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THE DRINFELD CENTER OF THE
CATEGORY OF MACKEY FUNCTORS

D. TAMBARA
FHERRAr

Department of Mathematical Sciences, Hirosaki University

BART R BB

We determine the center of the tensor category of Mackey functors for a finite
group. Details are in [5].

1. The center of a tensor category

The center of a tensor category was defined by Drinfeld, Joyal and Street ([3]),
and Magid ([4]). We review the definition. Let .4 be a tensor category over a field.
The tensor product of objects A, B € A is denoted by A ® B, and the unit object
of A is denoted by I.

The center Z(.A) is a category defined as follows. An object of Z(.A) is a pair
(A, ), where A € A and 6 is a family of isomorphisms g: B® A — A® B for all
B € A satisfying the conditions

0pep = (0B®1)o(1®6p) forall B,B € A,
0 =1. ‘ :

A morphism (4,0) — (A’,0’) of Z(A) is a morphism f: A — A’ of A satisfying

(f®1)ofp =650(1® f) forall Bc A

2. Mackey functors

We review the definition of a Mackey functor ([1], [2]). Let G be a finite group.
Denote by S the category of finite G-sets. For X,Y € S, we write the direct product
X xY as XY, and the disjoint sum of X and Y as X +Y. Let k be a field. Denote
by V the category of vector spaces over k.

A Mackey functor M on S consists of k-vector spaces M(X) for all G-sets X and
linear maps f.: M(X) — M(Y) and f*: M(Y) — M(X) for all G-maps f: X - Y
satisfying the following conditions:

(i) M(X) and f, form a functor S — V.

(ii) M(X) and f* form a functor S°° — V.
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(iii) For a pullback diagram

x 2?2, x

| K

Y — Y/

in 8, the diagram
M(X) «2— M(X')

| |7

M(Y) —— M(Y")

is commutative. '
(iv) Let 4;: X3 — X1 + X3 and i2: Xa — X; + X2 be the inclusion maps in S.
Then the maps

(2'1,..,2'2..): M(X]) (4] M(Xz) — M(Xl + X2),
(11,43): M(X1 + X3) — M(X,) © M(X2)

are inverse to each other.
(v) M(0) = 0.
The category of Mackey functors on S is denoted by M(S).

We use the following fact later. If M is a Mackey functor and i: Y — X is a
monomorphism in S, then the composite

M(Y) <5 M(X) 5 M(Y)
is the identity. So the composite
M(X) -5 M(Y) 25 M(X)

is an idempotent endomorphism.

The category M(S) is a tensor category. Its tensor product is defined as follows.
Let M,M’', M" € M(S). A bilinear morphism ¢: (M, M’) — M" is a family of
linear maps ¢x,y: M(X)®M'(Y) - M"(XY) which commute with f, and f* for
the both variables X,Y. Given M, M’ € M(S), there exists a bilinear morphism
(M, M') — M, which is universal among all bilinear morphisms (M, M') — M".
We define My =M Q@ M'.

If C is a category with pullbacks and sums, Mackey functors on C are similarly
defined. We denote by M(C) the category of Mackey functors on C. '



144

3. The main result

We define a category 7c«. An object of T¢, is a pair (X,a) of X € S and
an automorphism a: X — X of S such that a leaves all G-orbits in X stable.
A morphism (X,a) — (X’,a’) of T, is a morphism f: X — X' of S such that
foa=adof.

The category T.. has pullbacks and sums, so the category M(7¢.) is defined.

A construction of pullback in 7¢. is as follows. Given a diagram

(Y,b)

!

(X’ a) —_— (Z,C)

in T, form a pullback
W ——Y

[

X — 7
inS. Themapsa: X - X and b: Y — Y induced: W — W. Put

V =|J{U | U is a G-orbit in W, d(U) = U}

and e = d|V. Then
(Vie) — (1}))

! l

(X,a) —— (Z,¢)

is a pullback in 7c..

Our result is
Theorem. An equivalence of categories Z(M(S)) ~ M(Tz.).

By definition an object of Z(M(S)) is a pair (M, ) of M € M(S) and a family
6 of isomorphisms Oy : M' @ M — M @ M’ for all M’ € M(S) satisfying certain
conditions. We may also regard an object of Z(M(S)) as a pair (M,w) of M €
M(S) and a family w of isomorphisms wx,y: M(XY) — M(YX) for all X,Y € S
satisfying (i)—(iii): v

(i) wx,y is natural in X,Y.

(ii) The diagram

M(XYz) “X¥ M(YZzZX)

wXY,z \‘ le,ZX

N(ZXY)
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commutes for all X,Y,Z € S.
(iii) w1,x = 1 for a one-element G-set 1.

The equivalence of the theorem is given as follows. Let (M,w) € Z(M(S)). For
- an object (X, a) € T.., define L(X, a) as the pullback

L(X,a) — M(X)
l(a,l).
! M(XX)

MX) > MXX)

where (a,1): X — XX is the map z — (a(z),z), and (1,1): X — XX is the
diagonal map. Then the assignment (X,a) — L(X,a) becomes a Mackey functor
- L on T.,. The functor (M,w) — L gives the equivalence Z(M(S)) ~ M(7..).

4. Outline of the proof
The equivalence of the theorem is obtained as the composite of equivalences

Z(M(S)) SM(S S)S ~ MO(W’) (';) M(cht) — M(T;:*)
We will sketch each equivalence in order.

(1) Z(M(S)) ~ sM(S, S)s.
A bi-Mackey functor N on S consists of vector spaces N(X,Y) for all G-sets X
and Y, and linear maps

(fr9)«: N(X,Y) - N(X',Y"),
(£,9)": N(X',Y') - N(X,Y)
for all G-maps f: X — X' and g: Y — Y’ satisfying (i)—(ix):
(i) The collection of N(X,Y) and (f, g). forms a functor S x S — V.

(ii) The collection of N(X,Y) and (f,g)* forms a functor S°° x S°P — V.
(iii) For G-maps f: X — X’ and g: Y — Y, the diagrams

NxY) 2 Nxy)y  NxYy) &2 Nxey)

wor| TJaor aa.| |-

N(X,Y') —— N(X',¥')  N(X,Y') = NXY)
y*

’ »

are commutative.
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(iv) If

is a pullback diagram, then

N(Xy,Y) 22 N(x,Y)

<p,1>'I [

N(X3,Y) '<_""—’ N(X2,Y)

231/

is commutative.

(v) The analogue of (iv) for the second variable.

(vi) Let 41: X3 — X1+ X3, i3: X3 — X1 + X, denote the inclusion maps. Then
the maps

({%1,1)u, (i2,1)a): N(X1,Y) & N(X2,Y) — N(X; + X,,Y),
((ih 1>*, (7:2’ 1)*): N(Xl + XZaY) — N(XI)Y) D N(XZaY)

are inverse to each other.

(vii) The analogue of (vi) for the second variable.

(viii) N(@,Y) = 0.

(ix) N(X,0) = 0.

A bi-Mackey functor on S with two-sided action is a bi-Mackey functor N on S
equipped with maps

Z!: N(X,Y) » N(ZX, ZY),
1Z: N(X,Y) = N(XZ,YZ)

for X,Y, Z € S satisfying (i)—(ix):
(i) For G-maps f: X - X' and g: Y - Y, the diagrams

Nx,y) X2, Ny

2] iz

N(XZ,YZ) — N(X'Z,Y'Z)
(1£,19)«
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and ' .
NXx,Y) 27 Ny

4| |12

N(XZ,YZ) ——— N(X'2,Y'Z)
(1f,1g)*
are commutative.
(ii) For G-map h: Z — Z', the diagrams

NXY) 2 NX2ZYZ)

7| | |aam.

N(XZ2'YZ o N(X2z,YZ)
1 ,1)*

“and \
N(X,Y) —Z- N(X2,YZ2)

!z'l l(lh,lh

N(XZ,, YZ’) W N(XZ,, YZ)

are commutative.
(iii) The diagram
NXx,Y) 4  N(X2zYZ)
(Z2') \ iz
N(XZzZ'\YZZ')

is commutative.
(iv) For a one-element G-set 1,

n1: N(X,Y) - N(X1,Y1)

is the identity.
(v)—(viii) The analogue of (i)-(iv) for Z!.
(ix) The diagram .

N(X,Y) —Z. N(ZX, 2Y)

!Wl 1!W

N(XW,YW) —— N(ZXW,ZYW)

is commutative.

- The category of bi-Mackey functors on S with two-sided action is denoted by
SM(S’ 8)8
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Proposition. We have an equivalence Z(M(S)) ~ sM(S,S)s.

This equivalence takes an object (M,w) € Z(M(S)) to an object N € sM(S,S)s
defined as follows. For X,Y € §

N(X,Y) = M(XY).

The operation
1Z: N(X,Y) » N(XZ2,YZ)

is the composite

M(xY) 2 M(xyz) M Mxyzz) T M(x2zY 2),
where A: Z — ZZ is the diagonal map and 7: YZ — ZY is the transposition.

The operation
Z\: N(X,Y)—> N(ZX,ZY)

is the composite
MxY) " mzxy) AR M(zzxy) 223" M(zxY 2) YD M(Z2Xx ZY).

(2) sM(S,S8)s ~ Mp(W').
Let W be the category whose objects are diagrams
U
X < N Y
N S

v
of G-sets such that the induced maps U — XY, V — XY are injective, and
morphisms are natural ones. This has pullbacks and sums, so one has the category
M(W') of Mackey functors on W'.

Suppose that (M,w) € Z(M(S)) corresponds to N € sM(S, S)s under the equiv-
alence (1). Let '

v
As noted after the definition of a Mackey functor, the injection V' — XY determines
an idempotent endomorphism on M(XY). As M(XY) = N(X,Y), this is an
idempotent endomorphism on N(X,Y), which we denote by

(X —V oY)

Similarly the injection U — Y X determines an idempotent endomorphism on
M(YX). Through the isomorphism wx,y: M(XY) — M(YX) and M(XY) =
N(X,Y), this yields an idempotent endomorphism on N(X,Y), which we denote
by

el (X «U - Y).
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Lemma. The idempotent endomorphisms eX/(X — U —Y) and e®(X « V - Y)
on N(X,Y) commute with each other.

We set
HX)=Ime!/(X —«U -Y)NImeR(X —V - Y)

Then the assignment X — H(X) becomes a Mackey functor H on W'. We thus
obtain a functor

sM(S,8)s = M(W')
N — H,

This is fully faithful. To describe its image, we define a full subcategory My(W')
of M(W').

An object of Mo(W') is an object H of M(W') which satisfies (i)—(viii):

(i) Suppose that

U1+U2
< N\
X=X Y
N/
14
is an object of W’. Put
U, U,
v \. ./ N
Xi=lXx , Xo= Y
1 N / Sl RN

| %4
and let i;: X; — X, i3: X3 — X be the natural injections. Then the maps

(il*,iz*): H(X]) EBH(Xz) — H(X),
(i1, i3): H(X) — H(X,) ® H(X2)

are inverse to each other.
(ii)
0

PN
=0.
SEN /Y

(iii) The analogue of (i) for the V-component.
(iv) The analogue of (ii) for the V-component.
(v) Let
Uy U,

X, = / Ny X, = Xz/
'\ /‘ AN
i ' Va

\Y
;
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be objects of W'. Put
Ui+ Uz
X = X1+X2/ \Y
‘ N/

i+ V,
and let j;: X; — X, j2: X2 — X be the natural injections. Then the maps

(ji*’th): H(XI) & H(XZ) — H(X),
(7,391 B — H(X;) © H(X,)

are inverse to each other.
(vi) The analogue of (v) for the Y-component.
(vii) Let
v b
X < \Y
c,\ / d

|4

be an object of W'. Let

1 (c1,d1) UU

L e
V — XY
(e,d).

be a pullback. Put
1 v 1
U=|U < \U
01\ /d1
| %1

and

Then the maps

a,.: H(U) - H(X),
a": H(X) —» H(U)

are inverse to each other.
(viii) The analogue of (vii) for the V-component.

The functor sM(S,S)s — M(W') constructed before has the image My(W'),
and yields
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Proposition. An equivalence sM(S,S)s ~ Mg(W').

(3) MO(WI) M(ch*)
Let Wi, be the full subcategory of W’ consisting of finite sums of diagrams

/\.

X\/

in which X,Y,U, V are transitive G-sets and the four arrows are isomorphisms.
Lemma. The inclusion functor Wic. = W' has a right adjoint.

Denote the inclusion Wi, — W' by ¢ and a right adjoint by R.
Proposition. We have an equivalence Mo(W') ~ M(Wic.).

Under the equivalence objects H € My(W') and K € M(Wic«) correspond if

H=2KoR, K=Hoi.

(4) M(Wica) >~ M(Z¢.). i
An object of the category T¢. is a pair (X,a) of X € § and an automorphism
a: X — X such that a leaves all G-orbits stable. The funqtor

. X
N\
Xl'\ e 1X
X

(X,a) —

gives an equivalence 7c. =~ Wjc.. This yields
Proposition. An equivalence M(Wic.) ~ M(7..).
Combining (1)-(4), we obtain Z(M(S)) ~ M(7c,).
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