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Abstract

The core of a game $v$ on $N$, which is the set of additive games $\phi$ dominating $v$ such
that $\phi(N)=v(N)$ , is a central notion in cooperative game theory, $deci8ion$ making and
in combinatorics, where it is related to submodular functions, matroids and the greedy
algorithm. In many cases however, the core is empty, and alternative solutions have to be
found. We define the k-additive core by replacing additive games by k-additive games in

the deflnition of the core, where k-additive games are those games whose M\"obius transform
vanishes for subsets of more than $k$ elements. For a sufficiently high value of $k$ , the k-additive
core is nonempty, and is a convex closed polyhedron. Our aim is to establish $result8$ similar
to the classical results of Shapley and Ichiishi on the core of convex games (corresponds to
Edmonds’ theorem for the greedy algorithm), which characterize the vertices of the core.
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1 Introduction
Given afinite set $N$ of $n$ elements, and a set function $v:2^{N}arrow \mathbb{R}$ vanishing on the empty set

(called hereafter a game), its core $C(v)$ is the set of additive set functioo $\phi$ on $N$ such that
$\phi(S)\geq v(S)$ for every $S\subseteq N,$ and $\phi(N)=v(N).$ Whenever nonempty, the core is a convex
closed bounded polyhedron.

In many flelds, the core is a central notion which has deserved alot of studiae. In cooperative

game thmry, it is the set of imputations for players so that no subcoalition has interaet to form

[17]. In decision making under uncertainty, where games are replaced by capacities (monotonic

games), it is the set of probability measures which are coherent with the given repraeentation of
uncertainty [18]. More on acombinatorial point of view, cores of convex games are also known

as $base$ polytopae aesociated to supermodular functioo $[12, 8]$ , for which the greedy algorithm
is known to be a fundamental optimization technique. Many studies have been done along this

line, e.g., by Faigle and Kern for the matching games [7], and cost gam\’e [6]. In game theory,

which will be our main framework here, related notions are the selectope [3], and the Shapley

value with many of its variations on combinatorial $structur\infty$ (see, e.g., [1]).

It is a well known fact that the core is nonempty if and only if the game is balanced [4]. In

the case of emptinaeS, $\bm{t}$ alternative solution has to be found. One possibility is to search for

games more general than additive onae, for example $karrow additive$ games and capacities $propo8ed$

by Grabisch [9]. $\bm{i}$ short, $k$-additive games have their M\"obius transform vanishing for subsets of

more than $k$ elements, so that $1$-additive games are just $u8ual$ additive games. Since any game
is a $k$-additive game for some $k$ (possibly $k=n$), the $k$-additive core, $i.e.,$ the set of dominating
$k$-additive games, is never empty provided $k$ is high enough. The authors have justifid this
definition in the framework of cooperative game $th\infty ry[14].$ Briefly speaking, an element of the
$k$-additive core implicitely defines by its M\"obius transform an imputation (possibly negative),

which is now defined on groups of at most $k$ players, and no more on individuak. By definition
of the $k$-additive core, the total worth $a\epsilon signed$ to a coalition will be always greater or equal

to the worth the coalition can achieve by itself; however, the precise sharing among players hae
still to be drided (e.g., by some bargaining proc\’es) among each group of at most $k$ players.

$\bm{t}$ game theory, elements of the core are imputations for players, $\bm{t}d$ thus it is natural
that they fulfill monotonicity. We call monotonic core the core $r\infty tricted$ to monotonic games

$coreisnot(capacities).$
We will sae in the sequel that the core is usually unbounded, while the monotonic

The propertiae of the (classical) core are well known, moet remarkable being the result
characterizing the core of convex gamae, where the set of vertices is exactly the set of additive
gam\’e induc\’e by maximal chaio (or equivalently by permutations on $N$) in the Boolean lattice
$(2^{N},\subseteq).$ This has been shown by Shapley [16], and later Ichiishi prov\’e the converse imphcation

[11]. This r\’eult is also known in the field of matroids, since verticae of the base poytope can
be found by a greedy algorithm.

Anatural question arisae: is it poesible to generalize the Shapley-Ichiishi $th\infty rem$ for k-
additive (monotonic) $cor\infty?$ More precisely, can we find the set of verticoe for some $sp\infty ial$

classae of gam\’e? Are they inducd by some generalization of maximd $chain\dot{s}$? The paper
shows that the answer is more complex than expected. It is possible to define notioo similar to
$P^{ermutations\bm{t}d\max imalchains,soaetogenerateverticaeofthek- additivecoreof(k+1)-}$

monotone games, araeult which is atrue generalization of the Shapley-Ichiishi $th\infty rem,$ but
this does not permit to find all vertices of the core. A full analytical description of $vertic\infty$

$s\dot{e}ems$ to be difficult to find, but we completely explicit the caae $k=n-1$ .
After a preliminary section introducing necaesary concepts, Section 3 $praeents$ our basic

ingredients, that is, orders on subsets of at most $k$ elements, and achievable families, which play
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the role of maximal chains in the classical case. Then Section 4 presents the main result on the
characterization of vertices for $(k+1)$-monotone games induced by achievable families.

2 Preliminaries
Throughout the paper, $N:=\{1, \ldots,n\}$ denotes a set of $n$ elements (players in a game, nodes of
a graph, etc.). We use indifferently $2^{N}$ or $\mathcal{P}(N)$ for denoting the set of subsets of $N$, and the set
of subsets of $N$ containing at most $k$ elements is denoted by $\mathcal{P}^{k}(N)$ , while $\mathcal{P}_{*}^{k}(N):=\mathcal{P}^{k}(N)\backslash \{\emptyset\}$ .
For convenience, subsets like $\{i\},$ $\{i,j\},$ $\{2\},$ $\{2,3\},$ $\ldots$ are written in the compact forni $i,ij,$ $2,23$

and so on.
A game on $N$ is a function $v$ : $2^{N}arrow \mathbb{R}$ such that $v(\emptyset)=0$ . The set of games on $N$ is denoted

by $\mathcal{G}(N)$ . For any $A\in 2^{N}\backslash \{\emptyset\}$ , the unanimity game centered on $A$ is defined by $u_{A}(B):=1$ iff
$B\supseteq A$ , and $0$ otherwise.

A game $v$ on $N$ is said to be:

(i) additive if $v(A\cup B)=v(A)+v(B)$ whenever $A\cap B=\emptyset$ ;

(ii) convex if $v(A\cup B)+v(A\cap B)\geq v(A)+v(B)$ , for all $A,$ $B\subseteq N$ ;

(iii) monotone if $v(A)\leq v(B)$ whenever $A\subseteq B$ ;

(iv) k-monotone for $k\geq 2$ if for any family of $k$ subsets $A_{1},$ $\ldots A_{k}$ , it holds

$v( \bigcup_{i=1}^{k}A)\geq\sum_{K\neq\emptyset}..(-1)^{|K|+1}v(\bigcap_{jK\subseteq\{1,.,k\}\in K}A_{j})$

(v) infinitely monotone if it is k-monotone for all $k\geq 2$ .
Convexity corresponds to 2-monotonicity. Note that k-monotonicity implies k’-monotonicity

for all $2\leq k’\leq k$ . Also, $(n-2)$-monotone games on $N$ are inflnitely monotone [2]. The set

of monotone games on $N$ is denoted by $\mathcal{M}\mathcal{G}(N)$ , while the set of infinitely monotone games i\S

denoted by $\mathcal{G}_{\infty}(N)$ .
Let $v$ be a game on $N$ . The Mobius transfom of $v[15]$ (also called dinidends of $v,$ see.

Harsanyi [10]) is a function $m:2^{N}arrow \mathbb{R}$ defined by:

$m(A):= \sum_{B\subseteq A}(-1)^{|A\backslash B|}v(B)$
, $\forall A\subseteq N$.

The Mobius transform is invertible since one can recover $v$ from $m$ by:

$v(A)= \sum_{B\subseteq A}m(B)$
, $\forall A\subseteq N$.

If $v$ is an additive game, then $m$ is non null only for singletons, and $m(\{i\})=v(\{i\})$ . The

M\"obius transform of $uA$ is given by $m(A)=1$ and $mi80$ otherwise.
A game $v$ is said to be k-additive [9] for some integer $k\in\{1, \ldots,n\}$ if $m(A)=0$ whenever

$|A|>k$ , and there exists some $A$ such that $|A|=k$ , and $m(A)\neq 0$ .
Clearly, l-additive games are additive. The set of games on $N$ being at most k-additive

(rasp. infinitely monotone gamae at most k-additive) is denoted by $\mathcal{G}^{k}(N)$ (resp. $\mathcal{G}_{\infty}(N)$). As

above, replace $\mathcal{G}$ by $\mathcal{M}\mathcal{G}$ if monotone games are considered instead.
We recall the fundamental following result.
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Proposition 1 $/5J$ Let $v$ be a game on N. For any $A,$ $B\subseteq N$ , with $A\subseteq B$ , we denote
$[A, B]$ $:=\{L\subseteq N|A\subseteq L\subseteq B\}$ .

(i) Monotonicity is equivalent to

$\sum m(L)\geq 0$ ,
$L\in[i,B]$

$\forall B\subseteq N$, $\forall i\in B$ .

(ii) For $2\leq k\leq n$ , k-monotonicity is equivalent to

$\sum_{L\in[A,B]}m(L)\geq 0$
, $\forall A,B\subseteq N,A\subseteq B$ , $2\leq|A|\leq k$ .

Clearly, a monotone and infinitely monotone game has a nonnegative M\"obius transform.

The core of a game $v$ is defined by:

$C(v)$ $:=$ {$\phi\in \mathcal{G}^{1}(N)|\phi(A)\geq v(A)$ , $\forall A\subseteq N$, and $\phi(N)=v(N)$ }.

A maximal chain in $2^{N}$ is a sequence of subsets $A_{0};=\emptyset,$ $A_{1},$
$\ldots,$

$A_{n-1},$ $A_{\mathfrak{n}}$ $:=N$ such that
$A\subset A_{i+1},$ $i=0,$ $\ldots,n-1$ . The set of maximal chains of $2^{N}$ is denoted by $\mathcal{M}(2^{N})$ .

To each maximal chain $C:=\{\emptyset,A_{1}, \ldots,A_{n}=N\}$ in $\mathcal{M}(2^{N})$ corresponds a unique permu-
tation $\sigma$ on $N$ such that $A_{1}=\sigma(1),$ $A_{2}\backslash A_{1}=\sigma(2),$

$\ldots,$
$A_{n}\backslash A_{n-1}=\sigma(n)$ . The set of all

permutations over $N$ is denoted by $\mathfrak{S}(N)$ . Let $v$ be a game. Each permutation $\sigma$ (or maximal
chain $C$) induces an additive game $\phi^{\sigma}$ (or $\phi^{C}$ ) on $N$ defined by:

$\phi^{\sigma}(\sigma(i))$ $:=v(\{\sigma(1), \ldots,\sigma(l’)\})-v(\{\sigma(1), \ldots,\sigma(i-1)\})$

or
$\phi^{C}(\sigma(i)):=v(A_{i})-v(A_{i-1})$ , $\forall i\in N$.

with the above notation. The following $is$ immediate.

Proposition 2 Let $v$ be a game on $N$ , and $C$ a maximal chain of $2^{N}$ . Then

$\phi^{C}(A)=v(A)$ , $\forall A\in C$.
Theorem 1 The following prvpositions are equivalent.

(i) $v$ is a convex game.

(ii) All additive games $\phi^{\sigma},$ $\sigma\in \mathfrak{S}(N)$ , belong to the core of $v$ .

(iii) $C(v)=co(\{\phi^{\sigma}\}_{\sigma\in 9^{\vee}(N)})$ .
(iv) $e$齢 (C(v)) $=\{\phi^{\sigma}\}_{\sigma\in 6(N)}$ ,

where $co(\cdot)$ and $ext(\cdot)$ denote respectively the convex hull of some set, and the extreme points of
some convex set.

$(i)\Rightarrow(ii)$ and $(i)\Rightarrow(iv)$ are due to Shapley [16], while $(ii)\Rightarrow(i)$ was proved by Ichiishi [11].
A natural extension of the definition of the core is the following. For some integer $1\leq k\leq n$,

the k-additive core of a game $v$ is defined by:

$C^{k}(v):=\{\phi\in \mathcal{G}^{k}(N)|\phi(A)\geq v(A), \forall A\subseteq N,\phi(N)=v(N)\}.$
.
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In a context of game theory where elements of the core are imputations, it is natural to consider
that monotonicity must hold, i.e., the imputation allocated to some coalition $A\in \mathcal{P}_{*}^{k}(N)$ is

larger than for any subset of $A$ . We call it the monotone k-additive core:

$\mathcal{M}C^{k}(v):=\{\phi\in \mathcal{M}\mathcal{G}^{k}(N)|\phi(A)\geq v(A), \forall A\subseteq N,\phi(N)=v(N)\}$.

We introduce also the core of k-additive infinitely monotone games:

$C_{\infty}^{k}(v)$ $;=$ { $\phi\in \mathcal{G}_{\infty}^{k}(N)|\phi(A)\geq v(A)$ , $\forall A\subseteq N$, and $\phi(N)=v(N)$}.

The latter is introduced just for mathematical convenience, and has no clear application. Note
that $C(v)=C^{1}(v)=C_{\infty}^{1}(v)$ .

3 Orders on $\mathcal{P}_{*}^{k}(N)$ and achievable families

As our aim is to give a generalization of the Shapley-Ichiishi results, we need counterparts of
permutations and maximal chains. These are given in this section. Exact connections between

our material and permutations and maximal chains will be explicited at the end of this sec-
tion. First, we introduce total orders on subsets of at most $k$ elements as a generalization of

permutations.
We denote $by\prec a$ total (strict) order on $\mathcal{P}_{*}^{k}(N),$ $\preceq denoting$ the corresponding weak order.

(i) $\prec is$ said to be $com\mu uble$ if for all $A,B\in \mathcal{P}_{*}^{k}(N),$ $A\prec B$ if and only if A U $C\prec B\cup C$

for all $C\subseteq N$ such that A U $C,$ $B\cup C\in \mathcal{P}_{*}^{k}(N),$ $A\cap C=B\cap C=\emptyset$ .
(ii) $\prec is$ said to $be\subseteq$ -compatible if $A\subset B$ implies $A\prec B$ .
(iii) $\prec is$ said to be strvngly compatible if it is compatible $and\subseteq$-compatible.

We introduce the binary $order\prec^{2}$ on $2^{N}$ as follows. To any subset $A\subseteq N$ we $a88OCiate$ an
integer $\eta(A)$ , whose binary code is the indicator function of $A$, i.e., the ith bit of $\eta(A)$ is 1 if
$i\in A$ , and $0$ otherwise. For example, with $n=5,$ $\{1,3\}$ and {4} have binary codes 00101 and

01000 respectively, hence $\eta(\{1,3\})=5$ and $\eta(\{4\})=8$ . Then $A\prec^{2}B$ if $\eta(A)<\eta(B)$ . This

gives

$1\prec^{22222}2\prec 12\prec 3\prec 13\prec 23\prec^{2}123\prec^{2}4\prec^{2}14\prec^{2}24\prec^{2}$

$124\prec^{222222}34\prec 134\prec 234\prec 1234\prec 5\prec\ldots$ (1)

Note the recursive nature $of\prec^{2}$ . Obviously, $\prec 2$ is a strongly compatible order, as well as all its

restrictions to $\mathcal{P}_{*}^{k}(N),$ $k=1,$ $\ldots,n-1$ .
We introduce now a generalization of maximal chains associated to pemutations. $Let\prec be$

a total order on $\mathcal{P}_{*}^{k}(N)$ . For any. $B\in \mathcal{P}_{*}^{k}(N)$ , we define

$A(B):=$ {$A\subseteq N|[A\supseteq B]$ and $[\forall K\subseteq A$ s.t. $K\in \mathcal{P}_{*}^{k}(N)$ , it holds $K\preceq B]$ }

the achievable family of $B$ .
EXAMPLE 1: Consider $n=3,$ $k=2$ , and the following order: $1\prec 2\prec 12\prec 13\prec$

$23\prec 3$ . Then

$A(1)=\{1\}$ , $A(2)=\{2\}$ , $A(12)=\{12\}$ , $A(13)=A(23)=\emptyset$ ,

$A(3)=\{3,13,23,123\}$ .
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Proposition 3 $\{\mathcal{A}(B)\}_{B\in \mathcal{P}^{k}(N)}$ is a partition of $\mathcal{P}(N)\backslash t\emptyset$ }.

Proposition 4 For any $B\in \mathcal{P}_{*}^{k}(N)$ such that $A(B)\neq\emptyset_{f}(A(B), \subseteq)$ is an inf-semilattice, with

bottom element $B$ .

$i$ lFYom the above proposition we deduce:

Corollary 1 Let $B \in \mathcal{P}\oint(N)and\prec be$ some total order on $\mathcal{P}_{*}^{k}(N)$ . Then $A(B)\neq\emptyset$ if and
only if for all $C\in P_{*}^{k}(N),$ $C\subseteq B$ implies $C\preceq B$ . Consequently, $if|B|=1$ then $A(B)\neq\emptyset$ .

Corollary 2 $A(B)\neq\emptyset$ for all $B\in \mathcal{P}_{*}^{k}(N)$ if and only $if\prec is\subseteq$ -compatible.

It is easy to build examples where achievable families are not lattices.

EXAMPLE 2: Consider $n=4,$ $k=2$ and the following order: 2, 3, 24, 12, 4, 13, 34,

1, 23, 14. Then $A(23)=\{23,123,234\}$ , and $1234\not\in A(23)$ since $14\succ 23$ .

Assuming $A(B)$ is a lattice, we denote by $\check{B}$ its top element.

Proposition 5 $Let\prec be$ a total order on $\mathcal{P}\oint(N)$ . Consider $B\in \mathcal{P}_{*}^{k}(N)$ such that $A(B)$ is $a$

lattice. Then it is a Boolean lattice isomorphic to $(\mathcal{P}(B\backslash B), \subseteq)$ .

Proposition 6 $Assume\prec is$ compatible. For any $B\in \mathcal{P}_{*}^{k}(N)$ such that $A(B)\neq\emptyset,$ $A(B)$ is

the Boolean lattice $[B,\check{B}]$ .

The following example shows that compatibility is not a necessary condition.

EXAMPLE 3: Consider $n=4,$ $k=2$ , and the following order: 1, 3, 2, 12, 23, 13, 4,
14, 24, 34. This order is not compatible since $3\prec 2$ and $12\prec 13$ . We obtain:

$A(1)=1$ , $A(3)=3$, $A(2)=2$ , $A(12)=12$, $A(23)=23$, $A(13)=\{13,123\}$ ,

$A(4)=4$, $A(14)=14$, $A(24)=\{24,124\}$ , $A(34)=\{34,134,234,1234\}$ .
All families are lattices.

In the above example, $\prec was\subseteq$-compatible. However, this is not enough to ensure that achiev-
able families are lattices, as shown by the following example.

EXAMPLE 4: Let us consider the following $\subseteq$-compatible order with $n=4$ and
$k=2$ :

$3\prec 4\prec 34\prec 2\prec 24\prec 1\prec 13\prec 12\prec 23\prec 14$.
Then $A(23)=\{23,123,234\}$ .

We give some fundamental properties of achievable families when they are lattices, in par-
ticular of their top elements.

Proposition 7 $Assume\prec is$ compatible, and consider a nonempty achievable family $A(B)\vee$ ’ with
top element $\check{B}$ . Then $\{A(B:)|B_{i}\in \mathcal{P}_{*}^{k}(N),B\iota\subseteq B,A(B:)\neq\emptyset\}$ is a partition of $\mathcal{P}(B)\backslash \{\emptyset\}$ .

Proposition 8 Assume $that\prec is$ strongly compatible. Then for all $B\subseteq N,$ $|B|<k,$ $B=B$ ,
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Proposition 9 $Let\prec$ be a strongly compatible order on $\mathcal{P}_{*}^{k}(N)$ , and assume $w.l.0.g$ . that
$1\prec 2\prec\cdots\prec n$ . Then the collection $B$ of $\check{B}s$ is given by:

$\check{\mathcal{B}}=\{\{1,2, \ldots, l\}\cup\{j_{1}, \ldots,j_{k-1}\}|l=1,$ $\ldots,n-k+1$

and $\{j_{1}, \ldots,j_{k-1}\}\subseteq\{l+1, \ldots,n\}\}\cup\{A\subseteq N||A|<k\}$ .

$If\prec is$ compatible, then $\overline{\mathcal{B}}$ is a subcollection of the above, where some subsets of at most $k-1$

elements may be absent.

We finish this section by explaining why achievable families induced by orders on $\mathcal{P}_{*}^{k}(N)$

are generalizations of maximal chains induced by permutations. Taking $k=1,$ $\mathcal{P}_{l}^{1}(N)=N$,
and total orders on singletons coincide with permutations on $N$ . Trivially, any order on $N$ is
strongly compatible, so that $aU$ achievable families are nonempty lattices. Denoting by $\sigma$ the
permutation corresponding $to\prec$ , i.e., $\sigma(1)\prec\sigma(2)\prec\cdots\prec\sigma(n)$, then

$A(\{\sigma(j)\})=[\{\sigma(j)\}, \{\sigma(1), \ldots,\sigma(j)\}]$,

i.e., the top element $\{\sigma(j)\}\vee$ is $\{\sigma(1), \ldots,\sigma(j)\}$ . Then the collection of all top elements $\{\sigma(j)\}\vee$

is exactly the maximal chain associated to $\sigma$ .

4 Vertices of $C^{k}(v)$ induced by achievable families

Let us consider a game $v$ and its k-additive core $C^{k}(v)$ . We suppose hereafter that $C^{k}(v)\neq\emptyset$,
which is always true for a sufficiently high $k$ . Indeed, taking at worst $k=n,$ $v\in C^{n}(v)$ always

holds.

4.1 General facts

A k-additive game $v^{*}$ with M\"obius transform $m^{*}$ belongs to $C^{k}(v)$ if and only if it $sati8flae$ the
system

$|K| \leq k\sum_{K\subseteq A}m(K)\geq\sum_{K\subseteq A}m(K)$

, $A\in 2^{N}\backslash \{\emptyset,N\}$ (2)

$\sum_{K\subset N}m’(K)=v(N)$
. (3)

$|K\overline{|}\leq k$

The number of variables is $N(k)$ $:=(_{1}^{n})+\cdots+(_{k}^{n})$ , but due to (3), this gives rise to a $(N(k)-1)-$

dim closed polyhedron. (2) is a system of $2^{n}-2$ inequalities. The polyhedron is convex since
the convex combination of any two elements of the core is still in the core, but it is not bounded
in general. To see this, consider the simple following example.

EXAMPLE 5: Consider $n=3,$ $k=2$ , and a game $v$ defined by its M\"obius transform
$m$ with $m(i)=0.1,$ $m(ij)=0.2$ for all $i,j\in N$ , and $m(N)=0.1$ . Then the system
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of inequalities defining the 2-additive core is:
$m^{*}(1)\geq 0.1$

$m^{*}(2)\geq 0.1$

$m^{*}(3)\geq 0.1$

$m^{*}(1)+m^{*}(2)+m^{*}(12)\geq 0.4$

$m^{*}(1)+m^{*}(3)+m^{*}(13)\geq 0.4$

$m^{*}(2)+m^{*}(3)+m^{*}(23)\geq 0.4$

$m^{*}(1)+m^{*}(2)+m^{*}(3)+m^{*}(12)+m^{*}(13)+m^{*}(23)=1$.

Let us write for convenience $m^{l}:=(m^{*}(1),m^{*}(2),m^{r}(3),m^{*}(12),m^{*}(13),m^{*}(23))$.
Clearly $m_{0}^{*}:=$ (0.2, 0.1, 0.1, . 0.2, 0.2, 0.2) is a solution, as well as $m_{0}^{*}+$

$t(1,0,0, -1,0,0)$ for any $t\geq 0$ . Hence $(1, 0,0, -1,0,0)$ is aray, and the

core is unbounded.

For the monotone core, from Prop. 1 (i) there is an additional system of $n2^{\mathfrak{n}-1}$ inequalities

$\sum_{K\in[i,L]}m^{*}(K)\geq 0$
, $\forall i\in N,\forall L\ni i$ . (4)

$|K|\leq k$

For monotone games, Miranda and Grabisch [13] have proved that the Mobius transform is

bounded. Since $v(N)$ is fixed and bounded, the monotone k-additive core is always bounded.

For $C_{\infty}^{k}(v)$ , using Prop. 1 (ii) system (4) is replaced by a system of $N(k)-n$ inequalities:

$m^{*}(K)\geq 0$ , $K\in \mathcal{P}_{n}^{k}(N),$ $|K|>1$ . (5)

Since in addition we have $m^{n}(\{i\})\geq m(\{i\}),$ $i\in N$ coming from (2), $m^{*}$ is bounded from below.
Then (3) forces $m^{*}$ to be bounded from above, so that $C_{\infty}^{k}(v)$ is bounded.

In summary, we have the foUowing.

Proposition 10 For any game $v$ , $C^{k}(v)$ , $\mathcal{M}C^{k}(v)$ and $C_{\infty}^{k}(v)$ are dosed convex
$(N(k)-1)$ -dimensional polyhedra. Only $\mathcal{M}C^{k}(v)$ and $C_{\infty}^{k}(v)$ are always bounded.

4.2 A Shapley-Ichiishi-like result

We tum now to the characterization of vertices induced by achievable families. Let $v$ be a game
on $N,$ $m$ its Mobius transform, $and\prec be$ a total order on $P_{*}^{k}(N)$ . We define a k-additive game
$v\prec by$ its M\"obius transform as follows:

$m_{\prec}(B):=\{\begin{array}{ll}\sum_{A\in A(B)}m(A), if A(B)\neq\emptyset 0, e\text{化}e\end{array}$ (6)

for all $B\in \mathcal{P}_{*}^{k}(N)$ , and $m_{\prec}(B):=0$ if $B\not\in \mathcal{P}_{*}^{k}(N)$ .
Due to Prop. 3, $m_{\prec}$ satisfies $\sum_{B\subset N}m_{\prec}(B)=\sum_{B\subseteq N}m(B)=v(N)$ , hence $v_{\prec}(N)=v(N)$ .
This definition is a generalization \={O}f the definition of $\phi^{\sigma}$ or $\phi^{C}$ (see Sec. 2). Indeed, denoting

by $\sigma$ the permutation on $N$ correspondin$gto\prec$ , we get:

$m_{\prec}(\{\sigma(i)\})$ $=$
$\sum_{A\subseteq\{\sigma(1),\ldots,\sigma(i-1)\}}m(AU\sigma(i))$

$\sum_{A\subseteq\{\sigma(1),.\prime\sigma(:)\}}..m(A)-\sum_{A\subseteq\{\sigma(1),\ldots,\sigma(i-1)\}}m(A)$

$=$
$v(\{\sigma(1), \ldots,\sigma(i)\})-v(\{\sigma(1), \ldots,\sigma(i-1)\})=\phi^{\sigma}(\{\sigma(i)\})=m^{\sigma}(\{\sigma(i)\})$,
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where $m^{\sigma}$ is the M\"obius transform of $\phi^{\sigma}$ (see Sec. 2).

Proposition 11 Assume that $A(B)$ is a nonempty lattice. Then $v_{\prec}\langle\check{B}$ ) $=v(\check{B})$ if and only if
$\{A(C)|C\in \mathcal{P}\oint(N), C\subseteq\check{B}, A(C)\neq\emptyset\}$ is a partition of $\mathcal{P}(\check{B})\backslash \{\emptyset\}$ .

The following is immediate from Prop. 11 and 7.

Corollary 3 $Assume\prec is$ compatible, and consider a nonempty achievable family $A(B)$ . Then
$v_{\prec}(\check{B})=v(\check{B})$ .
Proposition 12 Let us suppose that all nonempty achievable families are lattices. Then $v$

k-monotone implies that $v_{\prec}is$ infinitely monotone.

The next corollary follows from Prop. 6.

Corollary 4 Let us suppose $that\prec is$ compatible. Then $v$ k-monotone implies that $v\prec\dot{u}$

infinitely monotone.

Theorem 2 $v$ is $(k+1)$ -monotone if and only if for all compatible $oders\prec,$ $v_{\prec}(A)\geq v(A)$ ,
$\forall A\subseteq N$ .

The following is an interesting property of the system $\{(2),$(3) $\}$ .

Proposition 13 $Let\prec be$ a compatible order. Then the linear system of equalities $v_{\prec}(B)=$

$v(\check{B})$ , for all $\check{B}s$ induced $by\prec$ , is triangular utth no zerv on the diagonal, and hence has a
unique solution.

Theorem 3 Let $v$ be a $(k+1)$ -monotone game. Then

(i) $If\prec is$ strongly compatible, then $v_{\prec}is$ a vertex of $C^{k}(v)$ .
(ii) $If\prec is$ compatible, then $v\prec is$ a $ve$rtex of $C_{\infty}^{k}(v)$ .

REMARK 1: Vertices induced by (strongly) compatible orders are also vertices of
the monotone k-additive core. They are induced only by dominance constraints, not
by monotonicity constraints.

REMARK 2: Cor. 3 generalizes Prop. 2, while Theorems 2 and 3 generalize the
Shapley-Ichiishi results summarized in Th. 1. Indeed, recall that convexity is 2-
monotonicity. Then clearly Th. 2 is a generalization of $(i)\Rightarrow(ii)$ of Th. 1, and Th.
3 (i) is a part of (iv) in Th. 1. But as it will become clear below, $aU$ vertices are
not recovered by achievable families, mainly because they can induce only infinitely

monotone games. In particular, $\mathcal{M}C^{k}(v)$ contains many more vertices.

Let us examine more precisely the number of vertices induced by strongly compatible orders.

In fact, there are much fewer than expected, since many strongly compatible orders lead to the

same $v\prec$ . The following is a consequence of Prop. 9.

Corollary 5 The number of vertices ofC $(v)$ g\’iven by strvngly compatible orders is at most $Bn!$ .

Note that when $k=1$ , we recover the fact that vertices are induced by all permutations,
and that with $k=n$, we find only one vertex (which is in fact the only vertex of $C^{n}(v)$), which

is $v$ itself (use Prop. 9 and the definition of $m_{\prec}$ ).
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5 Further results

Weakly compatible orders can produce vertices if some $v(\{i\})=0$ . It suffices that there exists
$B\in \mathcal{P}_{*}^{k}(N)$ such that $A(B)=\emptyset$ , and $i\in B$ such that $v(\{i\})=0$ , and all subsets $C$ such that
$i\in C\subset B$ satisfy $m_{\prec}(B)=0$ . The following example illustrates this.

EXAMPLE 6: Take $n=3,$ $k=2$ , and the following 3-monotone capacity.

There are 48 vertices for $C^{k}(v)$ , found by PORTA:

( 1) $01/101/61/10$ $03/6$
( 2) $01/10\iota/6$ $1/102/6\iota/6$
( 3) $01/101/6$ $\iota/2$ $0$ $1/5$

(4) $0\iota/\iota 0\iota/2$ $1/102/6-1/10$
( 6) $01/101/2$ $1/2$ $0-1/10$
( 6) $0\iota/\iota 09/101/10$ $0-1/10$
(7) 01/51/5 $0$ $03/5$
(8) 01/51/6 $0$ $1/2$ $1/10$

( 9) $0\iota/61/2$ $0$ $1/2-1/6$
(10) $01/21/6$ $01/2-1/5$
(11) $01/21/5$ $1/2$ . 0-1/6

(12) $01/21/2$ $0\iota/2-1/2$
(13) $01/21/2$ $\iota/2$ $0-1/2$
(14) 1/101/101/6 $0-1/\iota 0\tau/10$

(15) 1/10 $\iota/\iota 0\iota/2$ $02/6-1/10$
(16) $\iota/61/10\iota/5-1/10-1/107/10$
(17) 1/51/101/5 $-1/102/5$ $1/5$

(18) 1/61/101/6 0-1/5 $\tau/\iota 0$

(19) 1/61/10 $\iota/6$ $\iota/2-1/5$ $1/6$

(20) $\iota/s1/102/s-1/102/5$ $0$

(21) $\iota/61/109/10-1/\iota 0-\iota/10$ $0$

(22) 1/61/61/5 $-1/6$ $03/5$
(23) 1/61/6 $\iota/5-1/51/2$ $1/10$

(24) 1/61/53/10 $-1/6$ $1/2$ $0$

(25) 1/51/64/6 $-1/6$ $0$ $0$

(26) $1/\epsilon 3/101/6$ $1/2-1/6$ $0$

(27) 1/64/61/6 0-1/5 $0$

(28) 3/10 $\iota/101/s-\iota/10-1/57/10$
(29) 3/10 $3/\iota 01/6-3/10\iota/2$ $0$

(30) 3/101/2 $1/6arrow 3/\iota 01/2-\iota/6$

(31) 2/5 $\iota/\iota 02/5$ $\iota/2-2/6$ $0$

(32) 2/61/101/2 1/2 $-2/5-1/10$
(33) 1/21/21/2 $0$ 0-1/2

(34) $s/6\iota/\iota 01/5-1/10-1/6$ $1/6$

(36) 4/51/21/6 $-3/10$ 0-1/6

(36) 4/64/61/5-4/6 $0$ $0$

(37) 9/101/101/2 0-2/6 $-1/10$

(38) 9/101/109/10 0-9/10 $0$

(39) $01/6$ $\iota$ $0$ 0-1/5

(40) $0$ 11/6 $0$ $0-1/6$
(41) $\iota/101/10$ 1 $0-1/10-\iota/10$

(42) 4/6 11/6 $-4/5$ $0-1/5$

$((43)44)9\prime 1011/01/:_{0}2/51-1/10-2/60-9/\iota 0-1/100$
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(45) 1 1/109/10 $-1/10-9/10$ $0$

(46) 1 3/10 1/6 $-3/10-1/5$ $0$

(47) 1 4/5 1/6 $-4/5-1/6$ $0$

(48) $0$ 1 1 $0$ $0$ $-1$

By Cor. 5, we know that 3 vertices are produced by the strongly compatible orders,

with corresponding sequences of $B’ s$ :

1, 2, 3, 12, 13, 123 (this is vertex 1)

2, 1, 3, 12, 23, 123 (this is vertex 2)

3, 1, 2, 13, 23, 123 (this is vertex 3)

Take the weakly compatible order $1\prec 12\prec 2\prec 3\prec 13\prec 23$ . Then achievable.
families are:

$A(1)=1$ , $A(12)=\emptyset$ , $A(2)=\{2,12\}$ , $A(3)=3$, $A(13)=13$, $A(23)=\{23,123\}$ .

This gives

which is vertex 7.
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