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SURFACE SYMMETRIES, HOMOLOGY REPRESENTATIONS,
AND GROUP COHOMOLOGY

TOSHIYUKI AKITA
Rz (ALHEERFERFEGE FR 7Ek)

Given a finite group G of automorphisms of a compact Riemann surface, we
discuss a relation between Mumford-Morita-Miller classes of odd indices
and the homology representation of G. Since most participants were group
theorists rather than topologists, I separate the algebraic and the topological
ingredients and explain the former in detail.

1. SURFACE SYMMETRIES

1.1. The Grieder group of a finite group. Let G be a finite group and ¥
the conjugacy class of y € G. We denote by (¥1,¥2,...,%;) an unordered
g-tuple (¢ > 0) of conjugacy classes of nontrivial elements of G satisfying
Y172+ Yq € [G,G), and M the set of all such g-tuples. We can define an
abelian monoid structure on Mg by

(?1"' . ’?‘I) + (?q+l,--- )?r> = (?17" . 7?q’?q+17" "?")'

The .identity element is the empty tuple (). We call M the Grieder monoid
of G. Now let 2 /; be the submonoid generated by (§,¥~!) (Y € G) and set
AG := Mg/M 5. The quotient 4 is an abelian group. The inverse element
is given by

| G ¥) =G4 ) in A6
We call A the Grieder group of G. As the names suggest, M and 4¢

were introduced and studied by Grieder [5, 6] to study surface symmetries.
First of all, 4¢ is finitely generated:

Proposition 1 ([5]). 2¢ = Z™ & Zj for some m,n > 0.

A homomorphism f : H — G of groups induces a pomomorghism Je:Ag—
a¢ of abelian groups by fi((f1,---,%)) = (f(11),--.,f(Yg)) so that the
assignment G — 4¢ is a covariant functor. In addition, for an inclusion
i: H < G, one can also define the restriction i* : g — Ax via surface
symmetries. Grieder [5] verified the double coset formula and hence proved
the following proposition:



Proposition 2. The assignment G — Mg is a Mackey functor.

1.2. Ramification data. By a surface symmetry we mean a pair (G,C),
where C is a compact Riemann surface of genus g > 2, and G is a finite
group of automorphisms of C. For each x € C, let G, be the isotropy sub-
group at x. Note that G, is necessary cyclic. Set s = {x € C | Gy # 1}, and
lets /G = {x1,x2,...,x,} be a set of representatives of G-orbits of elements
of 5. For each x; € § /G, choose a generator ; of Gy, such that y; acts on
the holomorphic tangent space T,,C by z — exp(2ny/—1/|Gy,|)z with re-
spect to a suitable local coordinate z at x;. The ramification data of (G,C),
abbreviated by 8(G,C), is the unordered g-tuple (Yi, %2, - ,Y,). It satisfies
T1Y2- - Yq € [G,G], and hence 8(G,C) is an element of the Grieder monoid
M. Conversely, we have the following proposition.

Proposition 3 (see [5]). For any element u € Mg, there exists a surface
symmetry (G,C) whose ramification data coincides with u.

2. GROUP COHOMOLOGY

2.1. The first Chern class. Let (y) be a cyclic group of order m generated
by yand py: (y) — C* a linear character defined by y+— exp(2mi/m). For
any finite group G, we have natural isomorphisms

Hom(G,C*) & H'(G,C*) % H%(G, Z).

Here, the latter isomorphism is the connecting homomorphism associated to
the short exact sequence 0 — Z — C — C* — 0. Define c(y) € H?({y),Z)
to be the image of py under the isomorphism Hom((y),C*) = H?(({y),Z).
The cohomology class c(7y) is sometimes called the first Chern class of py.

2.2. MMM classes (algebra). For each element = (f1,...,%,) of Mg,
define a series of cohomology classes e;(u) € H*(G,Z) (k> 1) by

9
ex() := 3 Tegy (c(w)) € H(G,2),

where Trgb : H*({y),Z) — H*(G,Z) is the transfer. We call e;(u) the k-th
Mumford-Morita-Miller class of y (MMM class in short). The definition of
ex(u) is motivated by topology, as will be explained in the next subsection.
Observe that the assignment u — e;(u) defines a well-defined homomor-
phism M s — H*(G,Z) of abelian monoids. For k odd, it induces a well-
defined homomorphism 4 — H?*(G,Z) of abelian groups, for we have
c(y™!) = —c(y). In addition, we can prove the following proposition:
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Proposition 4. For odd k > 1, the homomorphism A — H*(G,Z) is a
natural transformation of Mackey functors.

2.3. MMM classes (topology). The definition of e;(u) is inspired by a
result of Kawazumi and Uemura [8] concerning of characteristic classes of
oriented surface bundles. Let X, be the closed oriented surface of genus
g 2> 2. Letn: E — B an oriented Zg-bundle, TVE the tangent bundle along
the fiber of &, and e € H?(E;Z) the Euler class of TVE. Define e;*(x) €
H*(B;Z) by e/ (r) := m(e*+!) where m : H*(E;Z) — H*~2(B; Z) is the
Gysin homomorphism (the superscript “top” stands for “topology”). e;fp (m)
is called the k-th Mumford-Morita-Miller class of &, as it was introduced in
[11, 10, 9]. '

Now let (G,C) be a surface symmetry as in Section 1.2. Associated with
(G,C), there is an oriented surface bundle ©t : EG x5:C — BG called the
Borel construction, where EG — BG is the universal G-bundle. We denote

y e;7(G,C) € H*(G,Z) the k-th MMM class of the Borel construction 7.
A result of Kawazumi and Uemura [8] implies the following result:

Theorem 5. We have e;*(G,C) = e;(8(G,C)) where 8(G,C) is the ramifi-
cation data of (G,C).

3. HOMOLOGY REPRESENTATIONS

3.1. Algebra. In what follows, we denote by R(G) the complex represen-
tation ring (or the character ring) of a finite group G. Let (Y) be a cyclic
group of order m generated by y and py : (Y) — C* a linear character as in
Section 2 1. Define Ay € R((Y)) ® Q by

Ay —22 ("“) Bk = kay —ry+1l,
P

where 7y is the regular representation and 1(7) is the trivial 1-dimensional
representation of (y). Now, for each element u= (Y1,...,%;) of Mg, define
the G-signature o(u) of uby

o) Z IndG,, (Ay) € R(G) ©Q.
Proposition 6. 6(u) € R(G) for every G and p € Mg.
See the next section for the proof. Note that, in case u € M consists of a

single conjugacy class (u = (§) for y € [G, G)), Proposition 6 was proved by
T. Yoshida [13].
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The assignment u+— o(u) yields a homomorphism 4 ¢ — R(G) of monoids,
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which induces a well-defined homomorphism 25 — R(G) of abelian groups.

In addition, we can prove the following proposition:

Proposition 7. 4 — R(G) is a natural transformation of Mackey functors.

3.2. Topology. Let (G,C) be a surface symmetry, and Hc the space of
holomorphic 1-forms on C. Note that dim¢c Hc = g where g is the genus
of the Riemann surface C. Then G acts on Hc¢ and hence Hc is a complex
representation of G. A virtual representation 6'°°(G,C) := Hc— H¢ € R(G)
is called the G-signature of (G,C), where Hc is the complex conjugate.

Proposition 8. We have 6*?(G,C) = 6(8(G,C)) where &(G,C) is the ram-
ification data of (G,C).

The character of 6*P(G,C) is given by the Eichler trace formula (see [4]
for instance). The proposition can be verified by comparing characters of
0"?(G,C) and 6(8(G,C)). An alternative proof was given by N. Kawazumi
(unpublished manuscript). Since every u € M can be realized as a ram-
ification data of a surface symmetry, Proposition 6 follows from the last
proposition. The following fact is an easy consequence of Proposition 8.

Corollary 9. If all the complex characters of G are R-valued, then 6(u) =0
Jorall pe Mg.

Proof. Choose a surface symmetry (G,C) with §(G,C) = x. Then we have
o(y) = 6°P(G,C) = Hc — Hc = 0 since Hc = Hc by the assumption. [

4. A RELATION OF e(u) AND o(u)

Theorem 10. Let G be a finite group and u,v € Mg.

(1) Ifo(u) = o(v) then ex(u) = ex(V) for all odd k > 1.
(2) Ifo(u) =0 then ex(u) = 0 for all odd k > 1.

Since R(G) is free as an abelian group, the homomorphism 2g — R(G)
in Section 3.1 induces ¢; : 4G/ Tor(ag) — R(G), where Tor(4g) is the
torsion subgroup of 4g. For odd k > 1, let ¢, : Tor(2g) — H*(G,Z) be
the restriction of the homomorphism 4G — H*(G,Z) in Section 2.2. The
proof of Theorem 10 is based on the following two facts:

Theorem 11. For any finite group G and any odd k > 1,

(1) The homomorphism ¢, : A/ Tor(2g) — R(G) is injective.
(2) The homomorphism ¢, : Tor(4g) — H**(G,Z) is trivial.
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The first statement is proved by using a result of Edmonds and Ewing [3],
while the second statement is proved by considering the cohomology of
metacyclic 2-groups. The detail will appear elsewhere. Theorem 10 and
Corollary 9 imply the following corollary:

Corollary 12. If all the complex characters of G are R-valued, then e; (1) =
O forall ue Mg andodd k > 1.

Define R to be the image of ¢; : 2g/ Tor(2g) — R(G). In view of The-
orem 11, there exists a series of homomorphisms ®@; : R — H?*(G,Z)
(k odd) which assigns e;(u) to o(u). Let ¢ : Hom(G,C*) — H?(G,Z) be
the natural isomorphism as in Section 2.1 and det : R(G) — Hom(G,C*)
the determinant homomorphism (see [13] for precise). Then the homomor-
phism @ is determined by the following proposition:

Proposition 13. e (u) = 6-c(det(c(u)) for all u€ Mg.

The proposition follows from the Grothendieck-Riemann-Roch theorem and
a result of Harer [7] (see also [1, Proposition 6]). Proposition 13 can be gen-
~eralized to larger k, provided G is cyclic. Recall that, for every finite group
G, there is a series of homomorphisms s : R(G) — H*(G,Z) (k = 0) of
abelian groups, which satisfies the following properties:

(1) s1(p) = c(detp) for all p € R(G).
(2) If p is a linear character, then sx(p) = c(p)*.

sg(p) is called the k-th Newton class of p € R(G). See [12] for further
details. Let By be the 2k-th Bernoulli number and Ny, Do, coprime integers
satisfying Byi/k = Ni/Dy. Then a result of the author and Kawazumi [2]
implies the following result:

Theorem 14. If G is cyclic, then Ny, - eax—1 () = Doy - s2x—1(0(#)) holds
forall u€ Mg andk > 1. |

Now let G be a cyclic group of order m, and suppose that Ny is prime to
m. Choose an integer N}, satisfying Not - N3, = 1 (mod m). Under these
assumptions, we have

eak—1(#) = N3pDak - s2k-1(0(4))
for all 4 € Mg, and hence determining ®,;_; for these cases. In particular,

we have e; (4) = 6-51(6(1)), e3(1) = —60-53(5(1)), es(u) = 126-55(5(4)),
e7(u) = —120-57(o(u)) for any cyclic group G and u € Mg, since Npi = 1
for1 <k<4.
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