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ABSTRACT. We investigate the quantum interaction between two quantum sys-
tems in terms of $C^{*}$-algebras. We introduce the $co$rrelation CP-map between
the bipartite systems and study the operational and statistical structure of the
quantum interaction. We then generalize the informational quantities into this
quantum setting, and introduce a new entropy of CP-maps, which vanishes at
extreme CP-maps in CP-convexity.

Introduction.

We prepare two quantum states described by density operators $\rho$ and $\sigma$ on

Hilbert spaces $H_{1}$ and $K_{1}$ respectively, and so initially we have the compound

state $\omega_{0}=\rho\otimes\sigma$ on the tensor product Hilbert space $H_{1}\otimes K_{1}$ . Suppose that

there exists an interaction between the two subsystems for some time interval,

and that the systems are in equilibrium with the exterior for this time period,

then the compound state is changed to a state $\omega$ described by

$\omega=U(\rho\otimes\sigma)U^{*}$

where $U$ is a unitary operator representing the quantum evolution of the systems.

After the interaction, the states of the subsystems on $H_{2}$ and $K_{2}$ are described

by $Tr_{K_{2}}w$ and $R_{H_{2}}\omega$ respectively. Then the channels $\varphi^{*}$ from $T(H_{1})$ to $T(H_{2})$ ,

and $\phi^{*}$ from $T(K_{1})$ to $T(K_{2})$ , are defined by

$\varphi^{*}(\rho)=h_{K_{2}}\omega=r_{b_{K_{2}}U(\rho}\otimes\sigma)U^{*}$ and $\phi^{*}(\sigma)=b_{H_{2}}\omega=h_{H_{2}}U(\rho\otimes\sigma)U^{*}$ ,
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which are duals of the operations $\varphi$ from $B(H_{2})$ to $B(H_{1})$ , and $\phi$ from $B(K_{2})$

to $B(K_{1})$ respectively, representing the change of observables. In this note, to

simplify our arguments, we assume that $H_{1}=H_{2}=H$ and $K_{1}=K_{2}=K$ , and

that $\varphi$ and $\phi$ are unital, which guarantee that $\varphi^{*}$ and $\phi^{*}$ are trace preserving,

i.e., $h\varphi^{*}(\rho)=1$ and $R\phi^{*}(\sigma)=1$ . Recall from K. Kraus [10] that the unital

operation $\varphi$ is a completely positive map on $B(H)$ of the form

$\varphi(a)=\sum_{i}V_{i}^{*}aV_{i}$ for $a\in B(H)$ with $V_{i}\in B(H)$ such that $\sum_{i}V_{i}^{*}V_{i}=I_{H}$ ,

and $\phi$ has a similar representation.

We also note that a normal state $\omega$ on the tensor product $B(H)\otimes B(K)$ is

represented by a normal completely positive map $\psi_{\omega}$ from $B(K)$ to $T(H)$ with

Tr $\psi_{w}(I_{K})=1$ , i.e.,

$\omega(a\otimes b)=R(a\psi_{\omega}({}^{t}b))$ for $a\in B(H)$ and $b\in B(K)$ ,

where we can observe that $\psi_{w}(I_{K})=\varphi^{*}(\rho)$ and $\psi_{\omega}^{*}(I_{H})={}^{t}\phi^{*}(\sigma)$ . We then

define the $co$rrelation CP-map $\psi$ from $B(K)$ to $B(H)$ by

$\psi(b)$ $:=\varphi^{*}(\rho)^{-1}2\psi_{w}(b)\varphi^{*}(\rho)^{-A}\sim 2$ for $b\in B(K)$ ,

where $\varphi^{*}(\rho)^{-}$ } is defined on the support of $\varphi^{*}(\rho)$ . Then $\psi$ is a unital CP-map

from $B(s(\phi^{*}(\sigma))K)$ to $B(s(\varphi^{*}(\rho))H)$ , where $s(\phi^{*}(\sigma))$ [resp. $s(\varphi^{*}(\rho))|$ denotes

the support projection of $\phi^{*}(\sigma)$ [resp. $\varphi^{*}(\rho)$ ], so that it can be represented as

$\psi(b)=\sum_{j}W_{j}^{*}bW_{j}$ where $W_{j}\in B(H, K)$ with $\sum_{j}W_{j}^{*}W_{j}=I_{\epsilon(\varphi(\rho))H}$
.

We thus consider the following diagram of CP-maps:
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It should be noted here that the CP-map $\varphi$ depend on $\sigma$ and $U,$ $\phi$ depend on

$\rho$ and $U$ , and $\psi$ depends on $\rho,$
$\sigma$ and $U$ . We also note that, when we focus

on the operation $\varphi$ , we can assume that $\sigma$ is pure without loss of generality,

i.e., the system $K$ is closed before the interaction. In fact, we can consider

the Hilbert space $\tilde{K}=K\otimes K$ and take a pure state $\tilde{\sigma}$ on $\tilde{K}$ (which we call

a purification of $\sigma$), and a unitary $\tilde{U}$ on $H\otimes\tilde{K}$ such that $\overline{U}|_{H\otimes K}=U$ and

$b_{\tilde{K}}\tilde{U}(\rho\otimes\tilde{\sigma})\tilde{U}^{*}=\varphi^{*}(\rho)$. (See [12], for example, for the detailed procedure of

the purification.)

Our purpose in this note is to find out the relations between the statistical

and informational quantities, such as entropy, mutual entropy, dissemination

and equivocation, which we define for the density operators and operations (or

channels) in the above diagram. Based on this structure theory, we shall provide

a new description of quantum information theory, and define a new entropy of

operations, vanishing at extreme CP-maps in CP-convexity, which provides a

measure of the complexity of the quantum interaction.

Preliminaries.

1. Notations. In this note, to $simpli6^{r}$ our arguments, we restrict ourselves

on $B(H)$ as the $C^{*}$-algebra representing the quantum system, the $C^{*}$-algebra
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of all bounded linear operators on a Hilbert space $H$ (infinite dimensional in

general). We denote by $T(H)$ the set of all trace class operators on $H$ , and

by $S(B(H))_{n}$ , which we shall abbreviate by $S(H)$ , the normal states of $B(H)$ ,

i.e., the density operators on $H$ . In particular, the pure states of $B(H)$ are
one dimensional projections on $H$ , and will be written as $P(H)$ . For a density

operator $\rho\in S(H)$ , we denote by $S(\rho)$ the von Neumann entropy of $\rho$ , i.e.,

$S(\rho)=-h\rho\ln\rho$ .

We use the notation $CP(B(K), B(H))_{n}$ , for example, for the set of all nor-

mal CP-maps from $B(K)$ to $B(H)$ , and use $S_{H}(B(K))_{n}$ for the unital ele-

ments. In particular, $S_{H}(B(H))_{n}$ denotes the unital operations on $H$, and

$CP(B(K), T(H))_{n}$ denotes the set of all TCP-maps (trace class operator valued

CP-maps) from $B(K)$ to $T(H)$ . As we mentioned in Introduction, there exists

one-t&one correspondence $w\in S(B(H)\otimes B(K))_{n}rightarrow\psi_{w}\in CP(B(K), S(H))_{n}$.

For $\varphi\in CP(B(K), B(H))$ , we denote by $s(\varphi)$ the support of $\varphi$ , i.e., $s(\varphi)=$

$s(\varphi(I_{K}))$ .

2. CP-conve vity. The notion of CP-convexity was originally introduced by

the author in [3] and studied in [4-6]. We denote by $Q_{H}(B(H))_{n}$ the normal

contractive CP-maps on $B(H)$ , and call the normal CP-state space of $B(H)$ .
Let $\{\varphi_{i}\}\subset Q_{H}(B(H))_{n}$ be a family of normal CP-states, and suppose that

$\varphi\in Q_{H}(B(H))_{n}$ is expressed as

$\varphi=\sum_{i}S_{i}^{*}\varphi_{i}S_{i}$ with $S_{i}\in B(H)$ and $\sum_{i}S_{i}^{*}S_{i}=I_{s(\varphi)H}$ ,

then we say that $\varphi$ is a CP-convex combination of $\varphi_{i}$ , and abbreviate it by

$\varphi=CP-\sum_{:}S_{i}^{*}\varphi_{i}S_{i}$ . (Note that an operation is a CP-convex combination of
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non-unital CP-states.)

A CP-state is defined to be CP-extreme if $\varphi=CP-\sum_{i}S_{l}^{*}\varphi_{i}S_{i}$ implies that

each $\varphi_{i}$ is unitarily equivalent to $\varphi$ . It can be shown that $\varphi\in Q_{H}(B(H))_{n}$ is

CP-extreme iff $\varphi$ is a unitary transform, i.e., $\varphi=U^{*}\cdot U$ with a unitary $U$ .

We also define $\varphi\in Q_{H}(B(H))_{n}$ to be conditionally CP-extreme if $\varphi=$

$CPrightarrow\sum_{i}S_{i}^{*}\varphi_{i}S_{i}$ with $S_{i}\geq 0$ implies that $\varphi_{i}=\varphi$ for all $i$ . A CP-state $\varphi\in$

QH $(B(H))_{n}$ is conditionally CP-extreme iff $\varphi$ is a conditional transform, i.e.,

$\varphi=u^{*}\cdot u$ with a partial isometry $u$ . (cf. [7] for CP-extreme states for CP-state

space of general $C^{*}$-algebras).

S. Lindblad entropy. Let $\varphi\in S_{H}(B(H))_{n}$ be an operation represented by

$\varphi(a)=\sum_{i}V_{i}^{*}aV_{i}$ for $a\in B(H)$ and $V_{i}\in B(H),$
$\sum_{i}V_{i}^{*}V_{i}=I_{H}$ .

We then define the following entropies of $\varphi$ :

(1) $S_{\rho}^{1}(\varphi)$ $:=S(M_{\rho}^{L}(\varphi))$ where $M_{\rho}^{L}(\varphi)$ $:=(hV_{i}\rho V_{j}^{*})$ , which does not depend on

the decomposition of $\varphi$ , and we call the L\’indblad $mat\dot{m}$ of $\varphi$ w.r.t. $\rho$ .

(2) $S_{\rho}^{2}(\varphi)$ $:= \inf${ $- \sum_{i}\lambda_{i}\ln\lambda_{i}$ ; $\varphi=\sum_{i}\lambda_{i}\varphi_{i},$
$\varphi_{i}$ pure with $\Vert\varphi_{i}\Vert_{\rho}=1$}

where $\lambda_{i}=hV_{i}\rho V_{i},$ $\varphi_{i}=\lambda_{i}^{-1}V_{i}^{*}\cdot V_{i},$ $\Vert\varphi\Vert_{\rho}=b\rho\varphi(I_{H})$ .

(3) $S_{\rho}^{3}(\varphi)$ $:=S(\rho_{\varphi})$ with $\rho_{\varphi}=\sum_{i}($ . , $V_{i})_{\rho}V_{i}\in S(B(H)_{\rho})_{n}$ , where $B(H)_{\rho}$ is the

GNS-representation space of $B(H)$ with $\rho$ , and $(X, Y)_{\rho}=R\rho Y^{*}X$ .

(4) $S_{\rho}^{4}(\varphi)$ $:=S(\Omega_{\rho}^{\varphi})$ with $\Omega_{\rho}^{\varphi}=\sum_{i}(\cdot V_{i}, V_{i})_{\rho}\in S(B(B(H)_{\rho}))_{n}$ .

(5) $S_{\rho}^{5}(\varphi)$ $:=S(\omega_{\rho}^{\varphi})$ where $\omega_{\rho}^{\varphi}\in S(B(H)\otimes B(H))_{n}$

with $\omega_{\rho}^{\varphi}(a\otimes b)=n_{\rho^{2}}^{\iota_{\varphi(a)\rho^{A}{}^{t}b}}2$ for $a,$ $b\in B(H)$ .

(6) $S_{\rho}^{6}(\varphi)$ $:=S(\tau_{\rho}^{\varphi})$ with $\tau_{\rho}^{\varphi}=\sum_{i}(V_{i}\otimes I)\tilde{\rho}(V_{i}\otimes I)^{*}$ where $\tilde{\rho}$ is the purification
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of $\rho$ on $H\otimes H$ .

The entropies $S_{\rho}^{1}(\varphi)$ and $S_{\rho}^{6}(\varphi)$ were introduced by G. Lindblad $[11, 12]$ and

shown that they ar$e$ equivalent, and $S_{\rho}^{3}(\varphi)$ was studied by R. Alicki [1]. We can

show that the above entropies are all equivalent.

Theorem 1. $S_{\rho}^{1}(\varphi)=S_{\rho}^{2}(\varphi)=\cdots=S_{\rho}^{6}(\varphi)$ , which we shall call the Lindblad

entropy of $\varphi$ utth respect to $\rho$ , and denote by $S_{\rho}^{L}(\varphi)$ .

In quantum communication theory, this entropy is also called the entropy

exchange (e.g., [9]), however G. Lindblad [11] was the first to define and study

this entropy.

4. Entanglement of formation. Let $\varphi_{\rho}\in CP(B(K), T(H))$ be a TCP-map

which is expressed as

$\varphi_{\rho}=\sum_{i}v_{i}^{*}\cdot v_{i}$ with $\sum_{i}v_{i}^{*}v_{i}=\rho\in S(H)$

$= \sum_{i}\lambda_{i}\tilde{v}_{i}^{*}\cdot\tilde{v}_{i}$ with $\lambda_{i}=Trv_{i}^{*}v_{i},\tilde{v}_{i}=\lambda_{i}^{-\int}v_{i},\tilde{v}_{i}^{*}\tilde{v}_{i}\in S(H)$.

Then

$E(\varphi_{\rho})$
$:= \inf\{\sum_{l}\lambda_{i}S(\tilde{v}_{i}^{*}\tilde{v}_{i});\varphi_{\rho}=\sum_{i}\lambda_{i}\tilde{v}_{i}^{*}\cdot\tilde{v}_{i})\}$

is called the entanglement of forrmation of $\varphi_{\rho}$ , which is the CP-map version of

the original definition for compound states (cf. e.g., [2], [14]).

Definition. Let $\varphi\in S_{H}(B(K))_{n}$ be a normal unital CP-map from $B(K)$ to

$B(H)$ , and $\rho\in S(H)$ be a density operator on $H$ , then we define $E_{\rho}(\varphi)$ $:=E(\varphi_{\rho})$ ,

with $\varphi_{\rho}=\rho\varphi\rho$ , to be the entanglement of formation of $\varphi$ vtth respect to $\rho$ .

Now, we shall consider the structure of the interaction in 3 steps.
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Case I : $\rho\in P(H),$ $\sigma\in P(K)$ .

Let $\rho=P_{0}\in P(H)$ and $\sigma=Q_{0}\in P(K)$ . In this case, $\omega_{0}=P_{0}\otimes Q_{0}$ and

$\omega=U(P_{0}\otimes Q_{0})U^{*}\in P(B(H)\otimes B(K))$ , and $\omega(a\otimes b)=Raw^{*}{}^{t}bw(a\in B(H)$ ,

$b\in B(K))$ , so that $w^{*}w=\varphi^{*}(P_{0})$ and $ww^{*}={}^{t}\phi^{*}(Q_{0})$ , and note that

$\varphi_{P_{O}}=P_{0}\varphi(\cdot)P_{0}=\sum_{i}P_{0}V_{i}^{*}\cdot V_{i}P_{0}=\varphi^{*}(P_{0})(\cdot)P_{0}$,

$\psi_{w}=w^{*}\cdot w,$ $w\in B(H, K),$ $w^{*}w=\varphi^{*}(P_{0})$ ,

so that we can deduce the following equalities.

Theorem 2. $S(\varphi^{*}(P_{0}))=S(\phi^{*}(Q_{0}))=S_{P_{0}}^{L}(\varphi)=E_{\varphi^{*}(P_{0})}(\psi)$

This result suggests that there exists a symmetric structure in the interacting

system in the simplest case when the initial states are both pure, and this

principle will be extended to the general case where the initial states are mixed

states ($Th\infty rem4$ and $Th\infty rem5$).

Case II : $\rho\in S(H),$ $\sigma\in P(K)$ .
As we mentioned in Introduction, the general case can be reduced to this

caee. Let

$\rho=\sum_{j}\mu_{j}P_{j}$
with $\mu_{j}>0,$

$\sum_{j}\mu_{j}=1$
,

where we do not assume that this is the spectral decomposition, if not indicated

so. Observe that the situation is the superposition of the cases of the pure states

$\omega_{j}=U(P_{j}\otimes Q_{0})U^{*}$ considered in Case I with weights $\mu_{j}$ , i.e.,

$\omega=U(\rho\otimes Q_{0})U^{*}=\sum_{j}\mu_{j}U(P_{j}\otimes Q_{0})U^{*}=\sum_{j}\mu_{j}w_{j}$
,
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so that we have

$\varphi_{\rho}=\rho\not\in\varphi(\cdot)\rho^{1}\S=\sum_{i}v_{i}^{*}\cdot v_{i}$ with $v_{i}=V_{i}\rho^{\frac{1}{2}},$

$\sum_{i}v_{i}^{*}v_{i}=\rho,$ $\sum_{i}v_{i}v_{i}^{*}=\varphi^{*}(\rho)$ ,

$\psi_{w}=\sum_{j}\mu_{j}w_{j}^{*}\cdot w_{j},$ $w_{j}\in B(H, K),$ $w_{j}^{*}w_{j}=\varphi^{*}(P_{j}),$
$\sum_{j}\mu_{j}w_{j}^{*}w_{j}=\varphi^{*}(\rho)$ .

We now fix CONS’s $\{e_{j}\},$ $\{f_{i}\}$ of $H$ and $K$ respectively. We can show that

the operators $w_{j}$ are determined by $V_{i}$ up to unitary equivalence.

Lemma 3. Let $V_{i}=(v_{1i}v_{2i}\cdots v_{ji}\cdots)$ where $v_{ji}=V_{i}e_{j}$ is the column vectors.

Then, $w_{j}^{*}=(v_{j1}v_{j2}\cdots v_{ji}\cdots)U_{j}$ where $U_{f}$ is an invertible operator on $K$

depending on the CONS $\{f_{i}\}$ .

Theorem 4. $\phi^{*}(Q_{0})$ is unitarely equivalent to ${}^{t}M_{\rho}^{L}(\varphi)$ where $M_{\rho}^{L}(\varphi)$ is the

Lindblad $mat\dot{m}$.

This result has aprofound meaning in measurement theory. Suppose now that

$H$ is an apparatus and $K$ is an observed system. Then the CP-map $\kappa:=\varphi\circ\psi$

represents the measurement of the observables $b\in B(K)$ by the apparatus in

the state $\rho$ . Then, by Theorem 4, we can deduce that

Tr $(\varphi 0\psi)(b)\rho=bb(\psi^{*}\circ\varphi^{*})(\rho)=Rb{}^{t}\phi^{*}(Q_{0})=Rb\tilde{M}_{\rho}^{L}(\varphi)$ ,

where $\tilde{M}_{\rho}^{L}(\varphi)$ is an operator on $K$ unitarily equivalent to the Lindblad matrix.

Thus a measurement is nothing but a functional by the trace with the Lindblad

matrix of the operation $\varphi$ in the same Hilbert space $K$ .

Case III : $\rho\in S(H),$ $\sigma\in S(K)$ .
In this case, we can show that the both operations $\varphi$ and $\phi$ have the same

Lindblad entropy, which includes Theorem 4 as a special case.
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Theorem 5. $S_{\rho}^{L}(\varphi)=S_{\sigma}^{L}(\phi)$

The proof of this theorem is reduced to Theorem 2 using the purifications

of $\rho$ and $\sigma$ . This result may be compared to the Newton’s third principle in

mechanics, and presents a simple and beautiful symmetry in interactions.

We now assume that $\rho=\sum_{j}\mu_{j}P_{j}$ and $\sigma=\sum_{k}\gamma_{k}Q_{k}$ be the spectral decom-

positions. Let $\varphi^{k}$ be defined by $Q_{k}$ , and $\dot{\psi}$ be defined by $P_{j}$ , i.e.,

$\varphi^{k}=\sum_{i}V_{i}^{k^{*}}\cdot V_{i}^{k}$ with $V_{i}^{k}\in B(H),$
$\sum_{i}V_{i}^{k^{*}}V_{i}^{k}=I_{H}$

$\dot{\psi}=\sum_{l}S_{l}^{j^{*}}\cdot S_{l}^{j}$ with $S_{l}^{j}\in B(K),$
$\sum_{l}S_{l}^{j^{*}}V_{l}^{j}=I_{K}$

$\psi_{w}^{k}=\sum_{j}\mu_{j}w_{j}^{k^{*}}$
. $w_{j}^{k}$ with

$\sum_{j}\mu_{j}w_{j}^{k^{*}}w_{j}^{k}=\varphi^{k^{*}}(\rho)$

$\psi_{w}^{j^{*}}=\sum_{k}\gamma_{k}w_{j}^{k}$
. $w_{j}^{k}$ with $\sum_{k}\gamma_{k}w_{j}^{k}w_{j}^{k^{*}}=\dot{\psi}^{*}(\sigma)$ .

In the case that all of the above decompositions are orthogonal decompositions,

and assume that all operators are represented in CONS’s from the spectral

decompositions of density operators $\rho$ in $H_{1},$ $\sigma$ in $K_{1},$ $\varphi^{*}(\rho)$ in $H_{2}$ , and $\phi^{*}(\sigma)$

in $K_{2}$ in Introduction, then we can show the following equalities between the

matrix elements of the CP-coefficients.

Theorem 6. $[V_{q}^{k}]_{pj}=[S_{p}^{j}]_{qk}=[w_{j}^{k^{*}}]_{pq}=[U]_{qj}^{kp}$

This result implies that, given $\rho$ and $\sigma$ , if we know $U$ or the CP-coefiicients

of the families $\{\varphi^{k}\},$ $\{\psi\},$ $\{\psi_{\{d}^{k}\}$ or $\{\psi_{w}^{j^{*}}\}$ , then we can determine the others.

Quantum information theory.

We shall extend the notions of the classical information theory in our quantum

setting associated with the density operators and channels in the diagram, where

we can assume that $\sigma=Q_{0}$ (Case II) without loss of generality.

162



ICHIRO FUJIMOTO AND HIDEO MIYATA

Definition. Let $\varphi^{*}$ be a channel from $T(H_{1})$ to $T(H_{2})$ and $\rho\in S(H_{1})$ . We

define the dissemination $D_{\rho}(\varphi^{*})$ of the channel $\varphi^{*}$ with respect to $\rho$ by

$D_{\rho}( \varphi^{*}):=\inf$ { $\sum_{j}\mu_{j}S(\varphi^{*}(P_{j}));\rho=\sum_{j}$馬弓, $P_{j}\in P(H),$ $\mu_{j}>0,$
$\sum_{j}\mu_{j}=1$ }

The next result shows that the entanglement of the correlation CP-map be

tween the interacting bipartite systems is nothing but the dissemination of the

channel $\varphi^{*}$ .

Theorem 7. $E_{\varphi(\rho)}(\psi)=D_{\rho}(\varphi^{*})$ .

In fact, the correspondence

$\rhorightarrow\omega_{0}=\rho\otimes Q_{0}rightarrow\omega=U(\rho\otimes Q_{0})U^{*}rightarrow\psi_{d}$

is affine isomorphic, so we have

$E_{\varphi(\rho)}( \psi)=\inf\{\sum_{j}\mu_{j}S(w_{j}^{*}w_{j});\psi_{w}=\sum_{j}\mu_{j}w_{j}^{*}\cdot w_{j}\}$

$= \inf\{\sum_{j}\mu_{j}S(\varphi^{*}(P_{j}));\rho=\sum_{j}\mu_{j}P_{j}\}=D_{\rho}(\varphi^{*})$

Deflnition. Let $\varphi^{*}$ be a channel from $T(H_{1})$ to $T(H_{2})$ and $\rho\in S(H_{1})$ . Then

we define the mutual entropy $I_{\rho}(\varphi^{*})$ of $\varphi^{*}$ with respect to $\rho$ by

$I_{\rho}(\varphi^{*})$ $:=S(\varphi^{*}(\rho))-D_{\rho}(\varphi^{*})$

The idea $\infty mes$ from the Holevo bound as the preliminary notion (cf. [9]), or

Ohya’s pseudo mutual entropy for finite decompositions (cf. [15]). Note that,

from Theorem 7, in our diagram

$I_{\rho}(\varphi^{*})=S(\varphi^{*}(\rho))-E_{\varphi^{*}(\rho)}(\psi)$ .
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Further, we shall consider the mutual entropy for the correlation CP-map $\psi$ ,

$i.e.$ ,

$I_{\varphi(\rho)}(\psi^{*})=S(\phi^{*}(Q_{0}))-D_{\varphi^{r}(\rho)}(\psi^{*})=S_{\rho}^{L}(\varphi)-E_{\rho}(\kappa)$ .

We note that the mutual entropy of the correlation CP-map depends on the

direction of the map. In fact, the composite state $\omega$ can be described by the

TCP-map $\psi_{w}^{*}$ , i.e., $\omega(a\otimes b)=R\psi_{w}^{*}(a){}^{t}b$ for $a\in B(H)$ and $b\in K(H)$ , so by the

conjugate correlation CP-map

$\psi^{c}$ $:={}^{t}\phi^{*}(Q_{0})^{-1}2\psi_{w}^{*}{}^{t}\phi^{*}(Q_{0})^{-\int}$ .

Then we have

$I_{\phi(Q_{0})}(\psi^{c*})=S(\varphi^{*}(\rho))-D_{\phi^{r}(Q_{0})}(\psi^{c*})=S(\varphi^{*}(\rho))-E_{\rho}(\varphi)$ ,

which is different from $I_{\varphi(\rho)}(\psi^{*}\cdot)$ in general.

Deflnition. Let $\varphi^{*}$ be a channel from $T(H_{1})$ to $T(H_{2})$ and $\rho\in S(H_{1})$ . We

then define the equivocation $V_{\rho}(\varphi^{*})$ of $\varphi^{*}$ with respect to $\rho$ by

$V_{\rho}(\varphi^{*})$ $:=S(\rho)-I_{\rho}(\varphi^{*})=S(\rho)+D_{\rho}(\varphi^{*})-S(\varphi^{*}(p))$ .

All of the above defined informational quantities are represented as functions

of $\varphi$ and $\rho$ , and the functional properties of these quantities and their $applica_{r}$

tions are discussed in [8] and [13].

New entropy for CP-maps.

Deflnition. Let $\varphi$ be a CP-map on $B(H)$ with $\varphi(I_{H})=s(\varphi)$ and $\rho\in S(s(\varphi)H)$ .

We then define an entropy $S_{\rho}(\varphi)$ of $\varphi$ with respect to $\rho$ by

$S_{\rho}(\varphi):=S_{\rho}^{L}(\varphi)+I_{\phi^{*}(Q_{0})}(\psi^{c*})=S_{\rho}^{L}(\varphi)+S(\varphi^{*}(\rho))-E_{\rho}(\varphi)$ .
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We note that $S_{\rho}(\varphi)$ is a concave function with respect to $\varphi$ . Furthermore, we

can show that it vanishes if and only if $\varphi$ is CP-extreme, i.e.,

$S_{\rho}(\varphi)=0$ for all $\rho\in S(s(\varphi)H)$ iff $\varphi$ is a conditional transform.

If $\varphi$ is a unital CP-map, then

$S_{\rho}(\varphi)=0$ for all $\rho\in S(H)$ iff $\varphi$ is a unitary transform.

For example, let $\varphi=\sum_{i}\lambda_{i}U_{i}^{*}\cdot U_{i}$ with unitary $U_{i}$ and $\lambda_{i}>0,$ $\sum_{i}\lambda_{i}=1$ .
Then $S_{\rho}(\varphi)\geq S_{\rho}^{L}(\varphi)+S(\varphi^{*}(\rho))-S(\rho)\geq 0$ (cf. [8] for some other examples).
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