\right)$.
(ii) $L \otimes_{C} Y \equiv X \oplus O\left(\mathscr{X}\left(G \times D^{\mathrm{op}}, \Delta D, H \times D^{\circ \mathrm{p}}\right)\right)$.
(iii) If $D \triangleleft H$, then $L \otimes_{C} Y \simeq X$.

The (B, C)-bimodule $L(B, C$) has already appeared in some works. In particular, Alperin, Linckelmann and Rouquier [1] treated the case of $H=N_{G}\left(D, b_{D}\right)$, where $\left(D, b_{D}\right)$ is a Sylow B-subpair. Theorem 5 in [1] corresponds to our theorem above.

Theorem 2.5. Under Situation (XY) the module $L(B, C)$ is splendid with respect to X and Y, namely

$$
L(B, C) \mid X \otimes_{k D} Y^{*}
$$

The theorem above and the following, which states that the relatively projective elements associated with tensor products of the bimodules L, X and Y, including such as $X^{*} \otimes_{B} L \otimes_{C} Y$, are all invertible, lead us Theorem 2.8, which is one of our main theorems.
Theorem 2.6. Under Situation (XY) the relatively projective elements
(i) $\pi_{L \otimes_{C} Y} \in Z(B), \pi_{Y^{*} \otimes_{C} L^{*}} \in Z(k D)$
(ii) $\pi_{X^{*} \otimes_{B} L \otimes_{C} Y} \in Z(k D), \pi_{X^{*} \otimes_{B} L} \in Z(k D)$
(iii) $\pi_{Y^{*} \otimes_{C} L^{*} \otimes_{B} X} \in Z(k D), \pi_{L^{*} \otimes_{B} X} \in Z(C)$
are all invertible.
Proposition 2.7. Under Situation (XY) we have the following commutative diagram:

Theorem 2.8. Let B be a block ideal of $k G$ and $D \leqslant G$ a defect group of B. Assume that a subgroup H of G containing $D C_{G}(D)$ normalizes a subgroup Q of D and contains $Q C_{G}(Q)$. Let $\left(D, b_{D}\right)$ be a Sylow B-subpair and let $\left(Q, b_{Q}\right) \leqslant\left(D, b_{D}\right)$. Let C be a unique block ideal of $k H$ covering the block ideal b_{Q} of $k Q C_{G}(Q)$. Then $C^{G}=B$ and D is a defect group of C; hence $\left(D, b_{D}\right)$ is also a Sylow C-subpair.

Let j be a source idempotent of C such that $\operatorname{Br}_{D}(j) e_{D}=\operatorname{Br}_{D}(j)$, where $e_{D} \in k C_{G}(D)$ is the block idempotent of the block b_{D}; let $Y=k H j$. Let X be a source module of B which is the Green correspondent of Y with respect to ($G \times D^{\text {op }}, \Delta D, H \times D^{\text {op }}$). We let $L=L(B, C)$. Then the following diagram commutes:

3 Block varieties of modules and Green correspondence

If $H^{*}(G, B ; X) \subseteq H^{*}(H, C ; Y)$, then Kawai and Sasaki [4, Theorem 1.3 (i)] says that the inclusion map $\iota: H^{*}(G, B ; X) \hookrightarrow H^{*}(H, C ; Y)$ induces a surjective map $\iota^{*}: V_{H, C} \rightarrow V_{G, B}$ of varieties.

Throughout this section we let $P \leqslant D$ and assume that $H \geqslant N_{G}(P)$. We investigate relationship between the varieties of modules in blocks B and C which are under Green correspondence.

We first note Under Situation (BC) that to tensor with $L(B, C)$ and $L(B, C)$ * induces the Green correspondence.

Proposition 3.1. Under Situation (BC), we let $L=L(B, C)$. If an indecomposable B module U and an indecomposable C-module V have vertices in $\mathscr{A}(G, P, H)$ and are in the Green correspondence with respect to (G, P, H), then

$$
\begin{aligned}
L \otimes_{C} V & \equiv U \oplus O(\mathscr{X}(G, P, H)) \\
L^{*} \otimes_{B} U & \equiv V \oplus O(\mathscr{Y}(G, P, H))
\end{aligned}
$$

The block variety of an indecomposable module is determined by particular vertex and a particular source by Benson and Linckelmann [2].

Definition 3.1. (Benson and Linckelmann [2, Proposition 2.5]) Let X be a source module of a block ideal B. Let U be an indecomposable B-module. There exists a vertex Q of U such that

$$
Q \leqslant D, U \mid X \otimes_{k Q} X^{*} \otimes_{B} U
$$

We would like to call such a vertex Q of U an X-vertex. For an X-vertex Q of U we can take a Q-source S of U such that

$$
\left.S\right|_{k Q} X^{*} \otimes_{B} U, U \mid X \otimes_{k Q} S
$$

We would like to call such a source a (Q, X)-source.
[2, Theorem 1.1] says that the block variety $V_{G, B}(U)$ in the block cohomology $H^{*}(G, B ; X)$ is the pull back of the variety $V_{Q}(S)$ of S, where Q is an X-vertex and S is a (Q, X)-source of U.

Proposition 3.2. Under Situation (XY), let U and V be as in Proposition 3.1. Then the following hold.
(i) If $Q \in \mathscr{A}(G, P, H)$ is a Y-vertex of V and S is a (Q, Y)-source of V, then Q is an X-vertex of U and S is a (Q, X)-source of U.
(ii) If $Q \in \mathscr{A}(G, P, H)$ is an X-vertex of U and S is $a(Q, X)$-source of U, then Q is a Y-vertex of V and S is a (Q, Y)-source of V.

It is well known that the Green correspondent of an indecomposable module lies in a block ideal of a subgroup of G lies in its Brauer correspondent. The following is a partial converse to this fact.

Proposition 3.3. Under Situation (XY), assume that an indecomposable B-module U has an X-vertex belonging to $\mathscr{A}(G, P, H)$. Then the Green correspondent V of U with respect to (G, P, H) lies in the block C.

The following is our main theorem.
Theorem 3.4. Under Situation (XY) assume that $H^{*}(G, B ; X) \subseteq H^{*}(H, C ; Y)$.
(i) Assume that an indecomposable B-module U has an X-vertex belonging to $\mathscr{A}(G, P, H)$. Then the Green correspondent V of U with respect to (G, P, H) lies in the block C and

$$
V_{G, B}(U)=\iota^{*} V_{H, C}(V)
$$

(ii) Assume that an indecomposable C-module V has a Y-vertex belonging to $\mathscr{A}(G, P, H)$. Then the Green correspondent U of V with respect to (G, P, H) lies in the block B and

$$
V_{G, B}(U)=\iota^{*} V_{H, C}(V) .
$$

Example. (cf [2, Corollary 1.4]) Let B be a block ideal of $k G$ and $D \leqslant G$ a defect group of B. Let X be a source module of B. Let U be an indecomposable B-module and Q an X-vertex of U and S a (Q, X)-source of U. Assume that the X-vertex Q of U in normal in D and let $H=N_{G}(Q)$. Let $P \leqslant D$ and assume that $H \geqslant N_{G}(P)$ and that $Q \in \mathscr{A}(G, P, H)$.

Let $\left(D, b_{D}\right)$ be a Sylow B-subpair such that $b_{D} X(D)=X(D)$ and let $\left(Q, b_{Q}\right) \leqslant\left(D, b_{D}\right)$. Let C be a unique block of $k H$ covering the block b_{Q}.

Then we have
(i) $H^{*}(G, B) \subseteq H^{*}(H, C)$;
(ii) Q is a Y-vertex of V and S is a (Q, Y)-source of V;
(iii) V lies in C and $V_{G, B}(U)=\iota^{*} V_{H, C}(V)$.

references

[1] J. L. Alperin, M. Linckelmann, and R. Rouquier, Source algebras and source modules, J. Algebra 239 (2001), no. 1, 262-271.
[2] D. J. Benson and M. Linckelmann, Vertex and source determine the block variety of an indecomposable module, J. Pure Appl. Algebra 197 (2005), 11-17.
[3] M. Broué, On representations of symmetric algebras: an introduction, Notes by M. Stricker, Mathematik Department ETH Zürich, 1991.
[4] H. Kawai and H. Sasaki, Cohomology algebras of blocks of finite groups and Brauer correspondence, Algebr. Represent. Theory 9 (2006), no. 5, 497-511.
[5] R. Kessar, M. Linckelmann, and G. R. Robinson, Local control in fusion systems of p-blocks of finite groups, J. Algebra 257 (2002), no. 2, 393-413.
[6] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), 107-135.
[7] —, Varieties in block theory, J. Algebra 215 (1999), 460-480.
[8], On splendid derived and stable equivalences between blocks of finite groups., J. Algebra (2001), 819-843.

[^0]: ＊The detailed version of this note will be submitted for publication elsewhere．

