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Given a finite group $G$ ofautomorphisms ofa compact Riemann surface, we
discuss a relation between Mumford-Morita-Miller classes of odd indices
and the homology representation of $G$. Since most participants were group
theorists rather than topologists, I separate the algebraic and the topological
ingredients and explain the former in detail.

1. SURFACE SYMMETRIES

1.1. The Grieder group of a finite group. Let $G$ be a finite group and $\hat{\gamma}$

the conjugacy class of $\gamma\in G$. We denote by $\langle\hat{\gamma}_{1},\hat{\gamma}_{2}, \ldots,\hat{\gamma}_{q}\rangle$ an unordered
q-tuple $(q\geq 0)$ of conjugacy classes of nontrivial elements of $Gsatis\theta ing$

$\gamma_{1}\gamma_{2}\cdots\gamma_{q}\in[G,G]$ , and $M_{G}$ the set of all such q-tuples. We can define an
abelian monoid structure on $M_{G}$ by

$\langle\hat{\gamma}_{1}$ , . . . $\hat{\gamma}_{q}\rangle+\langle\hat{\gamma}_{q+1}$ , . . . $\hat{\gamma}_{r}\rangle=\langle\hat{\gamma}_{1}$ , . . . $\gamma_{q},\hat{\gamma}_{q+1}$ , . . . $\hat{\gamma}_{r}\rangle$ .
The identity element is the empty tuple $\langle\rangle$ . We call $M_{G}$ the Grieder monoid
of $G$. Now let $M_{G}’$ be the submonoid generated by $\langle\hat{\gamma},\hat{\gamma}^{-1}\rangle(\gamma\in G)$ and set
$A_{G}$ $;=M_{G}/M_{G}’$ . The quotient $A_{G}$ is an abelian group. The inverse element
is given by

$-\langle\hat{\gamma}_{1}, \ldots,\hat{\gamma}_{q}\rangle=\langle\hat{\gamma}_{1}^{-1}, \ldots,\hat{\gamma}_{q}^{-1}\rangle$ in $z_{G}$ .
We call $\lambda_{G}$ the Grieder group of $G$ . As the names suggest, $M_{G}$ and $A_{G}$

were introduced and studied by Grieder $[5, 6]$ to study surface symmetries.
First of all, $n_{G}$ is finitely generated:

Proposition 1 ([5]). $z_{G}\cong \mathbb{Z}^{m}\oplus \mathbb{Z}_{2}^{n}$for some $m,n\geq 0$ .

A homomorphism$f:Harrow G$ ofgroups induces a homomorphism $f_{*};$ $A_{H}arrow$

$z_{G}$ of abelian groups by $f_{*}(\langle\hat{\gamma}_{1}, \ldots,\hat{\gamma}_{q}\rangle)=\langle f(\hat{\gamma}_{1}), \ldots,f(\hat{\gamma}_{q})\rangle$ so that the
assignment $Grightarrow A_{G}$ is a covariant fUnctor. In addition, for an inclusion
$i;Harrow G$, one can also define the restriction $i^{*}:$ $A_{G}arrow\lambda_{H}$ via suffice
symmetries. Gnieder [5] verified the double coset formula and hence proved
the following proposition:
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Proposition 2. The assignment $G\mapsto M_{G}$ is a $Mack\varphi frnctor$.

1.2. Ramification data. By a surface symmetry we mean a pair $(G,C)$ ,
where $C$ is a compact Riemann surface of genus $g\geq 2$ , and $G$ is a finite
group of automorphisms of $C$. For each $x\in C$, let $G_{x}$ be the isotropy sub-
group at $x$ . Note that $G_{x}$ is necessary cyclic. Set $S=\{x\in CG_{x}\neq 1\}$ , and
let $s/G=\{x_{1},x_{2}, \ldots,x_{q}\}$ be a set ofrepresentatives of G-orbits of elements
of $S$ For each $x_{i}\in S/G$, choose a generator $\gamma_{i}$ of $G_{x_{i}}$ such that $\gamma_{i}$ acts on
the holomorphic tangent space $T_{x_{i}}C$ by $z\mapsto\exp(2\pi\sqrt{-1}/|G_{x_{i}}|)z$ with re-
spect to a suitable local coordinate $z$ at $x_{i}$ . The ramification data of $(G,C)$ ,
abbreviated by $6(G,C)$ , is the unordered q-tuple $\langle\hat{\gamma}_{1},\hat{\gamma}_{2},\cdots ,\hat{\gamma}_{q}\rangle$ . It satisfies
$\gamma_{1}\gamma_{2}\cdots\gamma_{q}\in[c,q$ , and hence $6(G,C)$ is an element ofthe Grieder monoid
$M_{G}$ . Conversely, we have the following proposition.

Proposition 3 (see [5]). For any element $p\in M_{G}$, there exists a surface
symmetry $(G,C)$ whose ramification data coincides with $\mu$

2. GROUP COHOMOLOGY

2.1. The first Chern class. Let $\langle\gamma\rangle$ be a cyclic group of order $m$ generated
by $\gamma$ and $p_{\gamma}$ : $\langle\gamma\ranglearrow \mathbb{C}^{x}$ a linear character defined by $\gamma\mapsto\exp(2\pi i/m)$ . For
any finite group $G$, we have natural isomorphisms

$Hom(G,\mathbb{C}^{x})\cong H^{1}(G,\mathbb{C}^{x})\cong H^{2}(G,\mathbb{Z})$.
Here, the latter isomorphism is the connecting homomorphism associated to
the short exact sequence $0arrow \mathbb{Z}arrow \mathbb{C}arrow \mathbb{C}^{x}arrow 0$ . Define $c(\gamma)\in H^{2}(\langle\gamma\rangle,\mathbb{Z})$

to be the image of $p_{\gamma}$ under the isomorphism $Hom(\langle\gamma\rangle,\mathbb{C}^{x})\cong H^{2}(\langle\gamma\rangle,\mathbb{Z})$ .
The cohomology class $c(\gamma)$ is sometimes called thefirst Chem class of $p_{\gamma}$.

2.2. mm classes (algebra). For each element $\mu=\langle\hat{\gamma}_{1}, \ldots,\hat{\gamma}_{q}\rangle$ of $M_{G}$ ,
define a series of cohomology classes $e_{k}(\mu)\in H^{2k}(G,\mathbb{Z})(k\geq 1)$ by

$e_{k}( \mu):=\sum_{i=1}^{q}Tr_{\langle\gamma_{i}\rangle}^{G}(c(\gamma_{i})^{k})\in H^{2k}(G,\mathbb{Z})$ ,

where $Tr_{\langle\gamma\rangle}^{G}$ : $H^{*}(\langle\gamma\rangle,\mathbb{Z})arrow H^{*}(G,\mathbb{Z})$ is the transfer. We call $e_{k}(\mu)$ the k-th
Mumford-Morita-Miller class of $\mu$ (MMM class in short). The definition of
$e_{k}(\mu)$ is motivated by topology, as will be explained in the next subsection.
Observe that the assignment $\murightarrow e_{k}(\mu)$ defines a well-defined homomor-
phism $M_{G}arrow H^{2k}(G,\mathbb{Z})$ of abelian monoids. For $k$ odd, it induces a well-
defined homomorphism $n_{G}arrow H^{2k}(G,\mathbb{Z})$ of abelian groups, for we have
$c(\gamma^{-1})=-c(\gamma)$ . In addition, we can prove the following proposition:
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Proposition 4. For odd $k\geq 1$ , the homomorphism $\ovalbox{\tt\small REJECT}_{G}arrow H^{2k}(G,\mathbb{Z})$ is a
natural transformation ofMackeyfunctors.

2.3. MMM classes (topology). The definition of $e_{k}(\mu)$ is inspired by a
result ofKawazumi and Uemura [8] conceming of characteristic classes of
oriented surface bundles. Let $\Sigma_{g}$ be the closed oriented surface of genus
$g\geq 2$ . Let $\pi:Earrow B$ an oriented $\Sigma_{g}$-bundle, $T^{v}E$ the tangent bundle along
the fiber of $\pi$, and $e\in H^{2}(E;\mathbb{Z})$ the Euler class of $T^{v}E$ . Define $e_{k}^{top}(\pi)\in$

$H^{2k}(B;\mathbb{Z})$ by $e_{k}^{top}(\pi)$ $:=\pi_{!}(e^{k+1})$ where $\pi!$ : $H^{*}(E;\mathbb{Z})arrow H^{*-2}(B;\mathbb{Z})$ is the
Gysin homomorphism (the superscript top’ stands for topology’). $e_{k}^{top}(\pi)$

is called the k-th Mumford-Morita-MiIler class of $\pi$, as it was introduced in
[11, 10, 9].

Now let $(G,C)$ be a surface symmetry as in Section 1.2. Associated with
$(G,C)$ , there is an oriented surface bundle $\pi:EG\cross {}_{G}Carrow BG$ called the
Borel constniction, where $EGarrow BG$ is the universal G-bundle. We denote
by $e_{k}^{\iota op}(G,C)\in H^{2k}(G,\mathbb{Z})$ the k-th MMM class of the Borel consffuction $\pi$.
A result ofKawazumi and Uemura [8] implies the following result:

Theorem 5. We have $e_{k}^{top}(G,C)=e_{k}(6(G,C))$ where $6(G,C)$ is the ramlfi-
cation data of $(G,C)$ .

3. HOMOLOGY REPRESENTATIONS

3.1. Algebra. In what follows, we denote by $R(G)$ the complex represen-
tation ring (or the character ring) of a finite group $G$. Let $\langle\gamma\rangle$ be a cyclic
group of order $m$ generated by $\gamma$ and $p_{\gamma}$ : $\langle\gamma\ranglearrow \mathbb{C}^{x}$ a linear character as in
Section 2.1. Define $\Delta_{Y}\in R(\langle\gamma\rangle)\otimes \mathbb{Q}$ by

$\Delta_{Y}:=2\sum_{k=1}^{m-1}(\frac{k}{m}-\frac{1}{2})p_{\gamma}^{\otimes k}=\frac{2}{m}\sum_{k=1}^{m-1}kp_{\gamma}^{\otimes k}-r_{\langle\gamma\rangle}+1_{\langle\gamma\rangle}$ ,

where $r_{\langle\gamma\rangle}$ is the regular representation and $1_{\langle\gamma\rangle}$ is the trivial l-dimensional
representation of $\langle\gamma\rangle$ . Now, for each element $\mu=\langle\hat{\gamma}_{1}, \ldots,\hat{\gamma}_{q}\rangle$ of $M_{G}$, define
the G-signature $\sigma(\mu)$ of $\mu$ by

$\sigma(\mu):=\sum_{k=1}^{q}Ind_{\langle\gamma_{k}\rangle}^{G}(\Delta_{Yk})\in R(G)\otimes \mathbb{Q}$.

Proposition 6. $\sigma(\mu)\in R(G)$ for every $G$ and $\mu\in M_{G}$.

See the next section for the proof. Note that, in case $\mu\in M_{G}$ consists of a
single conjugacy class ($\mu=\langle\hat{\gamma}\rangle$ for $\gamma\in[G,G]$), Proposition 6 was proved by
T. Yoshida [13].
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The assignment $\mu\mapsto\sigma(\mu)$ yields a homomorphism $M_{G}arrow R(G)$ ofmonoids,
which induces a well-defined homomorphism $\ovalbox{\tt\small REJECT}_{G}arrow R(G)$ ofabelian groups.
In addition, we can prove the following proposition:

Proposition 7. $A_{G}arrow R(G)$ is a natural transformation ofMackeyfunctors.

3.2. Topology. Let $(G,C)$ be a surface symmetry, and $H_{C}$ the space of
holomorphic l-forms on $C$. Note that $\dim_{\mathbb{C}}H_{C}=g$ where $g$ is the genus
of the Riemann surface $C$. Then $G$ acts on $H_{C}$ and henc$eH_{C}$ is a complex
representation of $G$. A virtual representation $o^{top}(G,C)$ $:=H_{C}-\overline{H}_{C}\in R(G)$

is called the G-signature of $(G,C)$ , where $\overline{H}_{C}$ is th$e$ complex conjugate.

Proposition 8. We have $\sigma^{top}(G,C)=o(6(G,C))$ where $6(G,C)$ is the ram-
$\iota fica\hslash on$ data of $(G,C)$ .

The character of $\sigma^{top}(G,C)$ is given by the Eichler trace formula (see [4]
for instance). The proposition can be verified by comparing characters of
$\sigma^{top}(G,C)$ and $\sigma(6(G,C))$ . An altemative proofwas given by N. Kawazumi
(unpublished manuscript). Since every $\mu\in M_{G}$ can be realized as a ram-
ification data of a surface symmeby, Proposition 6 follows Rom the last
proposition. The following fact is an easy consequence ofProposition 8.

Corollary 9. Ifall the complex characters of$G$ are $\mathbb{R}$-valued, then $\sigma(\mu)=0$

for all $\mu\in M_{G}$ .

Proof. Choose a surface symmetry $(G,C)$ with $6(G,C)=\mu$. Then we have
$\sigma(\mu)=\sigma^{top}(G,C)=H_{C}-\overline{H}_{C}=0$ since $H_{C}=\overline{H}_{C}$ by the assumption. $\square$

4. A RELATION OF $e_{k}(\mu)$ AND $\sigma(\mu)$

Theorem 10. Let $G$ be afinite group and $\mu,v\in M_{G}$ .
(1) $If\sigma(\mu)=o(v)$ then $e_{k}(\mu)=e_{k}(v)$ for all odd $k\geq 1$ .
(2) $Ifo(\mu)=0$ then $e_{k}(\mu)=0$for all odd $k\geq 1$ .

Since $R(G)$ is ffee as an abelian group, the homomorphism $x_{G}arrow R(G)$

in Section 3.1 induces $\phi_{1}$ : $z_{G}/Tor(n_{G})arrow R(G)$ , where $Tor(\lambda_{G})$. is the
torsion subgroup of $A_{G}$ . For odd $k\geq 1$ , let $\phi_{2}$ : $Tor(A_{G})arrow H^{2k}(G,\mathbb{Z})$ be
the $res\theta iction$ of th$e$ homomorphism $x_{G}arrow H^{2k}(G,\mathbb{Z})$ in Section 2.2. The
proof ofTheorem 10 is based on the following two facts:

Theorem 11. For anyfinite group $G$ and any odd $k\geq 1$ ,

(1) The homomorphism $\phi_{1}$ : $z_{G}/Tor(A_{G})arrow R(G)$ is injective.
(2) The $homomo\varphi hism\phi_{2}$ : $Tor(x_{G})arrow H^{2k}(G,\mathbb{Z})$ is trivial.
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The first statement is proved by using a result of Edmonds and Ewing [3],
while th$e$ second statement is proved by considering the cohomology of
metacyclic 2-groups. The detail will appear elsewhere. Theorem 10 and
Corollary 9 imply the following corollary:

Corollary 12. Ifall the complex characters of$G$ are $\mathbb{R}$-valued then $e_{k}(\mu)=$

$0$ for all $\mu\in M_{G}$ and odd $k\geq 1$ .

Define $RG$ to be the image of $\phi_{1}$ : $\ovalbox{\tt\small REJECT}_{G}/Tor(flc)arrow R(G)$ . In view of The-
orem 11, there exists a series of homomorphisms $\Phi_{k}$ : $Rcarrow H^{2k}(G,\mathbb{Z})$

($k$ odd) which assigns $e_{k}(\mu)$ to $\sigma(\mu)$ . Let $c:Hom(G,\mathbb{C}^{x})arrow H^{2}(G,\mathbb{Z})$ be
the natural isomorphism as in Section 2.1 and $det;R(G)arrow Hom(G,\mathbb{C}^{x})$

the determinant homomorphism (see [13] for precise). Then the homomor-
phism $\Phi_{1}$ is determined by the following proposition:

Proposition 13. $e_{1}(\mu)=6\cdot c(\det(\sigma(\mu))$for all $\mu\in M_{G}$ .

The proposition follows Rom the Grothendieck-Riemrn-Rochtheorem and
aresult ofHarer [7] (see also [1, Proposition 6]). Proposition 13 can be gen-
eralized to larger $k$, provided $G$ is cyclic. Recall that, for every finite group
$G$, there is a series of homomorphisms $s_{k}$ : $R(G)arrow H^{2k}(G,\mathbb{Z})(k\geq 0)$ of
abelian groups, which satisfies the following properties:

(1) $s_{1}(p)=c(detp)$ for all $p\in R(G)$ .
(2) If $p$ is a linear character, then $s_{k}(p)=c(p)^{k}$ .

$s_{k}(p)$ is called the k-th Newton class of $p\in R(G)$ . See [12] for further
details. Let $B_{2k}$ be the $2k$-th Bernoulli number and $N_{2k},D_{2k}$ coprime integers
satisqing $B_{2k}/k=N_{k}/D_{k}$ . Then a result of the author and Kawazumi [2]
implies the following result:

Theorem 14. If $G$ is cyclic, then $N_{2k}\cdot e_{2k-1}(\mu)=D_{2k}\cdot s_{2k-1}(\sigma(\mu))$ holdS
for all $\mu\in M_{G}$ and $k\geq 1$ .

Now let $G$ be a cyclic group of order $m$ , and suppose that $N_{2k}$ is prime to
$m$ . Choose an integer $N_{2k}^{*}$ satisfying $N_{2k}\cdot N_{2k}^{*}\equiv 1(mod m)$ . Under these
assumptions, we have

$e_{2k-1}(\mu)=N_{2k}^{*}D_{2k}\cdot s_{2k-1}(\sigma(\mu))$

for all $\mu\in M_{G}$ , and hence determining $\Phi_{2k-1}$ for these cases. In particular,
we have $e_{1}(\mu)=6\cdot s_{1}(\sigma(\mu)),$ $e_{3}(\mu)=-60\cdot s_{3}(o(\mu)),$ $e_{5}(\mu)=126\cdot ss(o(\mu))$ ,
$e_{7}(\mu)=-120\cdot s_{7}(\sigma(\mu))$ for any cyclic group $G$ and $\mu\in M_{G}$ , since $N_{2k}=1$

for $1\leq k\leq 4$ .
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