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Abstract

We shall claim that Brou\’e’s abelian defect group conjecture holds
for the nonprincipal p-block of $SL(2,p^{n})$ .

1 Introduction
Let $G$ be a finite group and $P$ a p-subgroup of $G$ . The next theorem is one
of the most important theorems on the block theory of finite groups:

Brauer’s First Main Theorem. There is one to one cormespondence be-
tween the blocks of $kG$ with defect group $P$ and the blocks of $kN_{G}(P)$ with
defect group $P$ .

The correspondence is called Brauer $co\gamma vespondence$. The foUowing conjec-
ture is our main problem:

Brou\’e’s Abelian Defect Group Conjecture. Suppose that $A$ is a block
of $kG$ with an abelian defect group $P$ and that $B$ is the Brauer comspondent
of $A$ (in $N_{G}(P)$). Then is A derived equivalent to $B$ ?

If $G=SL(2, q)$ where $q=p^{n}$ , it has been proved that the conjecture is true
for the principal block by T.Okuyama (see [6]). Even in the nonprincipal
case, the conjecture was proved to be true for $n=2$ by M.Holloway (see [4]),
but it has not been known if the conjecture is true for $n\geq 3$ yet. However, it
has turned out that it can be proved to be true even for $n\geq 3$ by imitating
Okuyama’s proof [6].

The Main Result. If $G=SL(2, q)$ where $q=p^{n}$ , Brou\’e’s abelian defect
group conjecture is true for the nonprincipal block of $kG$ .

数理解析研究所講究録
第 1581巻 2008年 121-125 121



We shall explain about derived equivalences. Let $k$ be an algebraically
closed field of characteristic $p>0$ , let $A$ and $B$ be finite dimensional k-
algebras, mod-A the category consisting of all finite dimensional right A-
modules, proj-A the full subcategory of mod-A consisting of all finite di-
mensional right projective A-modules, $K^{b}(mod- A)$ the homotopy category
consisting of all bounded complexes of finite dimensional right A-modules,
and $K^{b}(proj- A)$ the homotopy category consisting of all bounded complexes
of finite dimensional right projective A-modules. We say that $A$ is derived
equivalent to $B$ if $K^{b}(proj- A)$ is equivalent to $K^{b}(proj- B)$ as triangulated
categories. The next theorem is a criterion for derived equivalence:

Theorem(Riclcard [7]). The following are equivalent.

$(a)$ $A$ is derived equivalent to $B$ .
$(b)$ There is a complex $T^{\cdot}\in K^{b}(proj- A)$ with $B\cong End_{K^{b}(proj- A)}(T^{\cdot})$ such

that

(i) $Hom_{K^{b}(proj-A)}(T^{\cdot}, T^{\cdot}[i])=0$ for any $i\neq 0$ .

(ii) Ifadd$(T)$ is the full subcategory of $K^{b}(proj- A)$ consisting of all direct
summands of all direct sums of $T$ , then it generates the triangulated
categow $K^{b}(proj- A)$ .

We call $\tau\bullet$ a tilting complex for $A$ .

2 $SL(2, q)$

Set $G=SL(2, q)$ where $q=p^{n}$ . In this section, we shall state some facts of
representations of $kG$ . Set

$P=\{(\begin{array}{ll}1 b0 l\end{array})|b\in F_{q}\}$ ,

$D=\{(\begin{array}{ll}a 00 a^{-1}\end{array})|a\in F_{q}^{\cross\}}$ ,
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and
$H=N_{G}(P)=\{(\begin{array}{ll}a b0 a^{-1}\end{array})|a\in F_{q}^{\cross},$ $b\in F_{q}\}$ ,

where $P$ is a Sylowp-subgroup of $G$ and hence is isomorphic to the elementary
abelian group $C_{p}\cross\cdots\cross C_{p}$ ($n$ times), $D$ is isomorphic to $C_{q-1}$ , and $H$ is the
semidirect product $P\rtimes D$ .

Considering a nonprincipal block, we assume $p\neq 2$ in the rest of the
article (if $p=2,$ $kG$ has no nonprincipal blocks with full defect). Now we
have the block decompositions $kG=A_{0}\oplus A_{1}\oplus A_{2}$ , where $A_{0}$ is the principaJ
block, $A_{1}$ is a nonprincipal block with full defect, and $A_{2}$ has defect zero,
and $kN_{G}(P)=B_{0}\oplus B_{1}$ , where $B_{0}$ and $B_{1}$ are the Brauer correspondents
of $A_{0}$ and $A_{1}$ respectively. It is well known that all nonisomorphic sim-
ple $kG$-modules are indexed by $\{0,1,2, \cdots q-1\}$ , where $\{0,2, \cdots q-3\}$ ,
$\{1, 3, \cdots q-2\}$ and $\{q-1\}$ correspond to $A_{0},$ $A_{1}$ and $A_{2}$ respectively,$\cdot$ and
all nonisomorphic simple $kN_{G}(P)$-modules are indexed by $\{0,1,2, \cdots q-2\}$ ,
where $\{0,2, \cdots , q-3\}$ and $\{1, 3, \cdots q-2\}$ correspond to $B_{0}$ and $B_{1}$ respec-
tively (see [3] or [6]).

3 Outline of Proof
Set A $=\{0,1,2, \cdots , q-1\},$ $I=I_{\circ u}=\{1,3,5, \cdots q-2\}$ . For $\lambda\in\Lambda-\{q-1\}$ ,
set

$\sim\lambda=\{\begin{array}{ll}0 (if \lambda=0)q-1-\lambda (if \lambda\neq 0),\end{array}$

and for a subset $\Omega\subseteq\Lambda-\{q-1\}$ , set $\tilde{\Omega}=\{\lambda|\lambda\sim\in\Omega\}$ . Then for any simple
$kN_{G}(P)$-module, $T_{\lambda}\sim$ is isomorphic to the dual module $T_{\lambda}^{*}$ of $T_{\lambda}$ , and note
that $”\sim"$ is a permutation on $\Lambda-\{q-1\}$ of order 2. Moreover, we define
an equivalence relation “

$\sim$
” on $\Lambda-\{q-1\}$ by

$\lambda\sim\mu^{d}4^{e}$ There exists some $j\in\{0,1, \cdots , n-1\}$ such that $\lambda\equiv\dot{P}\mu$ $(mod q-1)$

Note that $I$ is closed under the equivalence relation.
We define equivalence classes (with respect to $”\sim$ “) $J_{-1},$ $J_{0},$ $J_{1},$ $\cdots J_{\theta}$

as folows (cf. Okuyama [6, \S 2]):
Let $J_{-1},$ $J_{-1}$ be empty sets (by convention), $J_{0}$ the class containing 1, and $J_{i}$

the class containilng the smallest $\lambda_{i}\not\in\bigcup_{u=-1}^{i-1}(J_{u}\cup\overline{J_{u}})$ for $i\geq 1$ . We repeat
this procedure until $s$ satisfies $I= \bigcup_{u=-1}^{s}(J_{u}\cup\tilde{J_{u}})$ .
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Now we can construct derived equivalent k-algebras $A^{0},$ $A^{1},$ $\cdots A^{s},$ $A^{s+1}$

as follows (cf. Okuyama [6, \S 3]):
First, set $A^{0}=A$ . Then for $1\leq t\leq s+1$ , we define $A^{t}$ as an endomorphism
algebra of a tilting complex for $A^{t-1}$ determined by $J_{t-1}$ which is seen in [6,
\S 1].

Then, we can show that $A^{s+1}$ is isomorphic to $B$ as k-algebras like Okuyama
[6, \S 3], so we obtain the main result.

References
[1] H.H.Andersen, $J.J\emptyset rgensen$ , and P.Landrock, The projective indecom-

posable modules of $SL(2,p^{n})$ , Proc. London Math. Soc.(3) 46 (1983),
no. 1, 38-52.

[2] M.Brou\’e, Isom\’etries parfaites, types de blocs, cat\’egories d\’erzv\’ees,
Ast\’erisque 181-182 (1990), 61-92.

[3] P.W.A.M. van Ham, T.A.Springer, and van der Wel, On the Cartan
invariant of $SL(2,F_{q})$ , Comm. Alg. 10(14) (1982), 1565-1588.

[4] M.Holloway, Derived equivalences for group algebras, Ph.D Thesis, Uni-
versity of Bristol (2001).

[5] T.Okuyama, Some examples of $der\dot{\tau}ved$ equivalent blocks offinite groups,
preprint (1998).

[6] T.Okuyama, Derived equivalence in $SL(2, q)$ , preprint (2000).

[7] J.Rickard, Morita theory for derived categories, J. London Math. Soc.
(2) 39 (1989), 436-456.

[8] J.Rickard, Derived equivalences as derived functors, J. London Math.
Soc. (2) 43 (1991), 37-48.

[9] J.Rickard, Splendid equivalences: De$\gamma\dot{\eta}ved$ catego$7\dot{\eta}es$ and $pe7mutation$

modules, Proc. London Math. Soc.(3) 72 (1996), 331-358.

[10] R.Rouquier, From stable equivalences to Rickard equivalences for blocks
with cyclic defect, Groups 93 $Galway/St$ Andrews II (C.M.Campbell

124



et al., eds.), vol. 212, London Math. Soc. Lecture Note Series (1995),
pp.512-523.

[11] R.Rouquier, The derived category of blocks with cyclic defect groups,
Derived Equivalences for Group Rings (S.K\"onig and A.Zimmermann),
vol. 1685, Springer Lecture Notes in Mathematics (1998), pp.199-220.

[12] R.Rouquier, Block $theo\eta$ via stable and Rickard equivalences, Modular
representation theory of finite groups (eds. M.J.Collins, B.J.Parshall and
L.L.Scott), pp.101-146, de Gruyter, Berlin (2001).

125


