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Abstract

In this paper, we address an approximate solution of a probabilistically constrained convex
program (PCCP), where a convex objective function is minimized over solutions satisfying,
with a given probability, convex constraints that are parameterized by random variables.
In order to approach to a solution, we set forth a conservative approximation problem by
introducing a parameter a which indicates an approximate accuracy, and formulate it as a
D.C. optimization problem.

As an example of the PCCP, the Value-at-Risk (VaR) minimization is considered under
the assumption that the support of the probability of the associated random loss is given by
a finitely large number of scenarios. It is advantageous in solving the D.C. optimization that
the numbers of variables and constraints are independent of the number of scenarios, and a
simplicial branch-and-bound algorithm is posed to find a solution of the D.C. optimization.
Numerical experiments demonstrate the following: (i) by adjusting a parameter a, the pro-
posed problem can achieve a smaller VaR than the other convex approximation approaches;
(ii) when the number of scenarios is large, a typical 0-1 mixed integer formulation for the VaR
minimization cannot be solved in & reasonable time and the improvement of the incumbent
values is slow, whereas the proposed method can achieve a good solution. '

KeyWords: chance constraint, D.C. optimization, branch-and-bound, value-at-risk mini-
mization, probabilistically constrained program.

1 Introduction

In this paper, we consider an approach to a solution of the probabilistically constrained convex
program (PCCP), in which a convex objective function is minimized over constraints including
a probabilistic constraint which imposes that the solution would satisfy a designated portion of
given convex constraints. Since Charnes, Cooper and Symonds [5] introduced a model involving
probabilistic constraints, enormous number of such models have been studied (e.g., [9, 13]), and
most of them are in the form of the PCCP.

*This article is the digest version of (7], and refer to {7] for detailed explanation.
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Many methods have been proposed to solve general PCCP problems, and they can be roughly
classified into three types: (a) nonlinear programming methods (see [6] for references), (b) sce-
nario approximation based on Monte Carlo sampling techniques (e.g., (3, 4]), and (c) conservative
approximation (e.g., [1, 2, 10, 11]). The type (c) approaches build an alternative tractable opti-
mization problem whose feasible set is contained in that of the PCCP. In particular, Nemirovski
and Shapiro [11] consider a convex conservative approach to the general PCCP. However, such a
conservative approach faces a crificism that the solution is excessively conservative. For exam-
ple, in the numerical illustration of (11}, although a solution is allowed to take up to 5% of the
associated probability, the obtained solution achieves only less than 1%, which indicates that
the solution was too conservative to be a good approximation for the global optimality of the
original problem.

In this research, motivated by [11], we consider a conservative approximation approach to
the PCCP, and apply it to the minimization of the Value-at-Risk (VaR) of a financial portfolio
by employing deterministic global optimization algorithms. By introducing a parameter which
indicates the conservativeness (or, equivalently, approximation accuracy), the resulting problem
has a nonconvex feasible region represented by the difference of two convex sets, or an inequal-
ity constraint whose left-hand side is given by the difference of two convex functions. These
formulations are known as the D.C. formulation, and several global or local solution algorithms
have been developed (see Tuy [15], for example). Many of D.C. algorithms can achieve a glob-
ally optimal solution in practical time only when the number of variables associated with the
nonconvexity is relatively small ([8]). A nice point of the proposed D.C. formulation is that
the degree of the nonconvexity is almost independent of the number of scenarios, which con-
trasts with the fact that the typical MIP formulation requires 0-1 variables with the number of
scenarios. A branch-and-bound algorithm is posed to solve the nonconvex program, and some
comparative computational results will be given, presenting the performance and characteristics
of the proposed algorithm. ‘

The rest of the paper is organized as follows. In Section 2, the convex conservative ap-
proximation of [11] is briefly explained, and a new conservative approximation is introduced.
Section 3 explains the VaR minimization and presents the formulation of the proposed conser-
vative approximation. Section 4 is devoted to a branch-and-bound algorithm for solving the
new approximation problem of the VaR minimization. Also, a remark will be provided on the
application of an outer approximation algorithm. In Section 5, computational experiments are
presented, showing the comparative superiority of the proposed approach.

2 Probabilistically Constrained Convex Program and a-Conservative
Approximation

In this section, we first formulate the probabilistically constrained convex program and next
introduce its a-conservative approximation problem.
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2.1 oa-conservative approximation problem of PCCP

A probabilistically constrained convex program (PCCP) is formulated as the following optimiza-
tion problem:

minimize f(x)
zeR™ ‘
(PCCP) | subject to = € X (1)
Prob{g(w,f) > 0} <1-5,

where

x : decision variable, £ € R™
X : closed convex set which represents a feasible set of z, X CR"
f : objective function which is assumed to be convex in z, f: R®* - R
€ : d dimensional real random vector (tilde (7) denotes random variables)
E : support of random variable €, = C R%
Prob : probability measure, Prob{F} denotes probability of an event F
g : function which is convex in « for any fixed § € Z, g : R" x R® —» R

B : user-defined parameter for representing a confidence level, 3 € (0,1)

and the constraint
VP(z) = Prob{g(:z:, H>0}<1-5 (2)

is referred to as the probabilistic constraint or the chance constraint, and the left-hand side of
the constraint is called the violation probability. Intuitively, this constraint forces g(m,f ) to be
non-positive with probability 3. The function g is here assumed to be scalar-valued without loss
of generality. Indeed, if the probabilistic constraint is represented as Prob{g;(x,£) < 0, Vi =
L,...,£} > B, and the functions g; are convex in x for any fixed £, then this can be converted
into a constraint (2) by putting g(x, £) := max{gi(x,€)|i = 1, ey £}

Though functions f and g are convex in z (for any fixed f), this problem has nonconvex
feasible region in general, and consequently, is intractable as mentioned in Introduction. In
particular, it may have multiple local minima when the support of the associated probabilities is
given by a finite set of scenarios. In order to tame such a difficulty arising from the nonconvexity,
Nemirovski and Shapiro [11] introduce a convex conservative approximation, presenting a convex
optimization problem which provides a feasible solution of the original problem (1). Although
their approach enjoys the convex structure, the distance to the original problem (1) is not clear.
In this paper, we extend the conservative approach by relinquishing to keep convexity, and next
explain the approach to PCCP (1).
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In [11], an conservative constraint of the form

inf{t]E[w(%g(m,f))] —t(1 - B) lt > o} <0 3)

is adopted in place of the probabilistic constraint (2) of Problem (1), and this is shown to
be a convex conservative constraint in . Though the left-hand side of the constraint (3) is
represented via an optimization over ¢ > 0, the resulting conservative approximation problem
can be solved via an one-level (nonlinear) convex optimization due to the convexity:

(Lntl)nel%?k f(x) subject to = € X, tE[gb(%g(w,f))] -t(1-68)<0,t>0. (4)

A criticism of this approach focuses on the fact that the obtained solution can be too conser-
vative in terms of violation probability VP(-), that is, it can provide a solution with violation
probability much smaller than 1 — 8. In order to overcome this drawback, they propose a
strategy of iteratively solving this problem by replacing 3 with a smaller value 3~ in (4) until
the violation probability will become as close as 1 — 3. Although this strategy may succeed in
finding a feasible solution to the original problem (1) with higher violation probability, there is
a possibility that the obtained objective value has much larger than the optimal value of the
original problem (1).

In contrast to their strategy, we below introduce a new approximation approach to Problem
(1). For a parameter a > 0, let us define ¥, : IR — R by

(I)a,l (z),’
V4 .0°\
/ ...0'
, V4 oo @a,z (z)
/ .0‘.
L ——
‘,."0 a(2)
." z
g~

Figure 1: Graphs of ¥,, ®,; and @, 5.

Vo(z) = q:>¢:¢,1(Z) - (pa,2(z)s

where

By1(2) := ma.x{O, 1+ -é—z}, Da2(2) := max{O, éz} (5)
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For a scalar valued random variable Z, one then has
E[WQ(Z)] > ]E[l[o,+°°)(2)] = Prob{Z > 0} > Prob{Z > 0},

where E[:] is the mathematical expectation operator, and 14 : R — {0,1} is the indicator
function of a set A, i.e.,

1 ifzeA
1 =
Al2) {o if 2 ¢ A.

From this relation, by taking Z = g(zx, ), it is clear that
{z R |E[valo(@.&)] <1-8} c {=e R"|VP(z) <1-5}.
Consequently, we obtain an another conservative approximation problem:

misigiee /)
(CAP(e)) | subject to z € X (6)

E[¥a(9(,£))] = E[@a1(0(@,6)] - E[@as(s(e,)] <1- 5.

We refer to this problem as a-conservative approzimation problem of (1), and the new constraint
as a-conservative approzimation constraint of (2). It should be noted that both E [<I>c,,1 (9(=, € ))]

and E[Qa,z(g(m,é))] are convex in & since both ®,; and ®,2 are nondecreasing convex func-

tions, and accordingly, E [‘Ila(g(m,f))- is a D.C. function and Problem (6) is a D.C. optimization
problem, for which several global optimization algorithms have been developed (e.g. Tuy [15]).

3 Portfolio Selection via Value-at-Risk Minimization

In this section, we formulate the minimization of the Value-at-Risk (VaR) of a financial asset
portfolio as an example of the PCCP.

The VaR minimization of a financial asset portfolio is to determine the amount of investment
(or investment ratio) to N kinds of financial assets so that it achieves the minimum B-VaR, which
is defined as the S-quantile of the loss distribution of the portfolio. Formally, it is formulated
as the following optimization problem:

minimize m

(z,m)€ERN xR
subject to zeX (M

Prob{:nTg -m> 0} <1-5,

" where
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z : investment ratio to N kinds of financial assets (decision variable), & ¢ RN

m : VaR (decision variable), m € R

X : set of feasible portfolio z, X C RV

¥ : N dimensional random vector representing the loss associated with the financial assets

B : confidence level, 8 € (0,1).

The random loss § is sometimes defined as “(—1)x (rate of return),” and besides, the probabilistic
constraint in Problem (7) imposes that the probability of the portfolio loss being greater than
m is no more than 1 — 3.

In the rest part of the papef, we assume that the support of the random loss 3 is given by
a finite set of scenarios {y*},cs, and let

Assumption 1 p, := Prob{y = y’}, where 3 p, =1 andp, >0 for alls€ S, and |S| < 00.%
seS

It is worth noting that this assumption is practical especially when the scenarios are generated
from a (non-normal) distribution. Furthermore, we assume the following:

Assumption 2 The feasible region X of x is a polytope. *

This assumption seems reasonable since the constraints 1Tz = 1 and = > 0 are included in
many practical situations, and many other constraints are representable by linear inequalities.

The most typical way to an exact solution of Problem (7) is to equivalently formulate it as
a 0-1 mixed integer program:

minimize

(2,m,u)eRN x Rx R}
subject to zeX o
D pau.<1-8
s€S

ey’ —m < Mu,, u, € {0,1}, Vse S,

where M is a sufficiently large number satisfying M > max{z'y*|z € X, s € S} —min{z "y’ |z €
X, s € S}. It should be noted that the number of 0-1 variables u, is equal to that of scenarios,
ie., |S].

In the following sections, we consider the a-conservative approximation of Problem (7) under
Assumptions 1 and 2.

minimize m
(e,;m)eRY xR
subject to ze€ X 9)

> Ps®ai(@ Ty —m) — T pe®oa(zTy* -~ m) < 1-B.
s€S s€S
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4 Global Optimization Algorithms

In this section, a simplicial branch-and-bound algorithm is presented for computing & globally

optimal solution of Problem (9). Also, a remark on application of an outer approximation
algorithm will be provided.

4.1 Simplicial Branch-and-Bound Algorithms

By denoting

h'D(m’ m) = ZPIQQ,I(ETy. - m): hc(wym) = ZPJQO,z(zTy’ - m)a
8€S s€S

Problem (9) can be rewritten as

minimize m subject to = € X, hP(z,m) — hC(z,m) < 1- 3. (10)
(z,m)eRN xR }

Let M c RV*! be a simplex, and let {vM1, M2, oy ¥MN42} be a set of vertices of M. For
M, we consider

N+2

N M;i
N+2 _
(RSP(M)) | subject to E MivMi e X x [mr, my], A >0, 1TA=1 (11)

i=1

N+2 N+2
hD (Z /\ﬂJM’i) - Z /\ihc(”M’i) S 1- ﬂ’

i=1 =1

where my, and my are, respectively, lower and upper bounds on the optimal ob jective value of
Problem (10).

It is easy to see that RSP(M) is a relaxed subproblem of Problem (10) over a simplex M,
providing a lower bound on the objective value of Problem (10) over M. Technically, my, can
be computed via an algorithm of Pang and Leyffer [12], for example, and m of any feasible
solution (z,m) can be employed as my, whereas, in the experiments reported in Section 5, we
used sufficiently small and large numbers as mz, and my, respectively.

The initial simplex M is set up so that My 2 X X [m[, my] and an optimal sclution of
Problem (10) is contained in Mp. For such Mj, we solve RSP(Mp), obtaining a lower bound
on the optimal value of Problem (10). It should be noted that one can easily find a feasible
solution of Problem (10) if any & € X is available because, for any ¢ € X, sufficiently large
m satisfies the D.C. inequality. In addition, due to the monotonicity of the left-hand side of
the D.C. inequality with respect to m, we can find m satisfying the inequality at equality and
such an m can be employed as the incumbent value (i.e., the best known upper bound on the
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optimal value). We then split the simplex My into two simplices M; and M, by dividing at
the middle point of the longest edge, and compute lower bounds over M; and M3 by solving
RSP(M;) and RSP(My), respectively. If one of the two subproblems finds a feasible solution of
Problem (10) with objective value smaller than the incumbent, the incumbent is updated with
the better solution. If the lower bound on each simplex is no less than the incumbent value,
the corresponding simplex is discarded because such a simplex is guaranteed to have no better
solution. ‘

In the following step of the algorithm, as long as any simplex remains to be considered, we
choose a simplex M with the lowest lower bound and bisect M , i.e., split M at the middle of the
longest edge, generating two simplices in place of M (branching procedure). For the two simplices,
say, M’ and M", the lower bounds are computed by solving RSP(M') and RSP(M"). If one of
them attains a better feasible solution of Problem (10), the incumbent solution is updated by
the solution. Let -y be the incumbent objective value, i.e., the best objective value obtained so
far. If the lower bound on a simplex M is no less than <, we discard it from further consideration
(bounding procedure). If there is no simplex to be considered, the algorithm terminates and the
global optimality is guaranteed.

4.2 On the Computation of the Relaxed Problem

In the above branch-and-bound scheme, each relaxed problem RSP(M) on a simplex M is a
convex program with a single nonlinear constraint A2(3 N2 \;0MA) - TN +2 ) pC(pMiy < 1-5
where hP (Zfi"l'z AivM¥) is a convex and piecewise linear function in A.

Accordingly, we employ LP based subroutines for computing the lower bound. The first
strategy “Linear Relaxation” uses a part of linear functions which coincides with AP at extreme
points and the center of each simplex. This strategy provides a relaxed solution of the relaxed

problem RSP (M) while the size of the resulting LP is still independent of the number of scenarios.

Another strategy “Kelly’s Method” is a straightforward application of the well-known Kelly’s
cutting plane idea. This strategy can compute the relaxed problem RSP(M) in an exact manner,
and accordingly, it may deal with a number of constraints in the order of scenarios. However,
this strategy is expected to work efficiently because it brings in needed constraints effectively,
and the efficient dual simplex algorithm can be adopted when a linear constraint is added at
each iteration.

Remark 1 (On the Application of the Outer Approzimation Method) The second approach to
solve the D.C. problem (9) is an outer approximation algorithm. By introducing a new variable
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m, Problem (9) can be rewritten as follows:

minimize m
(2,;m,m)eRY xRxIR
subject to ceX

> PeBai(xTy* —m) —n <13 (12)
s€S

Y Pe®aa(xz Ty’ —m) -7 > 0.
s€S
By introducing two sets in IRV+2 defined by
D:= {(m,m, ) ' z € X, ¢°(x,m,n) < 0}, C .= {("’:m,ﬂ')lgc(w,m,ﬂ') < 0}’

where gP(z,m, ) = hP(z,m) — 7 - (1 - B) and ¢%(x,m,7) := hC(x,m) — 7, Problem (12)
can be considered as the following D.C. program:

m  subject to (x,m,n) e D\ intC, (13)

inimize
(z,mm)eRN xRxR
where int C is the interior of C. We apply an outer approximation method described in (15]
to the formulation (13). Through some preliminary computational experiment, this method is
found to be inferior to the simplicial branch-and-bound method which is combined with several

strategies, and therefore, the explanation and experimental result of this method are omitted in
this article. *

5 Computational Experiments

In this section, we report some numerical results of the VaR minimization algorithms. We
consider the minimization of the VaR of a portfolio consisting of five assets where the loss ¥; of
asset { is given as an independent random variable, and it is formulated as the following PCCP:

minimize m
(@,;m)eRN xR
subject to 0<z;<049, i=1,..,N

N N
Zx‘i:L 2"‘12;1212
i=1

i=1

(14)

N

Prob{Z zifi —m > o} <o0.1,
i=1

where N = §, and p; is the expected return of asset i, and we set p; = 1.25 (i is odd) or 1.1 (i

is even). The loss scenarios of assets 1 and 2 are generated from a Cauchy distribution where

the location of the peak of the density is 0, and the half-width at half-maximum is 2. On the

other hand, the loss scenarios of assets 3, 4 and 5 are generated from a uniform distribution on
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the interval [~12.5, 12.5]. We consider three cases 100, 1,000, 10,000 for the scenario size IS],
and assume p, := ]é-[ forall se S.

We implemented five approaches to a solution of Problem (14): (a) the proposed branch-
and-bound algorithm with linear relaxation, (b) the proposed branch-and-bound algorithm with
Kelly’s method, (c) the convex approximation (4) by Nemirovski and Shapiro [11] using (z) =
max{0, 1+ z}, (d) the CVaR minimization, (e) the typical MIP formulation (8) to Problem
(14), and we compare these in terms of the resulting VaR(z*) and the violation probability
VP(z*,m*) := Prob{(z*)Tgj — m* > 0} of the obtained solution (z*,m*). (a) and (b) are the
proposed simplicial branch-and-bound algorithms, and solve the relaxed subproblem by the two
relaxation strategies, and we set £ = 0.5 as the tolerance for optimality. Incumbent solutions
are updated via the VaR evaluation rule and the subroutine for searching a feasible solution is
employed in the proposed algorithms. Detailed explanation of them is omitted in this article
for lack of space. (d) is the Conditional Value-at-Risk (CVaR) minimization formulated as the
following LP ([14)):

. e s 1
minimize m—+4 — E T
(E,M,T)EIRNXRXIUS' 1 - ﬂ sesp‘ ¢
subject to zeX (15)

7220, T, 2 y*—m, VseS.

According to [14], the 3~-CVaR can be approximately regarded as the conditional expectation of
the loss exceeding the 5-VaR, and for 8 close to one, the 3-CVaR minimizer is expected to be
similar to the /~-VaR minimizer.

All computations are conducted on a personal computer with Pentium4 processor (3.4 GHz)
and 2 GB memory. MATLAB R2006b with optimization toolbox is employed for implement-
ing the proposed algorithms and the convex approximation, while the LP (15) for the CVaR
minimization and the MIP formulation are solved by using Xpress-MP release 2006B.

Tables 1 (i) to (iii) show the computational results, each table corresponding to one of
the three scenario sizes |$|=100, 1,000 and 10,000. All the values show the average of five
experiments, each using different scenario set, but generated from the identical distribution
mentjoned above. When |S|=100, the MIP formulation quickly achieves the VaR in an exact
manner. However, when |5|=1,000 and 10,000, the MIP formulation cannot be solved within
10 hours or results in memory shortage. On the other hand, the proposed algorithms which
attain better solutions than that of the convex approximation (c) and the CVaR minimization
(d). Moreover, if approximation accuracy « is relaxed from 2 to 5, CPU time decreases sharply
whereas the difference of the achieved VaRs is small. This tendency motivates us to reduce the
computation time by relaxing the approximation accuracy. When |S]|=10,000, CPU time of the
proposed algorithms does not change so much compared with that in the case of | S| = 1, 000.

It may be worth mentioning that when approximation accuracy o is so small or the number
of assets is larger, the Kelly’s method (b) is expected to be superior to the linear relaxation (a)
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Table 1: The VaR, the violation probability, and the computation time (N = 5)

The column “VaR” displays the value of VaR(z*) for the obtained solution (x*, m*) via each approach,
while the column “VP” displays the violation probability VP(z*,m*) := Prob{(z*) 7§ — m* > 0}.

(i) |S|=100
VaR | VP | CPU time (sec)
(a) BB with linear relaxation, a = 2 | 3.53 { 0.076 408.1
(a) BB with linear relaxation, @ =5 | 3.57 | 0.044 57.3
(b) BB with Kelly’s method, a =2 | 3.45 | 0.074 573.1
(b) BB with Kelly’s method, « =5 | 3.58 | 0.040 80.8
(c) Convex Approximation 5.18 | 0.038 0.3
(d) CVaR minimization 489 | - 0.1
(e) MIP formulation 3.24 | 0.100 2.1
(ii) {S|=1,000
VaR | VP | CPU time (sec)
(a) BB with linear relaxation, a = 2 | 4.04 | 0.070 6816.3
(a) BB with linear relaxation, « = 5 | 4.08 | 0.050 239.4
(b) BB with Kelly’s method, @ =2 | 4.03 | 0.071 6332.6
(b) BB with Kelly’s method, a =5 | 4.10 | 0.047 386.9
(c) Convex Approximation 5.26 | 0.037 0.3
(d) CVaR minimization 5.22 - 0.1
(e) MIP formulation - - over 10 hours
. (iii) |S|=10,000
_ VaR | VP CPU time (sec)
(a) BB with linear relaxation, = 2 | 4.38 | 0.073 4730.9
(a) BB with linear relaxation, a = 5 | 4.40 | 0.048 331.7
(b) BB with Kelly’s method, a =2 | 4.38 | 0.073 6539.1
(b) BB with Kelly’s method, a =5 | 4.39 | 0.050 618.5
(c) Convex Approximation 5.45 | 0.039 0.5
(d) CVaR minimization 5.45 - 0.9
(e) MIP formulation - - memory shortage
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since the size of branch-and-bound tree becomes larger owing to the excessively relaxed linear
relaxation. Besides, it is noted that the resulting VaR of the convex approximation is no less
than that of the CVaR minimization in all the results.

6 Conclusion

In this paper, we construct the a-conservative approximation problem of the probabilistically
constrained convex program (PCCP), and show that it can be formulated as a D.C optimization
problem. It is advantageous that the number of (sampled) scenarios does not affect the number
of variables or constraints while it does not hold in the MIP formulation which requires a number
of 0-1 variables, each corresponding to one scenario.

Although solving a genuine D.C. problem in a deterministic manner is known to be very
hard, several algorithms are shown to have a potential to solve the problem especially when the
number of variables concerned with the nonconvexity is up to ten (see, e.g., (8]).

In this paper, the simplicial branch-and-bound method which is a famous deterministic
algorithms for achieving a globally optimal solution is mainly investigated, and is applied to
the VaR minimization of a financial portfolio. Through the numerical experiments, we show
the comparative superiority of the proposed approach. Although, when the number of assets is
hundred or more, the problem clearly becomes (prohibitively) hard and this nonconvex approach
may not look appealing, it is worth noting that the number of scenarios is critical for the accuracy
of the solution, and the number of scenarios required for sufficient accuracy drastically increases
as the number of assets grows. ‘

Acknowledgment

Research of the first author is supported by MEXT Grant-in-Aid for Young Scientists (B)
17710125, and Dash Optimization provides Xpress-MP used in the computational experiments.

References
(1] A. Ben-Tal and A. Nemirovski, “Robust solutions of Linear Programming problems con-
taminated with uncertain data,” Mathematical Programming, 88, 411-424 (2000).
(2] D. Bertsimas and M. Sim, “Price of Robustness,” Operations Research, 52, 35-53 (2004).

[3] G. Calafiore and M. C. Campi, “Decision making in an uncertain environment: the scenario-
based optimization approach,” In Multiple Participant Decision Making, J. Andrysek, M.
Karny and J. Kracik (Eds.), Advanced Knowledge International, 99-111 (2004).

[4] G. Calafiore and M. C. Campi, “Uncertain convex programs: randomized solutions and
- confidence levels,” Mathematical Programming, 102, 25-46 (2005).



114

[5] A. Charnes, W. W. Cooper and G. H. Symonds, “Cost horizons and certainty equivalents:
an approach to stochastic programming of heating oil,” Management Science, 4, 235-263
(1958).

(6] D. Dentcheva, “Optimization Models with Probabilistic Constraints,” In Probabilistic and
Randomized Methods for Design under Uncertainty, G. Calafiore and F. Dabbene (Eds.),
Springer, London, 49-97 (2006).

[7] J. Gotoh and Y. Takano, “ a-Conservative Approximation for Probabilistically Constrained
Convex Programs,” Discussion paper, Chuo University (2007).

(8] H. Konno, P. T. Thach and H. Tuy, Optimization on Low Rank Nonconvex Structures,
Kluwer Academic Publishers (1997).

[9] L. B. Miller and H. Wagner, “Chance constrained programming with Joint constraints,”
Operations Research, 13, 930-945 (1965).

[10] A. Nemirovski, “On tractable approximations of randomly perturbed convex constraints,”
Proceedings of the 42nd IEEE Conference on Decision and Control, 3, 2419-2422 (2003).

[11] A. Nemirovski and A. Shapiro, “Convex Approximations of Chance Constrained Pro-
grams,” SIAM Journal on Optimization, 17, 969-996 (2006).

[12] J. S. Pang and S. Leyffer, “ On the Global Minimization of the Value-at-Risk,” Optimization
Methods and Software, 19, 611-631 (2004).

[13] A. Prékopa, On Probabilistic Constrained Programming, Proceedings of the Princeton
Symposium on Mathematical Programming, Princeton University Press, Princeton, 113~
138 (1970).

[14] R. T. Rockafellar and S. Uryasev, “ Conditional value-at-risk for general loss distributions,”
Journal of Banking and Finance, 26, 1443-1471 (2002).

[15] H. Tuy, Convez Analysis and Global Optimization, Kluwer Academic Publishers (1998).



