Hyperbolicity of critically finite maps on complex projective plane

Kazutoshi MaEgawa

This is the abstract of my talk in the conference held at RIMS，September 3－6 2007．The results obtained in［M1］and［M2］will be explained．

Our main purpose is to give a necessary and sufficient condition for a critically finite map on complex projective plane to be Axiom A．This is helpful to understand the dynamics of a map f_{ϵ} which is obtained by a small perturbation of an Axiom A critically finite map f_{0} ．

1 Repellers

We denote by \mathbb{P}^{k} complex projective space of complex dimension $k(\geq 1)$ and by ω Fubini－ Study form such that $\int_{\mathbb{P}^{k}} \omega^{k}=1$ ．For a holomorphic self－map f of \mathbb{P}^{k} ，we define the degree of f by the formula

$$
\operatorname{deg}(f):=\int_{\mathbf{P}^{k}} f^{*} \omega \wedge \omega^{k-1}
$$

Because the dynamics of degree 1 maps can be understood by linear algebra，in this paper，we will focus on the case when $\operatorname{deg}(f) \geq 2$ ．Let C denote the critical set of f ．We consider the closure of the post－critical set and the critical limit set for f which are respectively defined by

$$
D:=\overline{\bigcup_{n \geq 1} f^{n}(C)}, E:=\bigcap_{n \geq 1} \bigcup_{i \geq n} f^{i}(C) .
$$

In this section，we will study the dynamics on invariant compact sets outside D ．We will describe a＇semi－repelling＇structure of such invariant compact sets．

Definition 1．1．Let f be a holomorphic self－map of \mathbb{P}^{k} of degree ≥ 2 ．Let T_{p} denote the holomorphic tangent space at $p \in \mathbb{P}^{k}$ and let $|\cdot|$ denote Fubini－Study metric．

We say that $p \in \mathbb{P}^{k}$ is repelling for f if and only if

$$
\min _{v \in T_{p},|v|=1}\left|D f^{j}(v)\right| \rightarrow+\infty
$$

as $j \rightarrow+\infty$ ，where $D f$ denote the derivative of f ．

We say that a compact set K in \mathbb{P}^{k} is a repeller for f if and only if $f(K)=K$ and there are constants $c>0, \lambda>1$ such that

$$
\left|D f^{n}(v)\right| \geq c \lambda^{n}|v|
$$

for all $v \in \bigcup_{p \in K} T_{p}$ and all $n \geq 1$.
Let \mathbb{D} denote the unit disk in \mathbb{C}. We say that a holomorphic embedding $\phi: \mathbb{D} \rightarrow \mathbb{P}^{k}$ is a Fatou disk if and only if $\left\{f^{n} \circ \phi\right\}_{n \geq 1}$ is a normal family in \mathbb{D}. We say that a Fatou disk $\phi: \mathbb{D} \rightarrow \mathbb{P}^{k}$ is noncontractive if and only if every limit map of $\left\{f^{n} \circ \phi\right\}_{n \geq 1}$ is nonconstant.

By the following theorem, we describe a 'semi-repelling' structure of an invariant compact set outside D, in terms of repeling points and Fatou disks.

Theorem 1.2. Let f be a holomorphic self-map of \mathbb{P}^{k} of degree ≥ 2. Let K be a compact set in \mathbb{P}^{k} such that $f(K) \subset K$ and $K \cap D=\emptyset$. Then, there are subsets $K^{u}, K^{c} \subset K$ which satisfy the following properties:
(i) $K^{u} \cup K^{c}=K, K^{u} \cap K^{c}=\emptyset$;
(ii) $f\left(K^{u}\right) \subset K^{u}, f\left(K^{c}\right) \subset K^{c}$;
(iii) each point in K^{u} is repelling;
(iv) for each $p \in E^{c}$, there is a noncontractive Fatou disk through p.

Moreover, if $f(K)=K$ and $K^{c}=\emptyset$, then K is a repeller.

2 Maps with sparse critical orbits

Let f be a holomorphic self-map of \mathbb{P}^{k} of degree ≥ 2. As in case when $k=1$, we will consider the Fatou set and the Julia set for f.

Definition 2.1. We define the Fatou set F for f to be the domain of normality for the sequence of the iterates $\left\{f^{n}\right\}_{n \geq 1}$ and define the Julia set J as $J:=\mathbb{P}^{k} \backslash F$.

The limit $T:=\lim _{n \rightarrow+\infty} \frac{1}{d^{n}}\left(f^{*}\right)^{n} \omega$ exists and we call T the Green $(1,1)$ current for f. The p-fold wedge product $T^{p}:=T \wedge \cdots \wedge T$ is called the Green (p, p) current for f and the support

$$
J_{p}:=\operatorname{supp}\left(T^{p}\right)
$$

is called the p-th Julia set.

By Fornæss-Sibony and Ueda, it is shown that $J_{1}=J$. By Briend-Duval, it is shown that

$$
\left.J_{k} \subset \overline{\{r e p e l l i n g ~ p e r i o d i c ~ p o i n t s ~}\right\}
$$

Interestingly, if $k \geq 2$, it is possible that J_{k} is a proper subset of the one on the right hand side. So, when we study Axiom A maps in higher dimensions, we cannot avoid considering this phenomenon.

Definition 2.2. Let f be a holomorphic self-map of \mathbb{P}^{k} of degree ≥ 2. We say that f is critically finite if and only if D is algebraic. We say that f is critically sparse if and only if D is pluripolar. (Obviously, critically finite maps are critically sparse.)

When f is critically sparse, we can show that J_{k} is the 'precise' locus of the distribution of repelling periodic points for f. Actually, we have a stronger therem as follows.

Theorem 2.3. Suppose that f is critically sparse. Then, all repellers for f are contained in J_{k}. In particular,

$$
\left.J_{k}=\overline{\{r e p e l l i n g ~ p e r i o d i c ~ p o i n t s ~}\right\}
$$

This theorem seems useful in many cases, not only for critically finite maps. For instance, let us see the following application.

Example 2.4. Let P be a polynomial self-map of \mathbb{C}^{k} of degree ≥ 2 which extends holomorphically on \mathbb{P}^{k}. We put

$$
K(P):=\left\{w \in \mathbb{C}^{k} \mid\left\{P^{n}(w)\right\}_{n \geq 0} \text { is bounded }\right\}
$$

Suppose that $K(P) \cap C=\emptyset$, where C is the critical set of (the extended) P. Since $K(P)$ is a repeller and P is critically sparse in \mathbb{P}^{k}, we can apply Theorem 2.3. Hence, we obtain $K(P)=J_{k}$.

3 Critically finite maps and hyperbolicity

In this section, we will deal with holomorphic self-maps of \mathbb{P}^{2}. Our philosophy in this section is that a good behavior of critical orbits implies a good structure of global dynamics.

Definition 3.1. Let f be a holomorphic self-map of \mathbb{P}^{2} of degree ≥ 2. (Then, f is not invertible.)
Let S be a surjectively forward invariant compact set in \mathbb{P}^{2}. We say that S is hyperbolic if and only if the tangent bundle over the space \widehat{S} of histories of points in S has a hyperbolic splitting structure.

We say that f is Axiom \mathbf{A} if and only if the nonwandering set Ω for f is hyperbolic and equals to the closure of the set of periodic points of f.

When f is Axiom A , we consider the decomposition of the nonwandering set

$$
\Omega=\Omega_{0} \sqcup \Omega_{1} \sqcup \Omega_{2}
$$

where Ω_{i} is the part of unstable dimension i.
The following theorem states that a good behavior of critical orbits implies a good structure of Fatou set.

Theorem 3.2. Let f be a holomorphic self-map of \mathbb{P}^{2} of degree ≥ 2. Suppose that $J \cap E$ is a hyperbolic set. Then, the Fatou set F consists of the attractive basins for finitely many attracting cycles. Moreover, if the unstable dimension of $J \cap E$ is 1 , then

$$
E=\{\text { attracting periodic points }\} \cup \bigcup_{\hat{p} \in \widehat{J \cap E}} W^{u}(\hat{p})
$$

where $W^{u}(\hat{p})$ is the unstable manifold for \hat{p}.
Remark 3.3. Theorem 3.2 is still true if we replace $J \cap E$ with the nonwandering part of $J \cap E$. Note that the hyperbolicity of the nonwandering part of $J \cap E$ is a necessary condition for f to be Axiom A.

Remark 3.4. The first part of Theorem 3.2 can be generalized in any dimension ≥ 2.
By integrating results above, we obtain our main theorems :
Theorem 3.5. Let f be a critically finite map on \mathbb{P}^{2}. Then, f is Axiom A if and only if $J \cap E$ is a hyperbolic set of unstable dimension 1.

Theorem 3.6. Let f be a critically finite map on \mathbb{P}^{2} which is Axiom A. Then, the following (1) - (7) hold:
(1) all irreducible components of E are rational;
(2) J_{2} is connected;
(3) $\Omega_{2}=J_{2}$;
(4) $\Omega_{1}=J \cap E$;
(5) $\Omega_{0}=\{$ attracting periodic points $\} \neq \emptyset$;
(6) $E=\{$ attracting periodic points $\} \cup \bigcup_{\hat{p} \in \widehat{J \cap E}} W^{u}(\hat{p})$;
(7) $J=J_{2} \sqcup \bigcup_{p \in J \cap E} W^{s}(p)$.

Remark 3.7. The degree of an irreducible component X of E can be any integer ≥ 1. Thus, X is not necessarily smooth.

References

[M1] K.MaEgawa, On Fatou maps into compact complex manifolds, Ergod. Th. \& Dynam. Sys., 25, 2005, 1551-1560.
[M2] K.MAEGAWA, Holomorphic maps on \mathbb{P}^{k} with sparse critical orbits, Submitted.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYoto UNIVERSITY
606-8502, Kyoto, JAPAN
E-mail address: maegawa@math.kyoto-u.ac.jp

