SURFACE SYMMETRIES, HOMOLOGY REPRESENTATIONS, AND GROUP COHOMOLOGY

TOSHIYUKI AKITA 秋田利之 (北海道大学大学院理学研究院)

Given a finite group G of automorphisms of a compact Riemann surface, we discuss a relation between Mumford-Morita-Miller classes of odd indices and the homology representation of G. Since most participants were group theorists rather than topologists, I separate the algebraic and the topological ingredients and explain the former in detail.

1. SURFACE SYMMETRIES

1.1. The Grieder group of a finite group. Let G be a finite group and $\hat{\gamma}$ the conjugacy class of $\gamma \in G$. We denote by $\langle \hat{\gamma}_1, \hat{\gamma}_2, \ldots, \hat{\gamma}_q \rangle$ an unordered q-tuple $(q \ge 0)$ of conjugacy classes of nontrivial elements of G satisfying $\gamma_1 \gamma_2 \cdots \gamma_q \in [G, G]$, and \mathcal{M}_G the set of all such q-tuples. We can define an abelian monoid structure on \mathcal{M}_G by

$$\langle \hat{\mathbf{\gamma}}_1, \ldots, \hat{\mathbf{\gamma}}_q \rangle + \langle \hat{\mathbf{\gamma}}_{q+1}, \ldots, \hat{\mathbf{\gamma}}_r \rangle = \langle \hat{\mathbf{\gamma}}_1, \ldots, \hat{\mathbf{\gamma}}_q, \hat{\mathbf{\gamma}}_{q+1}, \ldots, \hat{\mathbf{\gamma}}_r \rangle.$$

The identity element is the empty tuple $\langle \rangle$. We call \mathcal{M}_G the Grieder monoid of G. Now let \mathcal{M}'_G be the submonoid generated by $\langle \hat{\gamma}, \hat{\gamma}^{-1} \rangle$ ($\gamma \in G$) and set $\mathcal{A}_G := \mathcal{M}_G/\mathcal{M}'_G$. The quotient \mathcal{A}_G is an abelian group. The inverse element is given by

$$-\langle \hat{\mathbf{\gamma}}_1, \dots, \hat{\mathbf{\gamma}}_q \rangle = \langle \hat{\mathbf{\gamma}}_1^{-1}, \dots, \hat{\mathbf{\gamma}}_q^{-1} \rangle \text{ in } \mathcal{A}_G.$$

We call \mathcal{A}_G the *Grieder group* of *G*. As the names suggest, \mathcal{M}_G and \mathcal{A}_G were introduced and studied by Grieder [5, 6] to study surface symmetries. First of all, \mathcal{A}_G is finitely generated:

Proposition 1 ([5]). $\mathcal{A}_G \cong \mathbb{Z}^m \oplus \mathbb{Z}_2^n$ for some $m, n \ge 0$.

A homomorphism $f: H \to G$ of groups induces a homomorphism $f_*: \mathcal{A}_H \to \mathcal{A}_G$ of abelian groups by $f_*(\langle \hat{\gamma}_1, \ldots, \hat{\gamma}_q \rangle) = \langle f(\hat{\gamma}_1), \ldots, f(\hat{\gamma}_q) \rangle$ so that the assignment $G \mapsto \mathcal{A}_G$ is a covariant functor. In addition, for an inclusion $i: H \hookrightarrow G$, one can also define the restriction $i^*: \mathcal{A}_G \to \mathcal{A}_H$ via surface symmetries. Grieder [5] verified the double coset formula and hence proved the following proposition:

Proposition 2. The assignment $G \mapsto \mathcal{M}_G$ is a Mackey functor.

1.2. Ramification data. By a surface symmetry we mean a pair (G,C), where C is a compact Riemann surface of genus $g \ge 2$, and G is a finite group of automorphisms of C. For each $x \in C$, let G_x be the isotropy subgroup at x. Note that G_x is necessary cyclic. Set $S = \{x \in C \mid G_x \neq 1\}$, and let $S/G = \{x_1, x_2, \ldots, x_q\}$ be a set of representatives of G-orbits of elements of S. For each $x_i \in S/G$, choose a generator γ_i of G_{x_i} such that γ_i acts on the holomorphic tangent space $T_{x_i}C$ by $z \mapsto \exp(2\pi\sqrt{-1}/|G_{x_i}|)z$ with respect to a suitable local coordinate z at x_i . The ramification data of (G,C), abbreviated by $\delta(G,C)$, is the unordered q-tuple $\langle \hat{\gamma}_1, \hat{\gamma}_2, \cdots, \hat{\gamma}_q \rangle$. It satisfies $\gamma_1 \gamma_2 \cdots \gamma_q \in [G,G]$, and hence $\delta(G,C)$ is an element of the Grieder monoid \mathcal{M}_G . Conversely, we have the following proposition.

Proposition 3 (see [5]). For any element $\mu \in \mathcal{M}_G$, there exists a surface symmetry (G,C) whose ramification data coincides with μ .

2. GROUP COHOMOLOGY

2.1. The first Chern class. Let $\langle \gamma \rangle$ be a cyclic group of order *m* generated by γ and $\rho_{\gamma} : \langle \gamma \rangle \to \mathbb{C}^{\times}$ a linear character defined by $\gamma \mapsto \exp(2\pi i/m)$. For any finite group *G*, we have natural isomorphisms

$$\operatorname{Hom}(G,\mathbb{C}^{\times})\cong H^1(G,\mathbb{C}^{\times})\cong H^2(G,\mathbb{Z}).$$

Here, the latter isomorphism is the connecting homomorphism associated to the short exact sequence $0 \to \mathbb{Z} \to \mathbb{C} \to \mathbb{C}^{\times} \to 0$. Define $c(\gamma) \in H^2(\langle \gamma \rangle, \mathbb{Z})$ to be the image of ρ_{γ} under the isomorphism $\operatorname{Hom}(\langle \gamma \rangle, \mathbb{C}^{\times}) \cong H^2(\langle \gamma \rangle, \mathbb{Z})$. The cohomology class $c(\gamma)$ is sometimes called the *first Chern class* of ρ_{γ} .

2.2. MMM classes (algebra). For each element $\mu = \langle \hat{\gamma}_1, \dots, \hat{\gamma}_q \rangle$ of \mathcal{M}_G , define a series of cohomology classes $e_k(\mu) \in H^{2k}(G,\mathbb{Z})$ $(k \ge 1)$ by

$$e_k(\mu) := \sum_{i=1}^q \operatorname{Tr}^G_{\langle \gamma_i \rangle}(c(\gamma_i)^k) \in H^{2k}(G,\mathbb{Z}),$$

where $\operatorname{Tr}_{\langle \gamma \rangle}^G : H^*(\langle \gamma \rangle, \mathbb{Z}) \to H^*(G, \mathbb{Z})$ is the transfer. We call $e_k(\mu)$ the *k*-th Mumford-Morita-Miller class of μ (MMM class in short). The definition of $e_k(\mu)$ is motivated by topology, as will be explained in the next subsection. Observe that the assignment $\mu \mapsto e_k(\mu)$ defines a well-defined homomorphism $\mathcal{M}_G \to H^{2k}(G,\mathbb{Z})$ of abelian monoids. For k odd, it induces a well-defined homomorphism $\mathcal{A}_G \to H^{2k}(G,\mathbb{Z})$ of abelian groups, for we have $c(\gamma^{-1}) = -c(\gamma)$. In addition, we can prove the following proposition:

Proposition 4. For odd $k \ge 1$, the homomorphism $\mathcal{A}_G \to H^{2k}(G,\mathbb{Z})$ is a natural transformation of Mackey functors.

2.3. MMM classes (topology). The definition of $e_k(\mu)$ is inspired by a result of Kawazumi and Uemura [8] concerning of characteristic classes of oriented surface bundles. Let Σ_g be the closed oriented surface of genus $g \ge 2$. Let $\pi : E \to B$ an oriented Σ_g -bundle, $T^{\nu}E$ the tangent bundle along the fiber of π , and $e \in H^2(E;\mathbb{Z})$ the Euler class of $T^{\nu}E$. Define $e_k^{\text{top}}(\pi) \in H^{2k}(B;\mathbb{Z})$ by $e_k^{\text{top}}(\pi) := \pi_!(e^{k+1})$ where $\pi_! : H^*(E;\mathbb{Z}) \to H^{*-2}(B;\mathbb{Z})$ is the Gysin homomorphism (the superscript "top" stands for "topology"). $e_k^{\text{top}}(\pi)$ is called the *k-th Mumford-Morita-Miller class* of π , as it was introduced in [11, 10, 9].

Now let (G,C) be a surface symmetry as in Section 1.2. Associated with (G,C), there is an oriented surface bundle $\pi : EG \times_G C \to BG$ called the *Borel construction*, where $EG \to BG$ is the universal G-bundle. We denote by $e_k^{\text{top}}(G,C) \in H^{2k}(G,\mathbb{Z})$ the k-th MMM class of the Borel construction π . A result of Kawazumi and Uemura [8] implies the following result:

Theorem 5. We have $e_k^{top}(G,C) = e_k(\delta(G,C))$ where $\delta(G,C)$ is the ramification data of (G,C).

3. Homology representations

3.1. Algebra. In what follows, we denote by R(G) the complex representation ring (or the character ring) of a finite group G. Let $\langle \gamma \rangle$ be a cyclic group of order *m* generated by γ and $\rho_{\gamma} : \langle \gamma \rangle \to \mathbb{C}^{\times}$ a linear character as in Section 2.1. Define $\Delta_{\gamma} \in R(\langle \gamma \rangle) \otimes \mathbb{Q}$ by

$$\Delta_{\gamma} := 2 \sum_{k=1}^{m-1} \left(\frac{k}{m} - \frac{1}{2} \right) \rho_{\gamma}^{\otimes k} = \frac{2}{m} \sum_{k=1}^{m-1} k \rho_{\gamma}^{\otimes k} - r_{\langle \gamma \rangle} + 1_{\langle \gamma \rangle},$$

where $r_{\langle \gamma \rangle}$ is the regular representation and $1_{\langle \gamma \rangle}$ is the trivial 1-dimensional representation of $\langle \gamma \rangle$. Now, for each element $\mu = \langle \hat{\gamma}_1, \dots, \hat{\gamma}_q \rangle$ of \mathcal{M}_G , define the *G*-signature $\sigma(\mu)$ of μ by

$$\sigma(\mu) := \sum_{k=1}^q \operatorname{Ind}_{\langle \gamma_k \rangle}^G(\Delta_{\gamma_k}) \in R(G) \otimes \mathbb{Q}.$$

Proposition 6. $\sigma(\mu) \in R(G)$ for every G and $\mu \in \mathcal{M}_G$.

See the next section for the proof. Note that, in case $\mu \in \mathcal{M}_G$ consists of a single conjugacy class ($\mu = \langle \hat{\gamma} \rangle$ for $\gamma \in [G, G]$), Proposition 6 was proved by T. Yoshida [13].

The assignment $\mu \mapsto \sigma(\mu)$ yields a homomorphism $\mathcal{M}_G \to R(G)$ of monoids, which induces a well-defined homomorphism $\mathcal{A}_G \to R(G)$ of abelian groups. In addition, we can prove the following proposition:

Proposition 7. $\mathcal{A}_G \to \mathcal{R}(G)$ is a natural transformation of Mackey functors.

3.2. Topology. Let (G,C) be a surface symmetry, and H_C the space of holomorphic 1-forms on C. Note that $\dim_{\mathbb{C}} H_C = g$ where g is the genus of the Riemann surface C. Then G acts on H_C and hence H_C is a complex representation of G. A virtual representation $\sigma^{\text{top}}(G,C) := H_C - \overline{H}_C \in R(G)$ is called the *G*-signature of (G,C), where \overline{H}_C is the complex conjugate.

Proposition 8. We have $\sigma^{\text{top}}(G,C) = \sigma(\delta(G,C))$ where $\delta(G,C)$ is the ramification data of (G,C).

The character of $\sigma^{top}(G,C)$ is given by the Eichler trace formula (see [4] for instance). The proposition can be verified by comparing characters of $\sigma^{top}(G,C)$ and $\sigma(\delta(G,C))$. An alternative proof was given by N. Kawazumi (unpublished manuscript). Since every $\mu \in \mathcal{M}_G$ can be realized as a ramification data of a surface symmetry, Proposition 6 follows from the last proposition. The following fact is an easy consequence of Proposition 8.

Corollary 9. If all the complex characters of G are \mathbb{R} -valued, then $\sigma(\mu) = 0$ for all $\mu \in \mathcal{M}_G$.

Proof. Choose a surface symmetry (G,C) with $\delta(G,C) = \mu$. Then we have $\sigma(\mu) = \sigma^{\text{top}}(G,C) = H_C - \overline{H}_C = 0$ since $H_C = \overline{H}_C$ by the assumption. \Box

4. A RELATION OF $e_k(\mu)$ and $\sigma(\mu)$

Theorem 10. Let G be a finite group and $\mu, \nu \in \mathcal{M}_G$.

(1) If $\sigma(\mu) = \sigma(\nu)$ then $e_k(\mu) = e_k(\nu)$ for all odd $k \ge 1$. (2) If $\sigma(\mu) = 0$ then $e_k(\mu) = 0$ for all odd $k \ge 1$.

Since R(G) is free as an abelian group, the homomorphism $\mathcal{A}_G \to R(G)$ in Section 3.1 induces $\phi_1 : \mathcal{A}_G/\operatorname{Tor}(\mathcal{A}_G) \to R(G)$, where $\operatorname{Tor}(\mathcal{A}_G)$ is the torsion subgroup of \mathcal{A}_G . For odd $k \ge 1$, let $\phi_2 : \operatorname{Tor}(\mathcal{A}_G) \to H^{2k}(G,\mathbb{Z})$ be the restriction of the homomorphism $\mathcal{A}_G \to H^{2k}(G,\mathbb{Z})$ in Section 2.2. The proof of Theorem 10 is based on the following two facts:

Theorem 11. For any finite group G and any odd $k \ge 1$,

- (1) The homomorphism $\phi_1 : \mathcal{A}_G / \operatorname{Tor}(\mathcal{A}_G) \to R(G)$ is injective.
- (2) The homomorphism $\phi_2 : \operatorname{Tor}(\mathcal{A}_G) \to H^{2k}(G,\mathbb{Z})$ is trivial.

The first statement is proved by using a result of Edmonds and Ewing [3], while the second statement is proved by considering the cohomology of metacyclic 2-groups. The detail will appear elsewhere. Theorem 10 and Corollary 9 imply the following corollary:

Corollary 12. If all the complex characters of G are \mathbb{R} -valued, then $e_k(\mu) = 0$ for all $\mu \in \mathcal{M}_G$ and odd $k \ge 1$.

Define \mathcal{R}_G to be the image of $\phi_1 : \mathcal{A}_G/\operatorname{Tor}(\mathcal{A}_G) \to R(G)$. In view of Theorem 11, there exists a series of homomorphisms $\Phi_k : \mathcal{R}_G \to H^{2k}(G,\mathbb{Z})$ (k odd) which assigns $e_k(\mu)$ to $\sigma(\mu)$. Let $c : \operatorname{Hom}(G, \mathbb{C}^{\times}) \to H^2(G, \mathbb{Z})$ be the natural isomorphism as in Section 2.1 and det $: R(G) \to \operatorname{Hom}(G, \mathbb{C}^{\times})$ the determinant homomorphism (see [13] for precise). Then the homomorphism Φ_1 is determined by the following proposition:

Proposition 13. $e_1(\mu) = 6 \cdot c(\det(\sigma(\mu)) \text{ for all } \mu \in \mathcal{M}_G.$

The proposition follows from the Grothendieck-Riemann-Roch theorem and a result of Harer [7] (see also [1, Proposition 6]). Proposition 13 can be generalized to larger k, provided G is cyclic. Recall that, for every finite group G, there is a series of homomorphisms $s_k : R(G) \to H^{2k}(G,\mathbb{Z})$ $(k \ge 0)$ of abelian groups, which satisfies the following properties:

- (1) $s_1(\rho) = c(\det \rho)$ for all $\rho \in R(G)$.
- (2) If ρ is a linear character, then $s_k(\rho) = c(\rho)^k$.

 $s_k(\rho)$ is called the *k*-th Newton class of $\rho \in R(G)$. See [12] for further details. Let B_{2k} be the 2*k*-th Bernoulli number and N_{2k}, D_{2k} coprime integers satisfying $B_{2k}/k = N_k/D_k$. Then a result of the author and Kawazumi [2] implies the following result:

Theorem 14. If G is cyclic, then $N_{2k} \cdot e_{2k-1}(\mu) = D_{2k} \cdot s_{2k-1}(\sigma(\mu))$ holds for all $\mu \in \mathcal{M}_G$ and $k \ge 1$.

Now let G be a cyclic group of order m, and suppose that N_{2k} is prime to m. Choose an integer N_{2k}^* satisfying $N_{2k} \cdot N_{2k}^* \equiv 1 \pmod{m}$. Under these assumptions, we have

$$e_{2k-1}(\mu) = N_{2k}^* D_{2k} \cdot s_{2k-1}(\sigma(\mu))$$

for all $\mu \in \mathcal{M}_G$, and hence determining Φ_{2k-1} for these cases. In particular, we have $e_1(\mu) = 6 \cdot s_1(\sigma(\mu)), e_3(\mu) = -60 \cdot s_3(\sigma(\mu)), e_5(\mu) = 126 \cdot s_5(\sigma(\mu)),$ $e_7(\mu) = -120 \cdot s_7(\sigma(\mu))$ for any cyclic group G and $\mu \in \mathcal{M}_G$, since $N_{2k} = 1$ for $1 \leq k \leq 4$.

REFERENCES

- 1. T. Akita, Nilpotency and triviality of mod *p* Morita-Mumford classes of mapping class groups of surfaces, Nagoya Math. J. **165** (2002) 1-22.
- 2. T. Akita, N. Kawazumi, Integral Riemann-Roch formulae for cyclic subgroups of mapping class groups, Math. Proc. Cambridge Phil. Soc. (to appear).
- 3. A. L. Edmonds, J. H. Ewing, Remarks on the cobordism group of surface diffeomorphisms, Math. Ann. 259 (1982) 497-504.
- 4. H. M. Farkas, I. Kra, *Riemann Surfaces* (2nd ed.), GTM Vol. 71, Springer-Verlag, New York-Heidelberg-Berlin, 1992.
- 5. R. Grieder, Geometric representation theory and G-signature, arXiv:math/9811102.
- 6. _____, G-actions on Riemann surfaces and the associated group of singular orbit data, arXiv:math/9902048.
- 7. J. L. Harer, The second homology group of the mapping class group of an oriented surface, Invent. Math. 72 (1983) 221-239.
- 8. N. Kawazumi, T. Uemura, Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries, Kodai Math. J. **21** (1998) 372–380.
- 9. E. Y. Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1-14.
- 10. S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551-577.
- 11. D. Mumford, Towards an enumerative geometry of the moduli space of curves, in *Arithmetic and Geometry* Vol. II, Birkhäuser, Boston (1983) 271-328.
- 12. C. B. Thomas, *Characteristic Classes and Cohomology of Finite Groups*, Cambridge Studies in Advanced Mathematics 9, Cambridge University Press, Cambridge, 1986.
- 13. T. Yoshida, Character-theoretic transfer (II), J. Algebra 118 (1988) 498-527.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO, 060-0810 JAPAN

E-mail address: akita@math.sci.hokudai.ac.jp