Nonprincipal Block of $S L(2, q)$

Yutaka Yoshii（吉井 豊）
Division of Mathematical Science and Physics，Chiba Univ．（千葉大学自然科学研究科）

Abstract

We shall claim that Broués abelian defect group conjecture holds for the nonprincipal p－block of $S L\left(2, p^{n}\right)$ ．

1 Introduction

Let G be a finite group and P a p－subgroup of G ．The next theorem is one of the most important theorems on the block theory of finite groups：

Brauer＇s First Main Theorem．There is one to one correspondence be－ tween the blocks of $k G$ with defect group P and the blocks of $k N_{G}(P)$ with defect group P ．

The correspondence is called Brauer correspondence．The following conjec－ ture is our main problem：

Broué＇s Abelian Defect Group Conjecture．Suppose that A is a block of $k G$ with an abelian defect group P and that B is the Brauer correspondent of A（in $N_{G}(P)$ ）．Then is A derived equivalent to B ？

If $G=S L(2, q)$ where $q=p^{n}$ ，it has been proved that the conjecture is true for the principal block by T．Okuyama（see［6］）．Even in the nonprincipal case，the conjecture was proved to be true for $n=2$ by M．Holloway（see［4］）， but it has not been known if the conjecture is true for $n \geq 3$ yet．However，it has turned out that it can be proved to be true even for $n \geq 3$ by imitating Okuyama＇s proof［6］．

The Main Result．If $G=S L(2, q)$ where $q=p^{n}$ ，Broué＇s abelian defect group conjecture is true for the nonprincipal block of $k G$ ．

We shall explain about derived equivalences. Let k be an algebraically closed field of characteristic $p>0$, let A and B be finite dimensional k algebras, mod $-A$ the category consisting of all finite dimensional right A modules, $\operatorname{proj}-A$ the full subcategory of mod- A consisting of all finite dimensional right projective A-modules, $K^{b}(\bmod -A)$ the homotopy category consisting of all bounded complexes of finite dimensional right A-modules, and K^{b} (proj- A) the homotopy category consisting of all bounded complexes of finite dimensional right projective A-modules. We say that A is derived equivalent to B if $K^{b}(\operatorname{proj}-A)$ is equivalent to $K^{b}(\operatorname{proj}-B)$ as triangulated categories. The next theorem is a criterion for derived equivalence:

Theorem(Rickard [7]). The following are equivalent.
(a) A is derived equivalent to B.
(b) There is a complex $T^{\bullet} \in K^{b}(\operatorname{proj}-A)$ with $B \cong \operatorname{End}_{K^{b}(\operatorname{proj}-A)}\left(T^{\bullet}\right)$ such that
(i) $\operatorname{Hom}_{K^{b}(\operatorname{proj}-A)}\left(T^{\bullet}, T^{\bullet}[i]\right)=0$ for any $i \neq 0$.
(ii) If $\operatorname{add}\left(T^{*}\right)$ is the full subcategory of $K^{b}(\operatorname{proj}-A)$ consisting of all direct summands of all direct sums of T^{\bullet}, then it generates the triangulated category K^{b} (proj- A).

We call T^{*} a tilting complex for A.

$2 S L(2, q)$

Set $G=S L(2, q)$ where $q=p^{n}$. In this section, we shall state some facts of representations of $k G$. Set

$$
\begin{gathered}
P=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathbb{F}_{q}\right\}, \\
D=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{q}^{\times}\right\},
\end{gathered}
$$

and

$$
H=N_{G}(P)=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}\right\}
$$

where P is a Sylow p-subgroup of G and hence is isomorphic to the elementary abelian group $C_{p} \times \cdots \times C_{p}$ (n times), D is isomorphic to C_{q-1}, and H is the semidirect product $P \rtimes D$.

Considering a nonprincipal block, we assume $p \neq 2$ in the rest of the article (if $p=2, k G$ has no nonprincipal blocks with full defect). Now we have the block decompositions $k G=A_{0} \oplus A_{1} \oplus A_{2}$, where A_{0} is the principal block, A_{1} is a nonprincipal block with full defect, and A_{2} has defect zero, and $k N_{G}(P)=B_{0} \oplus B_{1}$, where B_{0} and B_{1} are the Brauer correspondents of A_{0} and A_{1} respectively. It is well known that all nonisomorphic simple $k G$-modules are indexed by $\{0,1,2, \cdots, q-1\}$, where $\{0,2, \cdots, q-3\}$, $\{1,3, \cdots, q-2\}$ and $\{q-1\}$ correspond to A_{0}, A_{1} and A_{2} respectively; and all nonisomorphic simple $k N_{G}(P)$-modules are indexed by $\{0,1,2, \cdots, q-2\}$, where $\{0,2, \cdots, q-3\}$ and $\{1,3, \cdots, q-2\}$ correspond to B_{0} and B_{1} respectively (see [3] or [6]).

3 Outline of Proof

Set $\Lambda=\{0,1,2, \cdots, q-1\}, I=I_{\text {odd }}=\{1,3,5, \cdots, q-2\}$. For $\lambda \in \Lambda-\{q-1\}$, set

$$
\tilde{\lambda}=\left\{\begin{array}{cc}
0 & (\text { if } \lambda=0) \\
q-1-\lambda & (\text { if } \lambda \neq 0),
\end{array}\right.
$$

and for a subset $\Omega \subseteq \Lambda-\{q-1\}$, set $\widetilde{\Omega}=\{\widetilde{\lambda} \mid \lambda \in \Omega\}$. Then for any simple $k N_{G}(P)$-module, $T_{\tilde{\lambda}}$ is isomorphic to the dual module T_{λ}^{*} of T_{λ}, and note that " \sim " is a permutation on $\Lambda-\{q-1\}$ of order 2. Moreover, we define an equivalence relation " $\sim "$ on $\Lambda-\{q-1\}$ by
$\lambda \sim \mu \stackrel{\text { def }}{\Leftrightarrow}$ There exists some $j \in\{0,1, \cdots, n-1\}$ such that $\lambda \equiv p^{j} \mu(\bmod q-1)$.
Note that I is closed under the equivalence relation.
We define equivalence classes (with respect to " \sim ") $J_{-1}, J_{0}, J_{1}, \cdots, J_{s}$ as follows (cf. Okuyama [$6, \S 2]$):
Let $J_{-1}, \widetilde{J_{-1}}$ be empty sets (by convention), J_{0} the class containing 1 , and J_{i} the class containing the smallest $\lambda_{i} \notin \bigcup_{u=-1}^{i-1}\left(J_{u} \cup \widetilde{J}_{u}\right)$ for $i \geq 1$. We repeat this procedure until s satisfies $I=\bigcup_{u=-1}^{s}\left(J_{u} \cup \widetilde{J}_{u}\right)$.

Now we can construct derived equivalent k-algebras $A^{0}, A^{1}, \cdots, A^{s}, A^{s+1}$ as follows (cf. Okuyama [6, §3]):
First, set $A^{0}=A$. Then for $1 \leq t \leq s+1$, we define A^{t} as an endomorphism algebra of a tilting complex for A^{t-1} determined by J_{t-1} which is seen in [6, §1].

Then, we can show that A^{s+1} is isomorphic to B as k-algebras like Okuyama [$6, \S 3]$, so we obtain the main result.

References

[1] H.H.Andersen, J.Jørgensen, and P.Landrock, The projective indecomposable modules of $S L\left(2, p^{n}\right)$, Proc. London Math. Soc.(3) 46 (1983), no.1, 38-52.
[2] M.Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92.
[3] P.W.A.M. van Ham, T.A.Springer, and van der Wel, On the Cartan invariant of $S L\left(2, \mathbb{F}_{q}\right)$, Comm. Alg. 10(14) (1982), 1565-1588.
[4] M.Holloway, Derived equivalences for group algebras, Ph.D Thesis, University of Bristol (2001).
[5] T.Okuyama, Some examples of derived equivalent blocks of finite groups, preprint (1998).
[6] T.Okuyama, Derived equivalence in $S L(2, q)$, preprint (2000).
[7] J.Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456.
[8] J.Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), 37-48.
[9] J.Rickard, Splendid equivalences: Derived categories and permutation modules, Proc. London Math. Soc.(3) 72 (1996), 331-358.
[10] R.Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, Groups '93 Galway/St Andrews II (C.M.Campbell
et al., eds.), vol. 212, London Math. Soc. Lecture Note Series (1995), pp.512-523.
[11] R.Rouquier, The derived category of blocks with cyclic defect groups, Derived Equivalences for Group Rings (S.König and A.Zimmermann), vol. 1685, Springer Lecture Notes in Mathematics (1998), pp.199-220.
[12] R.Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (eds. M.J.Collins, B.J.Parshall and L.L.Scott), pp.101-146, de Gruyter, Berlin (2001).

