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Abstract

In this paper, we addraes an approximate $\epsilon o1_{11}tion$ of a $probabilis\cdot tically$ cootrained $\infty nvex$

program (PCCP), where a $\infty nvex$ objective $h_{1}nction$ is $minin\dot{u}zed$ over solutions $sati\alpha fying$,
with agiven probabihty, convex cootraints that aoe parameterized by random variableg.
In order to approach to a $801_{11}tion,$ we $\Re t$ forth a $con\epsilon ervative$ approximation problem by
introducing aparameter $\alpha$ which $indicat\infty$ an approximate ucllracy, and formulate it $a\epsilon$ a
D.C. optimization problem.

A8 an example of the PCCP, the $Valu\triangleright at- Ri_{8}k(VaR)$ minimization is comidered $\iota mder$

the assumption that the Illlpport of the probabihty of the $fl_{\mathfrak{l}}\Re ociated$ random $10\epsilon\epsilon$ is given by
afinitely large number $of_{\mathfrak{X}}ena\dot{n}os.$ It $i\epsilon ad_{V 1}ntag\infty u\epsilon$ in aolving the $D.C.$ optimization that
the ntlmbers of variable\epsilon and cootrainttI are independent of the nllmber of $8oenario\epsilon$, and a
simplicial branch-and-bound algorithm is $p_{08}ed$ to find a $\infty lution$ of the D.C. optimization.
$N_{11mericalexperiment\S dem\circ n\epsilon tratethef\circ u_{owing:}}(i)$ by $Muf;ting$ aparameter $\alpha,$ the pro-
$po\Re d$ problem can achieve asmaUer $VaR$ than the other convex aPproximation $approa\bm{t}e\epsilon$ ;
$(\ddot{u})$ when the number of $\epsilon cenariosi\epsilon$ large, atypical $0\cdot 1$ mixed integer formtation for the $VaR$
$\min\dot{u}$nization cannot be solved in areuonable time and the improvement of the incumbent
$va1_{11}e\epsilon$ is \S low, wherew the propoeed method can uhieve agood \S olution.

$KeyWords:$ chance $con8tra\dot{m}t,$ $D.C.$ optimization, branch-and-bound, $m1u\triangleright at- ri_{f}km\dot{\bm{o}}$i-
mization, probabbtically $co\iota 1\epsilon tr\dot{u}ned$ Program.

1 Introduction

In this paper, we consIder an approach to a solution of the probabilistically constrained convex
program (PCCP), in which a convex objective function is minimized over constraints including
a probabilistic constraint which imposes that the solution would satisfy a designated portion of
given convex constraints. Since Charnes, Cooper and Symonds [5] introduced a model involving
probabilstic constraints, enormous number of such models have been studied (e.g., [9, 13]), and
most of them are in the fom of the PCCP.
$\overline{*This}$artlcle is the digoet verdon of[$\eta$ , and refer to [7] for detailed explanation.
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Many methods have been proposed to solve general PCCP problems, and they can be roughly
classified into three types: (a) nonlinear Programming methods (see [6] for references), (b) sce-
nario approximation based on Monte Carlo sampling techniques (e.g., [3, 4]), and (c) conservative
aPproximation (e.g., [1, 2, 10, 11]). The type (c) $approach\propto$ build an altemative tractable opti-
mization problem whose feasible set is contained in that of the PCCP. In particular, Nemirovski
and Shapiro [11] consider a convex conservative approach to the general PCCP. However, such a
conservative approach faces a criticism that the solution is excessively conservative. For exam-
ple, in the numerical illustration of [11], although a solution is allowed to take up to 5% of the
associated probability, the obtained solution achieves only less than 1%, which indicates that
the solution was too conservative to be a good approximation for the global optimality of the
original problem.

In this raeearch, motivat\’e by [11], we cooider acooervative approximation approach to
the PCCP, and apply it to the minimization of the $Valu\triangleright at- Risk(VaR)$ of afinancial portfolio
by employing $determini_{8}tic$ global optimization algorithms. By introducing aparmeter which
$indicat\infty$ the conservativenaes (or, equivalently, approximation accuracy), the $r\infty \bm{t}ting$ problem
has anonconvex feasible region rePre8ent\’e by the differenoe of two convex set8, or an $in\eta ual-$

$itycon8tra\dot{\bm{o}}t$ whose Ieft-hand side is given by the differenoe of two convex functions. These
formulatioo are known as the D.C. formulation, and several global or local solution algorithm8
have been develop\’e ($8ae$ ffiy [15], for example). Many of $D.C.$ algorithms can achieve aglob-
ally optimal solution in practical time oty when the number of $varIabl\infty$ associat\’e with the
nonconvexity $i8$ relatively smag ([8]). Anice point of the propoeed $D.C.$ fomulation is that
the degroe of the nonconvexIty is almost independent of the number of scenarioe, which con-
trasts with the fact that the typical $MIP$ fomulation requirae 0-1 $variabl\infty$ with the number of
$s\infty narios$ . Abranch-and-bound algorithm is pos\’e to solve the nonconvex progr$m,$ $rd$ some
comparative computational $r\propto ults$ will be given, praeenting the perfomance and iaracteristioe
of the $prop\propto ed$ algorithm.

The rest of the paper is organized as follows. In Section 2, the convex conservative ap-
proximation of [11] is briefly explained, and a new conservative approximation is introduced.
Section 3 explains the VaR minimization and presents the formulation of the proposed conser-
vative aPproximation. Section 4 is devoted to a $branch-and$-bound algorithm for solving the
new aPproximation problem of the VaR minimization. Also, a remark will be provided on the
application of an outer aPproximation algorithm. In Section 5, computational experiment8 are
proeent\’e, showing the comparative superiority of the proposed approach.

2 Probabilistically Constrained Convex Program and $\alpha$-Conservative
Approximation

In this section, we first formulate the probabilistically constrained convex program and next
introduce its a-conservative aPproximation problem.
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2.1 $\alpha$-conservative aPproximation problem of PCCP

A probabilistically constrained convex program (PCCP) is formulated as the following optimiza-
tion problem:

(PCCP) $|^{\min imize}subjecttoae\in R^{\hslash}$

$Prob\{g(x,\tilde{\xi})>0\}x\in Xf(x)\leq 1-\beta$

,
(1)

where

$x$ : decision variable, $x\in R^{n}$

$X$ : closed convex set which represents a feasible set of $x,$ $X\subseteq R$“

$f$ : objective function which is assumed to be convex in $x,$ $f:R^{n}arrow R$

$\tilde{\xi}$ : $d$ dimensional real random vector (tilde (“‘) denotes random variables)
$\Xi$ : support of random variable $\xi,$ $\Xi\subseteq R^{d}$

Prob : probability measure, $Prob\{F\}$ denotes probability of an event $F$

9 : function which is convex in $x$ for any fixed $\tilde{\xi}\in\Xi,$ $g:R^{n}xR^{d}arrow R$

$\beta$ : user-defined parameter for representing a confidence level, $\beta\in(0,1)$

and the constraint

$VP(x)$ $:=Prob\{g(x,\xi)>0\}\leq 1-\beta$ (2)

is referred to as the probabihstic constraint or the chance constraint, and the left-hand side of
the constraint is called the violation probabihty. Intuitively, this constraint forces $g(x,\xi)$ to be
non-positive with probability $\beta$ . The function 9 is here assumed to be scalar-valued without loss
of generality. Indeed, if the probabilistic constraint is repraeent\’e as $Prob\{g_{i}(x, \xi)\leq 0,$ $\forall i=$

$1,$ $\ldots,\ell$} $\geq\beta$ , and the functions $g_{i}$ are convex in $x$ for any fixed $\tilde{\xi}$, then this can be converted
into a constraint (2) by putting $g(x,\tilde{\xi})$ $:= \max\{g_{i}(x,\tilde{\xi})|i=1, \ldots, \ell\}$ .

Though functions $f$ and 9 are convex in $x$ (for any fixed $\xi$), this problem has nonconvex
feasible region in general, and consequently, is intractable as mentioned in Introduction. In
particular, it may have multiple local minima when the support of the associated probabilities is
given by a flnite set of scenarios. In order to tame such a difficulty arising from the nonconvexity,
Nemirovski and Shapiro [11] introduce a convex conservative aPproximation, $pr\infty enting$ a convex
optimization problem which provides a feasible solution of the original problem (1). Although
their approach enjoys the convex structure, the distance to the original problem (1) is not clear.
In this paper, we extend the conservative approach by relinquishing to keep convexity, and next
explain the approach to PCCP (1).
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In [11], an conservative constraint of the form

$\inf\{tE[\psi(\frac{1}{t}g(x,\xi))]-t(1-\beta)|t>0\}\leq 0$ (3)

is adopted in place of the probabilistic constraint (2) of Problem (1), and this is shown to
be a convex conservative constraint in $x$ . Though the left-hand side of the constraint (3) is
represented via an optimization over $t>0$ , the resulting conservative approximation problem
can be solved via an one-level (nonlinear) convex optimization due to the convexity:

$| \min_{\approx,t}imizef(x)$ subject to $x\in X,$ $t E[\psi(\frac{1}{t}9(x,\tilde{\xi}))]-t(1-\beta)\leq 0,$ $t\geq 0$ . (4)

A criticism of this approach focuses on the fact that the obtained solution can be too conser-
vative in tems of violation probability $VP(\cdot)$ , that is, it can provide a solution with violation
probabihty much smaller than $1-\beta$ . In order to overcome this drawback, they propoee a
strategy of iteratively solving this problem by replacing $\beta$ with a smaller value $\beta^{-}$ in (4) until
the violation probabihty will become as close as $1-\beta$ . Although this strategy may succeed in
finding a feasible solution to the original problem(1) with higher violation probability, there is
a possibility that the obtained objective value has much larger than the optimal value of the
original problem (1).

In contrast to their strategy, we below introduce a new approximation approach to Problem
(1). For a parameter $\alpha>0$ , let us define $\Psi_{\alpha}$ : $Rarrow R$ by

Figure 1: Graphs of $\Psi_{\alpha},$ $\Phi_{\alpha,1}$ and $\Phi_{\alpha,2}$ .

$\Psi_{\alpha}(z)$ $:=\Phi_{\alpha,1}(z)-\Phi_{\alpha,2}(z)$ ,

where

$\Phi_{a,1}(z)$ $:= \max\{0,1+\frac{1}{\alpha}z\},$ $\Phi_{\alpha,2}(z)$ $:= \max\{0,$ $\frac{1}{\alpha}z\}$ . (5)
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For a scalar valued random variable $\tilde{Z}$ , one then has

$E[\Psi_{\alpha}(\tilde{Z})]\geq E[1_{[0,+\infty)}(\tilde{Z})]=Prob\{\tilde{Z}\geq 0\}\geq Prob\{\tilde{Z}>0\}$ ,

where $E[\cdot]$ is the mathematical exp$e$ctation operator, and $1_{A}$ : $Rarrow\{0,1\}$ is the indicator
function of a set $A$ , i.e.,

$1_{A}(z)$ $:=\{\begin{array}{ll}1 if z\in A0 if z\not\in A.\end{array}$

From this relation, by taking $\tilde{Z}=g(x,\tilde{\xi})$ , it is clear that

$\{x\in R|E[\Psi_{\alpha}(g(x,\xi))]\leq 1-\beta\}\subseteq\{x\in R^{n}|VP(x)\leq 1-\beta\}$ .

Consequently, we obtain an another conservative approximation problem:

(CAP $(\alpha)$ ) $|^{\ovalbox{\tt\small REJECT} e}subjaettox\in R^{n}$

$E[\Psi_{\alpha}(g(x,\tilde{\xi}))]x\in Xf(x)=E[\Phi_{\alpha,1}(g(x,\tilde{\xi}))]-E[\Phi_{\alpha,2}(g(x,\tilde{\xi}))]\leq 1-\beta$

.
(6)

We refer to this problem as $\alpha$ -conservative aPpmnimation problem of (1), and the new constraint
as $\alpha$ -conservative apprormation constraint of (2). It should be noted that both $E[\Phi_{\alpha,1}(g(x,\xi))]$

and $E[\Phi_{a,2}(g(x,\tilde{\xi}))]$ are convex in $x$ since both $\Phi_{\alpha,1}$ and $\Phi_{\alpha,2}$ are nondecreasin$g$ convex func-
tions, and $ac\infty rd\dot{m}$gly, $E[\Psi_{\alpha}(g(x,\tilde{\xi}))]$ is a D.C. function and Problem (6) is a D.C. optimization
problem, for which several global optimization algorithms have been developed (e.g. Tuy [15]).

3 Portfolio Selection via Value-at-Risk Minimization

In this section, we fomulate the minimization of the Value-at-Risk $(VaR)$ of a financial asset
portfolio as an example of the PCCP.

The VaR minimization of a financial asset portfolio is to determine the amount of investment
(or investment ratio) to $N$ kin$ds$ of financial assets so that it achieves the ninimum $\beta-VaR$ , which
is defined as the -quantile of the loss distribution of the portfolio. Fomally, it is fomulated
as the following optimization problem:

$|^{(oe,m)\in R^{N}xR}subjaettom\dot{\bm{o}}imize$

$mProb\{x^{T}\tilde{y}-m>0\}\leq 1-\beta x\in.X$ (7)

where
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$x$ : investment ratio to $N$ kinds of financial assets (decision variable), $x\in R^{N}$

$m$ : VaR (decision variable), $m\in R$

$X$ : set of feasible portfolio $x,$ $X\subseteq R^{N}$

$\tilde{y}$ : $N$ dimensional random vector representing the loss associat$ed$ with the financial assets
$\beta$ : confidence level, $\beta\in(0,1)$ .

The random loss $\tilde{y}$ is sometimes defined as $(-1)x$ (rate of return),“ and besides, the Probabbtic
constraint in Problem (7) $imp\propto oe$ that the probability of the portfolio loss being greater than
$m$ is no more than $1-\beta$ .

In the rest part of the paper, we assume that the support of the random loss $\tilde{y}$ is given by
a finite set of scenarios $\{y^{*}\}_{e\in S}$ , and let

Assumption 1 $p_{*};=Prob\{\tilde{y}=y^{l}\}$ , where $\sum_{\in S}p_{l}=1$ and $p_{*}>0$ for all $s\in S$, and $|S|<\infty.\star$

It is worth noting that this assumption is practical especially when the scenarios are generated
from a (non-nomal) distribution. Rrthemore, we assume the following:

Assumption 2 The feasible rqion $X$ of $x$ is a polytope. $\star$

This assumption seems reasonable since the constraints $1^{T}x=1$ and $x\geq 0$ are included in
many practical situations, and many other constraints are $repr\propto entable$ by linear inequalities.

The most typical way to an exact solution of Problem (7) is to equivalently fomulate it as
a 0-1 mixed integer program;

$|(ae,m,u)\in R^{N}xRxR^{|s|}mi\dot{m}mizesubjaetto$
$x^{T}y^{l}x \in X\sum_{\epsilon\in S}^{m}p_{l}u_{l}\leq 1-\beta-m\leq\overline{M}u_{\iota},$

$u_{\epsilon}\in\{0,1\}$ , $\forall s\in S$,

(8)

where $\overline{M}$ is asufficiently large number satisfying $\overline{M}>\max\{x^{T}y^{l}|x\in X, s\in S\}-$ mm$\{x^{T}y^{l}|x\in$

$X,$ $s\in S$}. It should be noted that the number of kl variables $u_{l}$ is equal to that of scenarios,
i.e., $|S|$ .

In the following sections, we consider the $\alpha$-conservative approximation of Problem (7) under
Assumptions 1 and 2.

$|(x,m)\in R^{N}xRminimizesubjaetto$

$x \in X\sum_{a\in S}^{m}p_{l}\Phi_{\alpha,1}(x^{T}y^{\iota}-m)-\sum_{\iota\in S}p_{*}\Phi_{\alpha,2}(x^{T}y^{l}-m)\leq 1-\beta$

.
(9)
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4 Global Optimization Algorithms

In this section, a simplicial branch-and-bound algorithm is presented for computing a globally
optimal solution of Problem (9). Also, a remark on application of an outer approximation
algorithm will be provided.

4.1 Simplicial $Branch-and$-Bound Algorithms

By denoting

$h^{D}(x,m):= \sum_{\epsilon\in S}p_{\iota}\Phi_{\alpha,1}(x^{T}y-m)$
,

$h^{C}(x,m):= \sum_{\iota\in S}p_{*}\Phi_{\alpha,2}(x^{T}y^{l}-m)$,

Problem (9) can be rewritten as

$|(x,m)\in R^{N}xRminimizem$ subject to $x\in X,$ $h^{D}(x,m)-h^{C}(x,m)\leq 1-\beta$ . (10)

Let $M\subset R^{N+1}$ be a simplex, and let $\{v^{M,1},v^{M,2}, \ldots,v^{M,N+2}\}$ be a set of vertices of $M$ . For
$M$ , we consider

$(RSP(M))|^{\min imize}subjectto\lambda\in R^{N+3}$

$h \sum_{N+2}^{N+2}\lambda_{*}\cdot v_{N}^{M}\sum_{=:_{D}1}^{i--1}\lambda.\cdot v^{M,i}\in Xx[m_{L},m_{U}],\lambda\geq 0,$

$1^{T} \lambda=1(\sum_{:=1}^{1}\lambda.v^{M,i})-\sum_{=1}^{N+2}\lambda_{1}h^{C}(v^{M,i})\leq 1-\beta N+2\dotplus.’$
(11)

where $m\iota$ and $m_{U}$ are, respectively, lower and upper bounds on the optimal objective value of
Problem (10).

It is easy to see that $RSP(M)$ is a relaxed subproblem of Problem (10) over a simplex $M$ ,
providing a lower bound on the objective value of Problem (10) over $M$ . Technically, $m_{L}$ can
be computed via an algorithm of Pang and Leyffer [12], for example, and $m$ of any feasible
solution $(x,m)$ can be employed as $m_{U}$ , whereas, in the experiments reported in Section 5, we
used sufficiently small and large numbers as $m_{L}$ and $m_{U}$ , respectively.

The $\dot{\bm{o}}$itial simplex $M_{0}$ is set up so that $M_{0}\supseteq Xx[m_{L}, m_{U}]$ and an optimal solution of
Problem (10) is contained in $M_{0}$ . For such $M_{0}$ , we solve $RSP(M_{0})$ , obtaining a lower bound
on the optimal value of Problem (10). It should be noted that one can easily find a feasible
solution of Problem (10) if any $x\in X$ is available because, for any $x\in X$ , sufficiently large
$m$ satisfies the D.C. inequality. In addition, due to the monotonicity of the left-hand side of
the D.C. inequality with respect to $m$ , we can find $m$ satisfying the inequality at equality and
such an $m$ can be employed as the incumbent value (i.e., the best known upper bound on the
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optimal value). We then split the simplex $M_{0}$ into two simplices $M_{1}$ and $M_{2}$ by dividing at
the middle point of the longest edge, and compute lower bounds over $M_{1}$ and $M_{2}$ by solving
$RSP(M_{1})$ and $RSP(M_{2})$ , respectively. If one of the two subproblems finds a feasible solution of
Problem (10) with objective value smaller than the incumbent, the incumbent is updated with
the better solution. If the lower bound on each simplex is no less than the incumbent value,
the corresponding simplex is discarded because such a simplex is guaranteed to have no better
solution.

In the following step of the algorithm, as long as any simplex remains to be considered, we
choose a simplex $M$ with the lowest lower bound and bisect $M$ , i.e., splt $M$ at the middle of the
longest edge, generating two simplices in place of $M$ (branching procedure). For the two simplices,
say, $M’$ and $M”$ , the lower bounds are computed by solving $RSP(M’)$ and $RSP(M”)$ . If one of
them attains a better feasible solution of Problem (10), the incumbent solution is updated by
the solution. Let $\gamma$ be the incumbent objective value, i.e., the best objective value obtained so
far. If the lower bound on a simplex $M$ is no less than $\gamma$ , we discard it from further consideration
(bounding pfocedufe). If there is no simplex to be considered, the algorithm teminates and the
global optimality is guaranteed.

4.2 On the Computation of the Relaxed Problem

In the above $branch-and$-bound scheme, each relaxed problem $RSP(M)$ on a simplex $M$ is a
convex program with a single nonlinear constraint $h^{D}( \sum_{1=1}^{N+2}\lambda:v^{M,i})-\sum_{1=1}^{N+2}\lambda_{i}h^{C}(v^{M,i})\leq 1-\beta$

where $h^{D}( \sum_{1=1}^{N+2}\lambda_{i}v^{M,i})$ is a convex and piecewise linear function in $\lambda$ .
Accordngly, we employ LP based subroutines for computing the lower bound. The first

strategy “Linear Relaxation” uses a part of linear functions which coincides with $h^{D}$ at extreme
points and the center of each simplex. This strategy provides a relaxed solution of the relaxed
problem $RSP(M)$ while the size of the resulting LP is still independent of the number of scenarios.

Another strategy “Kelly’s Method” is a straightforward application of the well-known Kelly’s
cutting plane idea. This strategy can compute the relaxed problem $RSP(M)$ in an exact manner,
and accordingly, it may deal with a number of cootraints in the order of scenarios. However,
this strategy is expected to work efficiently because it brings in needed constraints effectively,
and the efficient dual simplex algorithm can be adopted when a linear \infty otraint is added at
each iteration.

Remark 1 (On the Application of the Outer Appro rimation Method) The second approach to
solve the D.C. problem (9) is an outer approximation algorithm. By introducing a new variable
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$\pi$ , Problem (9) can be rewritten as follows;

$|(oe,m,\pi)\in R^{N}xRxRsubj\bm{r}ttominimize$

$l \in Sx\in Xm\sum_{\iota\in S}^{\iota\alpha,1(x^{T}y^{s}-m)-\pi\leq 1-\beta}\sum p\Phi p_{l}\Phi_{\alpha,2}(x^{T}y^{l}-m)-\pi\geq 0$

.

(12)

By introducing two sets in $R^{N+2}$ defined by

$D$ $:=\{(x,m,\pi)|x\in X,$ $g^{D}(x,m,\pi)\leq 0\}$ , $C$ $:=\{(x,m,\pi)|g^{C}(x,m,\pi)\leq 0\}$ ,

where $g^{D}(x,m,\pi):=h^{D}(x,m)-\pi-(1-\beta)$ and $g^{C}(x,m,\pi)$ $:=h^{C}(x,m)-\pi$ , Problm (12)
can be cooider\’e as the following D.C. program:

$|minimizexR\cross Rm$ subject to $(x,m,\pi)\in D\backslash intC$, (13)

where Int $C$ is the interior of $C$ . We apply an outer aPproximation method described in [15]
to the formulation (13). Through some preliminary computational experiment, this method is
found to be inferior to the simplicIal branch-and-bound method which is combined with several
strategies, and therefore, the explanation and experimental result of this method are omitted in
this article.

$\star$

5 Computational Experiments

In this section, we report some numerical results of the VaR min$imi_{\mathbb{Z}}ation$ algorithms. We
consider the minimization of the VaR of a portfolio consisting of five aesets where the loss $\tilde{y}_{1}$ of
asset $i$ is given as an independent random variable, and it is fomulated as the following PCCP:

$|subjectto(a,m)\in R^{N}xRminimize$
$|=10_{N} \leq x\sum_{Prob}^{m}X_{1}=1,.\sum_{=1}^{N}\mu.\cdot x_{*}\geq 1.2\{X_{1\tilde{y}_{i}-}\iota\leq 0.49,i.=1,\ldots,$

$N$

.

(14)

where $N=5$ , and $\mu_{i}$ is the expected return of $a8seti$ , and we set $\mu_{i}=1.25$ ( $i$ is odd) or 1.1 $(i$

is even). The loss scenarios of aesets 1 and 2 are generated from a Cauchy distribution where
the location of the peak of the density is $0$ , and the half-width at half-maximum is 2. On the
other hand, the loss scenarios of assets 3, 4 and 5 are generated from a unifom distribution on
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the interval $[-12.5,12.5]$ . We consider three cases 100, 1,000, 10,000 for the scenario size $|S|$ ,
and assume $p_{s};=\beta^{1}\lceil$ for all $s\in S$ .

We implemented five approaches to a solution of Problem (14): (a) the propos\’e branch-
and-bound algorithm with linear relaxation, (b) the proposed branch-and-bound algorithm with
Kelly’s method, (c) the convex aPproximation (4) by Nemirovski and Shapiro [11] using $\psi(z)=$

$\max\{0,1+z\},$ $(d)$ the CVaR minimization, (e) the typical MIP fomulation (8) to Problem
(14), and we compare these in terms of the resulting $VaR(x^{*})$ and the violation Probability
$VP(x^{*},m^{*}):=Prob\{(x^{*})^{T}\tilde{y}-m^{*}>0\}$ of the obtained solution $(x^{*},m^{*})$ . $(a)$ and (b) are the
Proposed simplicial branch-and-bound algorithms, and solve the relaxed subproblem by the two
relaxation strategies, and we set $\epsilon=0.5$ as the tolerance for optimality. Incumbent solutions
are updat\’e via the VaR evaluation rule and the subroutine for searching a feasible solution is
employed in the proposed algorithms. Detailed explanation of them is omitted in this article
for lack of space. (d) is the Conditional Valueat-Risk $(CVaR)$ minimization fomulated as the
following LP ([14]):

$|(x,m,\tau)\in R^{N}xRxR^{|S|}subjectto\ovalbox{\tt\small REJECT} e$ $\tau_{l}\geq 0,r_{l}\geq x^{T}y^{l}-mx\in Xm+\frac{1}{1-\beta}\sum_{\epsilon\in S}p_{*}r_{l}$

$\forall s\in S$.

(15)

Accordin$g$ to [14], the $\beta- CVaR$ can be approximately regarded as the conditional expectation of
the loss exceeding the $\beta- VaR$ , and for $\beta$ close to one, the $\beta$-CVaR minimizer is expected to be
similar to the $\beta-$-VaR minimizer.

All $\infty mputations$ are conducted on a personal computer with Pentium4 procaesor(3.4 GHz)
and 2 GB memory. MATLAB R2006b with optimization toolbox is employed for implement-
ing the proposed algorithms and the convex approximation, while the LP (15) for the CVaR
minimization and the MIP fomulation are solved by using $Xpr\infty\epsilon-MP$ release $2006B$ .

Tables 1 (i) to (ili) show the computational results, each table corresponding to one of
the three scenario sizes $|S|=100$ , 1,000 and 10,000. All the values show the average of five
experiments, each using different scenario set, but generated from the identical distribution
mentioned above. When $|S|=100$ , the MIP fomulation quickly achieves the VaR in an exact
manner. However, when $|S|=1,000$ and 10,000, the MIP fomulation cannot be solved withln
10 hours or results in memory shortage. On the other hand, the proposed algorithms which
attain better solutions than that of the convex approximation (c) and the CVaR minimization
(d). $Mor\infty ver$ , if aPproximation accuracy $\alpha$ is relaxed from 2 to 5, CPU time decreases sharply
whereas the difference of the achiev\’e VaRs is small. This tendency motivates us to reduce the
computation time by relaxing the approximation accuracy. When $|S|=10,0m$ , CPU time of the
proposed algorithms does not change so much compared with that in the case of $|S|=1,000$ .

It may be worth mentioning that when aPproximation wcuracy $\alpha$ is so small or the number
of aesets is larger, the Kelly’s method (b) is expected to be superior to the linear relaxation (a)
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Table 1: The $VaR$, the violation probabihty, and the computation time $(N=5)$
The column $VaR$’ displays the value of $VaR(x^{*})$ for the obtained solution $(x^{*}, m^{*})$ via each approach,
while the collimn “VP” digplays the violation probability $VP(x,m^{t}):=Prob\{(x^{*})^{T}\overline{y}-m>0\}$ .
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since the siz$e$ of branch-and-bound tree becomes larger owing to the excessIvely relaxed linear
relaxation. Besides, it is noted that the resulting VaR of the convex approximation is no less
than that of the CVaR minimization in a\"u the results.

6 Conclusion

In this paper, we construct the $\alpha$-conservative approximation problem of the Probabilistically
constrained convex program (PCCP), and show that it can be fomulated as a D.C optimization
problem. It is $advantag\infty us$ that the number of (sampled) scenarios does not affect the number
of variables or constraints while it does not hold in the MIP fomulation which requires a number
of Ol variables, each $\infty rr\infty pond_{\dot{i}}g$ to one scenario.

Although solving a genuine D.C. problem in a deteministic manner is known to be very
hard, several algorithms are shown to have a potential to solve the problem especially when the
number of variables concerned with the nonconvexity is up to ten (see, e.g., [8]).

In this paper, the simplcial $bran\bm{i}-and$-bound method which is a famous deterministic
algorithms for achieving a globally optimal solution is mainly investigated, and is applied to
the VaR minimization of a financial portfolio. Through the numerical experiments, we show
the comparative superiority of the proposed approach. Although, when the number of assets is
hundred or more, the problem clearly becomes (prohibitively) hard and this nonconvex approach
may not look appealing, it is worth noting that the number of scenarios is critical for the accuracy
of the solution, and the number of scenarios required for sufficient accuracy drastically increases
as the number of assets grows.
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