A study of the structure of the k-additive core

Michel GRABISCH*

Université de Paris I – Panthéon-Sorbonne CES, 106-112 Bd. de l'Hôpital, 75013 Paris, France

Pedro MIRANDA email pmiranda@mat.ucm.es Universidad Complutense de Madrid Plaza de Ciencias, 3, 28040 Madrid, Spain

Abstract

The core of a game v on N, which is the set of additive games ϕ dominating v such that $\phi(N) = v(N)$, is a central notion in cooperative game theory, decision making and in combinatorics, where it is related to submodular functions, matroids and the greedy algorithm. In many cases however, the core is empty, and alternative solutions have to be found. We define the k-additive core by replacing additive games by k-additive games in the definition of the core, where k-additive games are those games whose Möbius transform vanishes for subsets of more than k elements. For a sufficiently high value of k, the k-additive core is nonempty, and is a convex closed polyhedron. Our aim is to establish results similar to the classical results of Shapley and Ichiishi on the core of convex games (corresponds to Edmonds' theorem for the greedy algorithm), which characterize the vertices of the core.

Keywords: cooperative games; core; k-additive games; vertices

^{*}Corresponding author. email michel.grabisch@univ-paris1.fr

1 Introduction

Given a finite set N of n elements, and a set function $v: 2^N \to \mathbb{R}$ vanishing on the empty set (called hereafter a game), its core $\mathcal{C}(v)$ is the set of additive set functions ϕ on N such that $\phi(S) \geq v(S)$ for every $S \subseteq N$, and $\phi(N) = v(N)$. Whenever nonempty, the core is a convex closed bounded polyhedron.

In many fields, the core is a central notion which has deserved a lot of studies. In cooperative game theory, it is the set of imputations for players so that no subcoalition has interest to form [17]. In decision making under uncertainty, where games are replaced by *capacities* (monotonic games), it is the set of probability measures which are coherent with the given representation of uncertainty [18]. More on a combinatorial point of view, cores of convex games are also known as base polytopes associated to supermodular functions [12, 8], for which the greedy algorithm is known to be a fundamental optimization technique. Many studies have been done along this line, e.g., by Faigle and Kern for the matching games [7], and cost games [6]. In game theory, which will be our main framework here, related notions are the selectope [3], and the Shapley value with many of its variations on combinatorial structures (see, e.g., [1]).

It is a well known fact that the core is nonempty if and only if the game is balanced [4]. In the case of emptiness, an alternative solution has to be found. One possibility is to search for games more general than additive ones, for example k-additive games and capacities proposed by Grabisch [9]. In short, k-additive games have their Möbius transform vanishing for subsets of more than k elements, so that 1-additive games are just usual additive games. Since any game is a k-additive game for some k (possibly k = n), the k-additive core, i.e., the set of dominating k-additive games, is never empty provided k is high enough. The authors have justified this definition in the framework of cooperative game theory [14]. Briefly speaking, an element of the k-additive core implicitely defines by its Möbius transform an imputation (possibly negative), which is now defined on groups of at most k players, and no more on individuals. By definition of the k-additive core, the total worth assigned to a coalition will be always greater or equal to the worth the coalition can achieve by itself; however, the precise sharing among players has still to be decided (e.g., by some bargaining process) among each group of at most k players.

In game theory, elements of the core are imputations for players, and thus it is natural that they fulfill monotonicity. We call monotonic core the core restricted to monotonic games (capacities). We will see in the sequel that the core is usually unbounded, while the monotonic core is not.

The properties of the (classical) core are well known, most remarkable being the result characterizing the core of convex games, where the set of vertices is exactly the set of additive games induced by maximal chains (or equivalently by permutations on N) in the Boolean lattice $(2^N, \subseteq)$. This has been shown by Shapley [16], and later Ichiishi proved the converse implication [11]. This result is also known in the field of matroids, since vertices of the base poytope can be found by a greedy algorithm.

A natural question arises: is it possible to generalize the Shapley-Ichiishi theorem for k-additive (monotonic) cores? More precisely, can we find the set of vertices for some special classes of games? Are they induced by some generalization of maximal chains? The paper shows that the answer is more complex than expected. It is possible to define notions similar to permutations and maximal chains, so as to generate vertices of the k-additive core of (k + 1)-monotone games, a result which is a true generalization of the Shapley-Ichiishi theorem, but this does not permit to find all vertices of the core. A full analytical description of vertices seems to be difficult to find, but we completely explicit the case k = n - 1.

After a preliminary section introducing necessary concepts, Section 3 presents our basic ingredients, that is, orders on subsets of at most k elements, and achievable families, which play

the role of maximal chains in the classical case. Then Section 4 presents the main result on the characterization of vertices for (k + 1)-monotone games induced by achievable families.

2 Preliminaries

Throughout the paper, $N := \{1, \ldots, n\}$ denotes a set of *n* elements (players in a game, nodes of a graph, etc.). We use indifferently 2^N or $\mathcal{P}(N)$ for denoting the set of subsets of *N*, and the set of subsets of *N* containing at most *k* elements is denoted by $\mathcal{P}^k(N)$, while $\mathcal{P}^k_*(N) := \mathcal{P}^k(N) \setminus \{\emptyset\}$. For convenience, subsets like $\{i\}, \{i, j\}, \{2\}, \{2, 3\}, \ldots$ are written in the compact form i, ij, 2, 23 and so on.

A game on N is a function $v: 2^N \to \mathbb{R}$ such that $v(\emptyset) = 0$. The set of games on N is denoted by $\mathcal{G}(N)$. For any $A \in 2^N \setminus \{\emptyset\}$, the unanimity game centered on A is defined by $u_A(B) := 1$ iff $B \supseteq A$, and 0 otherwise.

A game v on N is said to be:

- (i) additive if $v(A \cup B) = v(A) + v(B)$ whenever $A \cap B = \emptyset$;
- (ii) convex if $v(A \cup B) + v(A \cap B) \ge v(A) + v(B)$, for all $A, B \subseteq N$;
- (iii) monotone if $v(A) \leq v(B)$ whenever $A \subseteq B$;
- (iv) k-monotone for $k \geq 2$ if for any family of k subsets $A_1, \ldots A_k$, it holds

$$v(\bigcup_{i=1}^{\kappa} A_i) \ge \sum_{\substack{K \subseteq \{1,\dots,k\}\\K \neq \emptyset}} (-1)^{|K|+1} v(\bigcap_{j \in K} A_j)$$

(v) infinitely monotone if it is k-monotone for all $k \geq 2$.

Convexity corresponds to 2-monotonicity. Note that k-monotonicity implies k'-monotonicity for all $2 \leq k' \leq k$. Also, (n-2)-monotone games on N are infinitely monotone [2]. The set of monotone games on N is denoted by $\mathcal{MG}(N)$, while the set of infinitely monotone games is denoted by $\mathcal{G}_{\infty}(N)$.

Let v be a game on N. The *Möbius transform* of v [15] (also called *dividends* of v, see Harsanyi [10]) is a function $m: 2^N \to \mathbb{R}$ defined by:

$$m(A) := \sum_{B \subseteq A} (-1)^{|A \setminus B|} v(B), \quad \forall A \subseteq N.$$

The Möbius transform is invertible since one can recover v from m by:

$$v(A) = \sum_{B \subseteq A} m(B), \quad \forall A \subseteq N.$$

If v is an additive game, then m is non null only for singletons, and $m(\{i\}) = v(\{i\})$. The Möbius transform of u_A is given by m(A) = 1 and m is 0 otherwise.

A game v is said to be k-additive [9] for some integer $k \in \{1, ..., n\}$ if m(A) = 0 whenever |A| > k, and there exists some A such that |A| = k, and $m(A) \neq 0$.

Clearly, 1-additive games are additive. The set of games on N being at most k-additive (resp. infinitely monotone games at most k-additive) is denoted by $\mathcal{G}^k(N)$ (resp. $\mathcal{G}^k_{\infty}(N)$). As above, replace \mathcal{G} by $\mathcal{M}\mathcal{G}$ if monotone games are considered instead.

We recall the fundamental following result.

Proposition 1 [5] Let v be a game on N. For any $A, B \subseteq N$, with $A \subseteq B$, we denote $[A, B] := \{L \subseteq N \mid A \subseteq L \subseteq B\}.$

(i) Monotonicity is equivalent to

$$\sum_{L \in [i,B]} m(L) \ge 0, \quad \forall B \subseteq N, \quad \forall i \in B.$$

(ii) For $2 \leq k \leq n$, k-monotonicity is equivalent to

$$\sum_{L \in [A,B]} m(L) \ge 0, \quad \forall A, B \subseteq N, A \subseteq B, \quad 2 \le |A| \le k.$$

Clearly, a monotone and infinitely monotone game has a nonnegative Möbius transform.

The core of a game v is defined by:

$$\mathcal{C}(v):=\{\phi\in\mathcal{G}^1(N)\mid \phi(A)\geq v(A), \quad orall A\subseteq N, ext{ and } \phi(N)=v(N)\}.$$

A maximal chain in 2^N is a sequence of subsets $A_0 := \emptyset, A_1, \ldots, A_{n-1}, A_n := N$ such that $A_i \subset A_{i+1}, i = 0, \ldots, n-1$. The set of maximal chains of 2^N is denoted by $\mathcal{M}(2^N)$.

To each maximal chain $C := \{\emptyset, A_1, \ldots, A_n = N\}$ in $\mathcal{M}(2^N)$ corresponds a unique permutation σ on N such that $A_1 = \sigma(1), A_2 \setminus A_1 = \sigma(2), \ldots, A_n \setminus A_{n-1} = \sigma(n)$. The set of all permutations over N is denoted by $\mathfrak{S}(N)$. Let v be a game. Each permutation σ (or maximal chain C) induces an additive game ϕ^{σ} (or ϕ^C) on N defined by:

$$\phi^{\sigma}(\sigma(i)) := v(\{\sigma(1), \ldots, \sigma(i)\}) - v(\{\sigma(1), \ldots, \sigma(i-1)\})$$

or

$$\phi^C(\sigma(i)) := v(A_i) - v(A_{i-1}), \quad \forall i \in N.$$

with the above notation. The following is immediate.

Proposition 2 Let v be a game on N, and C a maximal chain of 2^N . Then

$$\phi^C(A) = v(A), \quad \forall A \in C.$$

Theorem 1 The following propositions are equivalent.

- (i) v is a convex game.
- (ii) All additive games ϕ^{σ} , $\sigma \in \mathfrak{S}(N)$, belong to the core of v.
- (iii) $C(v) = \operatorname{co}(\{\phi^{\sigma}\}_{\sigma \in \mathfrak{S}(N)}).$
- (iv) $\operatorname{ext}(\mathcal{C}(v)) = \{\phi^{\sigma}\}_{\sigma \in \mathfrak{S}(N)},$

where $co(\cdot)$ and $ext(\cdot)$ denote respectively the convex hull of some set, and the extreme points of some convex set.

(i) \Rightarrow (ii) and (i) \Rightarrow (iv) are due to Shapley [16], while (ii) \Rightarrow (i) was proved by Ichiishi [11].

A natural extension of the definition of the core is the following. For some integer $1 \le k \le n$, the *k*-additive core of a game v is defined by:

$$\mathcal{C}^{k}(v) := \{ \phi \in \mathcal{G}^{k}(N) \mid \phi(A) \geq v(A), \quad \forall A \subseteq N, \phi(N) = v(N) \}.$$

In a context of game theory where elements of the core are imputations, it is natural to consider that monotonicity must hold, i.e., the imputation allocated to some coalition $A \in \mathcal{P}_*^k(N)$ is larger than for any subset of A. We call it the monotone k-additive core:

 $\mathcal{MC}^k(v):=\{\phi\in\mathcal{MG}^k(N)\mid \phi(A)\geq v(A),\quad orall A\subseteq N, \phi(N)=v(N)\}.$

We introduce also the core of k-additive infinitely monotone games:

$$\mathcal{C}^k_\infty(v):=\{\phi\in\mathcal{G}^k_\infty(N)\mid \phi(A)\geq v(A),\quad orall A\subseteq N, ext{ and } \phi(N)=v(N)\}.$$

The latter is introduced just for mathematical convenience, and has no clear application. Note that $C(v) = C^1(v) = C^1_{\infty}(v)$.

3 Orders on $\mathcal{P}^k_*(N)$ and achievable families

As our aim is to give a generalization of the Shapley-Ichiishi results, we need counterparts of permutations and maximal chains. These are given in this section. Exact connections between our material and permutations and maximal chains will be explicited at the end of this section. First, we introduce total orders on subsets of at most k elements as a generalization of permutations.

We denote by \prec a total (strict) order on $\mathcal{P}_*^k(N)$, \preceq denoting the corresponding weak order.

- (i) \prec is said to be *compatible* if for all $A, B \in \mathcal{P}_*^k(N), A \prec B$ if and only if $A \cup C \prec B \cup C$ for all $C \subseteq N$ such that $A \cup C, B \cup C \in \mathcal{P}_*^k(N), A \cap C = B \cap C = \emptyset$.
- (ii) \prec is said to be \subseteq -compatible if $A \subset B$ implies $A \prec B$.
- (iii) \prec is said to be strongly compatible if it is compatible and \subseteq -compatible.

We introduce the binary order \prec^2 on 2^N as follows. To any subset $A \subseteq N$ we associate an integer $\eta(A)$, whose binary code is the indicator function of A, i.e., the *i*th bit of $\eta(A)$ is 1 if $i \in A$, and 0 otherwise. For example, with n = 5, $\{1, 3\}$ and $\{4\}$ have binary codes 00101 and 01000 respectively, hence $\eta(\{1, 3\}) = 5$ and $\eta(\{4\}) = 8$. Then $A \prec^2 B$ if $\eta(A) < \eta(B)$. This gives

Note the recursive nature of \prec^2 . Obviously, \prec^2 is a strongly compatible order, as well as all its restrictions to $\mathcal{P}_*^k(N)$, $k = 1, \ldots, n-1$.

We introduce now a generalization of maximal chains associated to permutations. Let \prec be a total order on $\mathcal{P}_*^k(N)$. For any $B \in \mathcal{P}_*^k(N)$, we define

$$\mathcal{A}(B) := \{A \subseteq N \mid [A \supseteq B] \text{ and } [\forall K \subseteq A \text{ s.t. } K \in \mathcal{P}^k_*(N), \text{ it holds } K \preceq B] \}$$

the achievable family of B.

EXAMPLE 1: Consider n = 3, k = 2, and the following order: $1 \prec 2 \prec 12 \prec 13 \prec 23 \prec 3$. Then

$$\mathcal{A}(1) = \{1\}, \quad \mathcal{A}(2) = \{2\}, \quad \mathcal{A}(12) = \{12\}, \quad \mathcal{A}(13) = \mathcal{A}(23) = \emptyset, \\ \mathcal{A}(3) = \{3, 13, 23, 123\}.$$

Proposition 3 $\{\mathcal{A}(B)\}_{B \in \mathcal{P}^{k}(N)}$ is a partition of $\mathcal{P}(N) \setminus \{\emptyset\}$.

Proposition 4 For any $B \in \mathcal{P}_*^k(N)$ such that $\mathcal{A}(B) \neq \emptyset$, $(\mathcal{A}(B), \subseteq)$ is an inf-semilattice, with bottom element B.

¿From the above proposition we deduce:

Corollary 1 Let $B \in \mathcal{P}_*^k(N)$ and \prec be some total order on $\mathcal{P}_*^k(N)$. Then $\mathcal{A}(B) \neq \emptyset$ if and only if for all $C \in \mathcal{P}_*^k(N)$, $C \subseteq B$ implies $C \preceq B$. Consequently, if |B| = 1 then $\mathcal{A}(B) \neq \emptyset$.

Corollary 2 $\mathcal{A}(B) \neq \emptyset$ for all $B \in \mathcal{P}^k_*(N)$ if and only if \prec is \subseteq -compatible.

It is easy to build examples where achievable families are not lattices.

EXAMPLE 2: Consider n = 4, k = 2 and the following order: 2, 3, 24, 12, 4, 13, 34, 1, 23, 14. Then $\mathcal{A}(23) = \{23, 123, 234\}$, and $1234 \notin \mathcal{A}(23)$ since $14 \succ 23$.

Assuming $\mathcal{A}(B)$ is a lattice, we denote by \check{B} its top element.

Proposition 5 Let \prec be a total order on $\mathcal{P}^k_*(N)$. Consider $B \in \mathcal{P}^k_*(N)$ such that $\mathcal{A}(B)$ is a lattice. Then it is a Boolean lattice isomorphic to $(\mathcal{P}(\check{B} \setminus B), \subseteq)$.

Proposition 6 Assume \prec is compatible. For any $B \in \mathcal{P}_*^k(N)$ such that $\mathcal{A}(B) \neq \emptyset$, $\mathcal{A}(B)$ is the Boolean lattice $[B, \check{B}]$.

The following example shows that compatibility is not a necessary condition.

EXAMPLE 3: Consider n = 4, k = 2, and the following order: 1, 3, 2, 12, 23, 13, 4, 14, 24, 34. This order is not compatible since $3 \prec 2$ and $12 \prec 13$. We obtain:

All families are lattices.

In the above example, \prec was \subseteq -compatible. However, this is not enough to ensure that achievable families are lattices, as shown by the following example.

EXAMPLE 4: Let us consider the following \subseteq -compatible order with n = 4 and k = 2:

 $3 \rightarrow 4 \rightarrow 34 \rightarrow 2 \rightarrow 24 \rightarrow 1 \rightarrow 13 \rightarrow 12 \rightarrow 23 \rightarrow 14.$

Then $\mathcal{A}(23) = \{23, 123, 234\}.$

We give some fundamental properties of achievable families when they are lattices, in particular of their top elements.

Proposition 7 Assume \prec is compatible, and consider a nonempty achievable family $\mathcal{A}(B)$, with top element \check{B} . Then $\{\mathcal{A}(B_i) \mid B_i \in \mathcal{P}^k_*(N), B_i \subseteq \check{B}, \mathcal{A}(B_i) \neq \emptyset\}$ is a partition of $\mathcal{P}(\check{B}) \setminus \{\emptyset\}$.

Proposition 8 Assume that \prec is strongly compatible. Then for all $B \subseteq N$, |B| < k, $\check{B} = B$.

Proposition 9 Let \prec be a strongly compatible order on $\mathcal{P}^k_*(N)$, and assume w.l.o.g. that $1 \prec 2 \prec \cdots \prec n$. Then the collection $\check{\mathcal{B}}$ of \check{B} 's is given by:

$$\check{\mathcal{B}} = \left\{ \{1, 2, \dots, l\} \cup \{j_1, \dots, j_{k-1}\} \mid l = 1, \dots, n-k+1 \\ and \ \{j_1, \dots, j_{k-1}\} \subseteq \{l+1, \dots, n\} \right\} \bigcup \left\{ A \subseteq N \mid |A| < k \right\}.$$

If \prec is compatible, then \check{B} is a subcollection of the above, where some subsets of at most k-1 elements may be absent.

We finish this section by explaining why achievable families induced by orders on $\mathcal{P}_*^k(N)$ are generalizations of maximal chains induced by permutations. Taking k = 1, $\mathcal{P}_*^1(N) = N$, and total orders on singletons coincide with permutations on N. Trivially, any order on N is strongly compatible, so that all achievable families are nonempty lattices. Denoting by σ the permutation corresponding to \prec , i.e., $\sigma(1) \prec \sigma(2) \prec \cdots \prec \sigma(n)$, then

$$\mathcal{A}(\{\sigma(j)\}) = [\{\sigma(j)\}, \{\sigma(1), \ldots, \sigma(j)\}],$$

i.e., the top element $\{\sigma(j)\}$ is $\{\sigma(1), \ldots, \sigma(j)\}$. Then the collection of all top elements $\{\sigma(j)\}$ is exactly the maximal chain associated to σ .

4 Vertices of $\mathcal{C}^k(v)$ induced by achievable families

Let us consider a game v and its k-additive core $\mathcal{C}^k(v)$. We suppose hereafter that $\mathcal{C}^k(v) \neq \emptyset$, which is always true for a sufficiently high k. Indeed, taking at worst $k = n, v \in \mathcal{C}^n(v)$ always holds.

4.1 General facts

A k-additive game v^* with Möbius transform m^* belongs to $\mathcal{C}^k(v)$ if and only if it satisfies the system

$$\sum_{\substack{K \subseteq A \\ K \subseteq A}} m^*(K) \ge \sum_{K \subseteq A} m(K), \quad A \in 2^N \setminus \{\emptyset, N\}$$
(2)

$$\sum_{\substack{K \subseteq N \\ |K| \le k}} m^*(K) = v(N).$$
(3)

The number of variables is $N(k) := \binom{n}{1} + \cdots + \binom{n}{k}$, but due to (3), this gives rise to a (N(k) - 1)dim closed polyhedron. (2) is a system of $2^n - 2$ inequalities. The polyhedron is convex since the convex combination of any two elements of the core is still in the core, but it is not bounded in general. To see this, consider the simple following example.

EXAMPLE 5: Consider n = 3, k = 2, and a game v defined by its Möbius transform m with m(i) = 0.1, m(ij) = 0.2 for all $i, j \in N$, and m(N) = 0.1. Then the system

of inequalities defining the 2-additive core is:

$$m^*(1) \ge 0.1$$

 $m^*(2) \ge 0.1$
 $m^*(3) \ge 0.1$
 $m^*(1) + m^*(2) + m^*(12) \ge 0.4$
 $m^*(1) + m^*(3) + m^*(13) \ge 0.4$
 $m^*(2) + m^*(3) + m^*(23) \ge 0.4$
 $m^*(1) + m^*(2) + m^*(13) + m^*(23) \ge 1.$

Let us write for convenience $m^* := (m^*(1), m^*(2), m^*(3), m^*(12), m^*(13), m^*(23))$. Clearly $m_0^* := (0.2, 0.1, 0.1, 0.2, 0.2, 0.2)$ is a solution, as well as $m_0^* + t(1, 0, 0, -1, 0, 0)$ for any $t \ge 0$. Hence (1, 0, 0, -1, 0, 0) is a ray, and the core is unbounded.

For the monotone core, from Prop. 1 (i) there is an additional system of $n2^{n-1}$ inequalities

$$\sum_{\substack{K \in [i,L] \\ |K| \le k}} m^*(K) \ge 0, \quad \forall i \in N, \forall L \ni i.$$
(4)

For monotone games, Miranda and Grabisch [13] have proved that the Möbius transform is bounded. Since v(N) is fixed and bounded, the monotone k-additive core is always bounded.

For $\mathcal{C}_{\infty}^{k}(v)$, using Prop. 1 (ii) system (4) is replaced by a system of N(k) - n inequalities:

$$m^*(K) > 0, \quad K \in \mathcal{P}^k_*(N), |K| > 1.$$
 (5)

Since in addition we have $m^*(\{i\}) \ge m(\{i\}), i \in N$ coming from (2), m^* is bounded from below. Then (3) forces m^* to be bounded from above, so that $\mathcal{C}_{\infty}^k(v)$ is bounded.

In summary, we have the following.

Proposition 10 For any game v, $C^{k}(v)$, $\mathcal{M}C^{k}(v)$ and $C^{k}_{\infty}(v)$ are closed convex (N(k)-1)-dimensional polyhedra. Only $\mathcal{M}C^{k}(v)$ and $C^{k}_{\infty}(v)$ are always bounded.

4.2 A Shapley-Ichiishi-like result

We turn now to the characterization of vertices induced by achievable families. Let v be a game on N, m its Möbius transform, and \prec be a total order on $\mathcal{P}_*^k(N)$. We define a k-additive game v_{\prec} by its Möbius transform as follows:

$$m_{\prec}(B) := \begin{cases} \sum_{A \in \mathcal{A}(B)} m(A), & \text{if } \mathcal{A}(B) \neq \emptyset \\ 0, & \text{else} \end{cases}$$
(6)

for all $B \in \mathcal{P}^k_*(N)$, and $m_{\prec}(B) := 0$ if $B \notin \mathcal{P}^k_*(N)$.

Due to Prop. 3, m_{\prec} satisfies $\sum_{B\subseteq N} m_{\prec}(B) = \sum_{B\subseteq N} m(B) = v(N)$, hence $v_{\prec}(N) = v(N)$.

This definition is a generalization of the definition of ϕ^{σ} or ϕ^{C} (see Sec. 2). Indeed, denoting by σ the permutation on N corresponding to \prec , we get:

$$\begin{split} m_{\prec}(\{\sigma(i)\}) &= \sum_{A \subseteq \{\sigma(1), \dots, \sigma(i-1)\}} m(A \cup \sigma(i)) \\ &= \sum_{A \subseteq \{\sigma(1), \dots, \sigma(i)\}} m(A) - \sum_{A \subseteq \{\sigma(1), \dots, \sigma(i-1)\}} m(A) \\ &= v(\{\sigma(1), \dots, \sigma(i)\}) - v(\{\sigma(1), \dots, \sigma(i-1)\}) = \phi^{\sigma}(\{\sigma(i)\}) = m^{\sigma}(\{\sigma(i)\}), \end{split}$$

where m^{σ} is the Möbius transform of ϕ^{σ} (see Sec. 2).

Proposition 11 Assume that $\mathcal{A}(B)$ is a nonempty lattice. Then $v_{\prec}(\check{B}) = v(\check{B})$ if and only if $\{\mathcal{A}(C) \mid C \in \mathcal{P}^k_*(N), C \subseteq \check{B}, \mathcal{A}(C) \neq \emptyset\}$ is a partition of $\mathcal{P}(\check{B}) \setminus \{\emptyset\}$.

The following is immediate from Prop. 11 and 7.

Corollary 3 Assume \prec is compatible, and consider a nonempty achievable family $\mathcal{A}(B)$. Then $v_{\prec}(\check{B}) = v(\check{B})$.

Proposition 12 Let us suppose that all nonempty achievable families are lattices. Then v k-monotone implies that v_{\prec} is infinitely monotone.

The next corollary follows from Prop. 6.

Corollary 4 Let us suppose that \prec is compatible. Then v k-monotone implies that v_{\prec} is infinitely monotone.

Theorem 2 v is (k + 1)-monotone if and only if for all compatible orders \prec , $v_{\prec}(A) \geq v(A)$, $\forall A \subseteq N$.

The following is an interesting property of the system $\{(2), (3)\}$.

Proposition 13 Let \prec be a compatible order. Then the linear system of equalities $v_{\prec}(\check{B}) = v(\check{B})$, for all \check{B} 's induced by \prec , is triangular with no zero on the diagonal, and hence has a unique solution.

Theorem 3 Let v be a (k+1)-monotone game. Then

- (i) If \prec is strongly compatible, then v_{\prec} is a vertex of $\mathcal{C}^{k}(v)$.
- (ii) If \prec is compatible, then v_{\prec} is a vertex of $\mathcal{C}^{k}_{\infty}(v)$.

REMARK 1: Vertices induced by (strongly) compatible orders are also vertices of the monotone k-additive core. They are induced only by dominance constraints, not by monotonicity constraints.

REMARK 2: Cor. 3 generalizes Prop. 2, while Theorems 2 and 3 generalize the Shapley-Ichiishi results summarized in Th. 1. Indeed, recall that convexity is 2-monotonicity. Then clearly Th. 2 is a generalization of (i) \Rightarrow (ii) of Th. 1, and Th. 3 (i) is a part of (iv) in Th. 1. But as it will become clear below, all vertices are not recovered by achievable families, mainly because they can induce only infinitely monotone games. In particular, $\mathcal{MC}^{k}(v)$ contains many more vertices.

Let us examine more precisely the number of vertices induced by strongly compatible orders. In fact, there are much fewer than expected, since many strongly compatible orders lead to the same v_{\prec} . The following is a consequence of Prop. 9.

Corollary 5 The number of vertices of $C^{k}(v)$ given by strongly compatible orders is at most $\frac{n!}{k!}$.

Note that when k = 1, we recover the fact that vertices are induced by all permutations, and that with k = n, we find only one vertex (which is in fact the only vertex of $C^{n}(v)$), which is v itself (use Prop. 9 and the definition of m_{\prec}).

5 Further results

Weakly compatible orders can produce vertices if some $v(\{i\}) = 0$. It suffices that there exists $B \in \mathcal{P}_*^k(N)$ such that $\mathcal{A}(B) = \emptyset$, and $i \in B$ such that $v(\{i\}) = 0$, and all subsets C such that $i \in C \subset B$ satisfy $m_{\prec}(B) = 0$. The following example illustrates this.

EXAMPLE 6: Take n = 3, k = 2, and the following 3-monotone capacity.

A	1	2	3	12	13	23	123
m(A)	0	0.1	0.2	0.1	0	0.2	0.4
v(A)	0	0.1	0.2	0.2	0.2	0.5	1

There are 48 vertices for $\mathcal{C}^{k}(v)$, found by PORTA:

(1)	0 1/10 1/ 5 1/10 0 3/ 5
(2)	0 1/10 1/ 5 1/10 2/ 5 1/ 5
(3)	0 1/10 1/ 5 1/ 2 0 1/ 5
(4)	0 1/10 1/ 2 1/10 2/ 5 -1/10
(5)	0 1/10 1/2 1/2 0 -1/10
(6)	0 1/10 9/10 1/10 0 -1/10
(7)	01/51/5 0 03/5
(8)	0 1/ 5 1/ 5 0 1/ 2 1/10
(9)	0 1/ 5 1/ 2 0 1/ 2 -1/ 5
(10)	0 1/2 1/5 0 1/2 -1/5
(11)	0 1/ 2 1/ 5 1/ 2 0 -1/ 5
C	12)	0 1/2 1/2 0 1/2 -1/2
(13)	0 1/2 1/2 1/2 0 -1/2
(14)	1/10 1/10 1/ 5 0 -1/10 7/10
(15)	1/10 1/10 1/2 0 2/5 -1/10
(16)	1/ 5 1/10 1/ 5 -1/10 -1/10 7/10
(17)	1/ 5 1/10 1/ 5 -1/10 2/ 5 1/ 5
(18)	1/51/101/50-1/57/10
(19)	1/51/101/51/2-1/51/5
(20)	1/51/102/5-1/102/50
(21)	1/ 5 1/10 9/10 -1/10 -1/10 0
(22)	1/51/51/5-1/5 03/5
(23)	1/51/51/5-1/51/21/10
(24)	1/51/53/10-1/51/20
(25)	1/51/54/5-1/500
(26)	1/53/101/51/2-1/50
(27)	1/54/51/50-1/50
(28)	3/10 1/10 1/ 5 -1/10 -1/ 5 //10
(29)	3/10 3/10 1/ 5 -3/10 1/ 2 -1/ 5
(30)	3/10 1/2 1/5 - 3/10 1/2 - 1/5
(31)	2/5 $1/10$ $2/5$ $1/2$ $-2/5$ $-1/10$
(32)	
	33)	$1/2 1/2 1/2 0 0^{-1/2}$
	34) 95)	4/5 1/10 1/5 - 1/10 - 1/5 1/5
	00/ 02\	$\frac{4}{5}$ $\frac{5}{5}$ $\frac{1}{5}$ $\frac{5}{5}$ $\frac{5}{10}$ $\frac{5}{5}$ $\frac{1}{5}$ 1
	(30) (37)	$-\frac{1}{2}$, $\frac{1}{2}$
	(31) (30)	9/10 1/10 9/10 0 -9/10 0
	201	0 1/5 1 0 0 -1/5
1	(<u>2</u> 8) (<u>4</u> 0)	0 1 1/5 0 0 -1/5
Ì	(41)	1/10 1/10 1 0 -1/10 -1/10
Ì	(42)	4/5 1 1/5 -4/5 0 -1/5
Ì	(43)	9/10 1/10 1 0 -9/10 -1/10
1	(44)	1 1/10 2/ 5 -1/10 -2/ 5 0

(45)	1 1/	10 9	/10 -	1/10 -9	9/10	0
(46)	1 3/	10 1	/ 5 -	3/10 -1	1/5	0
(47)	14/	51	/ 5 -	4/5-1	1/5	0
(48)	0	1	1	0	0	-1

By Cor. 5, we know that 3 vertices are produced by the strongly compatible orders, with corresponding sequences of \check{B} 's:

1,2,3,12,13,123 (this is vertex 1) 2,1,3,12,23,123 (this is vertex 2) 3,1,2,13,23,123 (this is vertex 3)

Take the weakly compatible order $1 \prec 12 \prec 2 \prec 3 \prec 13 \prec 23$. Then achievable families are:

 $\mathcal{A}(1) = 1, \quad \mathcal{A}(12) = \emptyset, \quad \mathcal{A}(2) = \{2, 12\}, \quad \mathcal{A}(3) = 3, \quad \mathcal{A}(13) = 13, \quad \mathcal{A}(23) = \{23, 123\}.$

This gives

A	1	2	3	12	13	23
$m_{\prec}(A)$	0	0.2	0.2	0	0	0.6

which is vertex 7.

Acknowledgment

The first author's presentation at the RIMS workshop is supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology, the 21st Century COE Program "Creation of Agent-Based Social Systems Sciences."

References

- [1] E. Algaba, J. M. Bilbao, R. van den Brink, and A. Jiménez-Losada. Cooperative games on antimatroids. *Discrete Mathematics*, 282:1-15, 2004.
- [2] J.-P. Barthélemy. Monotone functions on finite lattices: an ordinal approach to capacities, belief and necessity functions. In J. Fodor, B. De Baets, and P. Perny, editors, Preferences and Decisions under Incomplete Knowledge, pages 195-208. Physica Verlag, 2000.
- [3] J. M. Bilbao, N. Jiménez, E. Lebrón, and H. Peters. The selectope for games with partial cooperation. *Discrete Mathematics*, 216:11-27, 2000.
- [4] O. Bondareva. Some applications of linear programming to the theory of cooperative games. Problemy Kibernet, 10:119-139, 1963.
- [5] A. Chateauneuf and J.-Y. Jaffray. Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. *Mathematical Social Sciences*, 17:263-283, 1989.
- [6] U. Faigle and W. Kern. On the core of ordered submodular cost games. Mathematical Programming, 87:483-499, 2000.

- [8] S. Fujishige. Submodular functions and optimization. Elsevier, 2nd edition edition, 2005.
- [9] M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, 92:167–189, 1997.
- [10] J. C. Harsanyi. A simplified bargaining model for the *n*-person cooperative game. International Economic Review, 4:194-220, 1963.
- [11] T. Ichiishi. Super-modularity: applications to convex games and to the greedy algorithm for LP. J. Econom. Theory, 25:283-286, 1981.
- [12] L. Lovász. Submodular functions and convexity. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathematical programming. The state of the art, pages 235-257. Springer Verlag, 1983.
- [13] P. Miranda and M. Grabisch. Optimization issues for fuzzy measures. Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, 7(6):545-560, 1999.
- [14] P. Miranda and M. Grabisch. k-balanced capacities. In Proc. of the Int. Fuzzy Systems Association World Congress (IFSA), pages 455-460, Beijing, China, July 2005.
- [15] G. C. Rota. On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:340-368, 1964.
- [16] L. S. Shapley. Core of convex games. Int. J. Game Theory, 1:11-26, 1971.
- [17] J. Von Neuman and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.
- [18] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.