Nonprincipal Block of SL(2,q)

Yutaka Yoshii (吉井 豊)

Division of Mathematical Science and Physics, Chiba Univ. (千葉大学自然科学研究科)

Abstract

We shall claim that Broué's abelian defect group conjecture holds for the nonprincipal *p*-block of $SL(2, p^n)$.

1 Introduction

Let G be a finite group and P a p-subgroup of G. The next theorem is one of the most important theorems on the block theory of finite groups:

Brauer's First Main Theorem. There is one to one correspondence between the blocks of kG with defect group P and the blocks of $kN_G(P)$ with defect group P.

The correspondence is called *Brauer correspondence*. The following conjecture is our main problem:

Broué's Abelian Defect Group Conjecture. Suppose that A is a block of kG with an abelian defect group P and that B is the Brauer correspondent of A (in $N_G(P)$). Then is A derived equivalent to B?

If G = SL(2,q) where $q = p^n$, it has been proved that the conjecture is true for the principal block by T.Okuyama (see [6]). Even in the nonprincipal case, the conjecture was proved to be true for n = 2 by M.Holloway (see [4]), but it has not been known if the conjecture is true for $n \ge 3$ yet. However, it has turned out that it can be proved to be true even for $n \ge 3$ by imitating Okuyama's proof [6].

The Main Result. If G = SL(2,q) where $q = p^n$, Broué's abelian defect group conjecture is true for the nonprincipal block of kG.

We shall explain about derived equivalences. Let k be an algebraically closed field of characteristic p > 0, let A and B be finite dimensional kalgebras, mod-A the category consisting of all finite dimensional right Amodules, proj-A the full subcategory of mod-A consisting of all finite dimensional right projective A-modules, $K^b(\text{mod-}A)$ the homotopy category consisting of all bounded complexes of finite dimensional right A-modules, and $K^b(\text{proj-}A)$ the homotopy category consisting of all bounded complexes of finite dimensional right projective A-modules. We say that A is derived equivalent to B if $K^b(\text{proj-}A)$ is equivalent to $K^b(\text{proj-}B)$ as triangulated categories. The next theorem is a criterion for derived equivalence:

Theorem(Rickard [7]). The following are equivalent.

- (a) A is derived equivalent to B.
- (b) There is a complex $T^{\bullet} \in K^{b}(\text{proj}-A)$ with $B \cong \text{End}_{K^{b}(\text{proj}-A)}(T^{\bullet})$ such that

(i) $\operatorname{Hom}_{K^{b}(\operatorname{proj}-A)}(T^{\bullet}, T^{\bullet}[i]) = 0$ for any $i \neq 0$.

(ii) If $add(T^{\bullet})$ is the full subcategory of $K^{b}(proj-A)$ consisting of all direct summands of all direct sums of T^{\bullet} , then it generates the triangulated category $K^{b}(proj-A)$.

We call T^{\bullet} a tilting complex for A.

2 SL(2,q)

Set G = SL(2,q) where $q = p^n$. In this section, we shall state some facts of representations of kG. Set

$$P = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{F}_q \right\},$$
$$D = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbb{F}_q^{\times} \right\},$$

and

$$H = N_G(P) = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) \middle| a \in \mathbb{F}_q^{\times}, \ b \in \mathbb{F}_q \right\},$$

where P is a Sylow p-subgroup of G and hence is isomorphic to the elementary abelian group $C_p \times \cdots \times C_p$ (n times), D is isomorphic to C_{q-1} , and H is the semidirect product $P \rtimes D$.

Considering a nonprincipal block, we assume $p \neq 2$ in the rest of the article (if p = 2, kG has no nonprincipal blocks with full defect). Now we have the block decompositions $kG = A_0 \oplus A_1 \oplus A_2$, where A_0 is the principal block, A_1 is a nonprincipal block with full defect, and A_2 has defect zero, and $kN_G(P) = B_0 \oplus B_1$, where B_0 and B_1 are the Brauer correspondents of A_0 and A_1 respectively. It is well known that all nonisomorphic simple kG-modules are indexed by $\{0, 1, 2, \dots, q-1\}$, where $\{0, 2, \dots, q-3\}$, $\{1, 3, \dots, q-2\}$ and $\{q-1\}$ correspond to A_0 , A_1 and A_2 respectively, and all nonisomorphic simple $kN_G(P)$ -modules are indexed by $\{0, 1, 2, \dots, q-1\}$, where $\{0, 2, \dots, q-2\}$, where $\{0, 2, \dots, q-3\}$ and $\{1, 3, \dots, q-2\}$ correspond to B_0 and B_1 respectively (see [3] or [6]).

3 Outline of Proof

Set $\Lambda = \{0, 1, 2, \cdots, q-1\}, I = I_{odd} = \{1, 3, 5, \cdots, q-2\}$. For $\lambda \in \Lambda - \{q-1\}$, set $\sim (0, 0)$ (if $\lambda = 0$)

$$\widetilde{\lambda} = \begin{cases} 0 & (\text{if } \lambda = 0) \\ q - 1 - \lambda & (\text{if } \lambda \neq 0), \end{cases}$$

and for a subset $\Omega \subseteq \Lambda - \{q-1\}$, set $\widetilde{\Omega} = \{\widetilde{\lambda} | \lambda \in \Omega\}$. Then for any simple $kN_G(P)$ -module, $T_{\widetilde{\lambda}}$ is isomorphic to the dual module T_{λ}^* of T_{λ} , and note that " $\widetilde{\cdot}$ " is a permutation on $\Lambda - \{q-1\}$ of order 2. Moreover, we define an equivalence relation " \sim " on $\Lambda - \{q-1\}$ by

$$\lambda \sim \mu \stackrel{def}{\Leftrightarrow} ext{There exists some } j \in \{0, 1, \cdots, n-1\} ext{ such that } \lambda \equiv p^j \mu \pmod{q-1}.$$

Note that I is closed under the equivalence relation.

We define equivalence classes (with respect to " ~ ") $J_{-1}, J_0, J_1, \dots, J_s$ as follows (cf. Okuyama [6, §2]):

Let $J_{-1}, \widetilde{J_{-1}}$ be empty sets (by convention), J_0 the class containing 1, and J_i the class containing the smallest $\lambda_i \notin \bigcup_{u=-1}^{i-1} (J_u \cup \widetilde{J}_u)$ for $i \ge 1$. We repeat this procedure until s satisfies $I = \bigcup_{u=-1}^{s} (J_u \cup \widetilde{J}_u)$.

Now we can construct derived equivalent k-algebras $A^0, A^1, \dots, A^s, A^{s+1}$ as follows (cf. Okuyama [6, §3]):

First, set $A^0 = A$. Then for $1 \le t \le s+1$, we define A^t as an endomorphism algebra of a tilting complex for A^{t-1} determined by J_{t-1} which is seen in [6, §1].

Then, we can show that A^{s+1} is isomorphic to B as k-algebras like Okuyama [6, §3], so we obtain the main result.

References

- H.H.Andersen, J.Jørgensen, and P.Landrock, The projective indecomposable modules of SL(2, pⁿ), Proc. London Math. Soc.(3) 46 (1983), no.1, 38-52.
- [2] M.Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92.
- [3] P.W.A.M. van Ham, T.A.Springer, and van der Wel, On the Cartan invariant of $SL(2, \mathbb{F}_q)$, Comm. Alg. 10(14) (1982), 1565-1588.
- [4] M.Holloway, *Derived equivalences for group algebras*, Ph.D Thesis, University of Bristol (2001).
- [5] T.Okuyama, Some examples of derived equivalent blocks of finite groups, preprint (1998).
- [6] T.Okuyama, Derived equivalence in SL(2,q), preprint (2000).
- [7] J.Rickard, Morita theory for derived categories, J. London Math. Soc.
 (2) 39 (1989), 436-456.
- [8] J.Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), 37-48.
- [9] J.Rickard, Splendid equivalences: Derived categories and permutation modules, Proc. London Math. Soc.(3) 72 (1996), 331-358.
- [10] R.Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, Groups '93 Galway/St Andrews II (C.M.Campbell

et al., eds.), vol. 212, London Math. Soc. Lecture Note Series (1995), pp.512-523.

- [11] R.Rouquier, The derived category of blocks with cyclic defect groups, Derived Equivalences for Group Rings (S.König and A.Zimmermann), vol. 1685, Springer Lecture Notes in Mathematics (1998), pp.199-220.
- [12] R.Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (eds. M.J.Collins, B.J.Parshall and L.L.Scott), pp.101-146, de Gruyter, Berlin (2001).