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Abstract

In this note, consider dynamics of a rational mapping F' on 2-dimensional
complex projective space P? which has a periodic indeterminate point p. By
using a symbol sequence j € {1,2}Y, we will define some family {V;}jes which
consists of locally invariant holomorphic curves at p by F, algebraically.

1. Introduction.
In this note, we consider a local dynamical structure of a rational mapping F' of
- P? near a periodic indeterminate point p. Using a blow up, we construct a family
{V;}jes which consists of locally invariant curves at p by F, where J is a subset of
the Cantor set {1,2}N.

Here, prepare some notation and terminology. Let f;(z,y,t)(¢ = 0,1, 2) be homo-
geneous polynomials with degree d, F : [z : y : t] — [fo : f1 : f2] a rational mapping
on P? and F: (z,y,t) — (fo, f1, f2) & polynomial mapping on C3. Then, we have
moF = Fom on C® except some analytic sets, where 7 : C*\ {(0,0,0)} — P?
is the canonical projection. A point p € P? is said to be an indeterminate point
of F if F(p) = (0,0,0) for some point § € 7~*(p). In general, if p is an indeter-
minate point, then Ny, W is not a single point, where the intersection is
taken over all open neighborhoods U, of p. So, no definition of the image F(p)
makes the mapping F be continuous. Moreover, if p € Ny, F(Up \ {p}), it is called a
periodic indeterminate point. It can be seen from the definition that a periodic inde-
terminate point has a certain recurrent property, hence we expect a local dyné.mica.l
structure at this point.
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In this note, we assume that F : P> — P? is a rational mapping with an
indeterminate point p = [0 : 0 : 1]. We often identified C? with the affine chart of
P? which is defined by {[x ry:t]eP? |t # 0}, and put p = (0,0). Let

X:={(a:,y)x[u:v]€szP1(xv-—yu=0}

be a subset of C? x P!. Then, X is a subvariety of C? x P! and covered by the
following two coordinate neighborhoods {(U?, u?)}j=0,1,

U°:={(x,y)><[u:v1€X|y=%x}, w:U%> (m,y)x[u:v]H(x,s)ECZ,

Ut = {(x,'y) xu:vjeX|z= %y},ulel 3 (z,y) X [u: V] r—-v (%,y) € C2

Definition 1 (see [4]). The mapping 7 : X — C? defined by restricting the first
projection C? x P! — C? is called the blow up of C? centered at p = (0,0) and
E :=771(0,0) = (0,0) x P is called the exceptional curve.

It is remarked here that 7: X \ E — C?\ {(0,0)} is a biholomorphic mapping,
and by replacing C? with the affine chart {[:z: cy:t]eP?t# 0} of P?, it can be
naturally extended as the blow up of P? centered at p = [0: 0 : 1]. To simplify the
notation, we call it blow up of P? centered at p, too.

The study of local dynamics of a periodic indeterminate point was started by Y.
Yamagishi (see [8] and [9]). Here, introduce his results. Set F:=Form:X - P2

Assume that F satisfies the following assumption.

[ (1) F is a holomorphic mapping on some open neighborhood of E,

(A.O) ﬁ (2) F—l(p) NE = {Pl,Pz} a'nd’

(3) there exist open neighborhoods NN; of p; such that Fly, is
a biholomorphic mapping for i = 1, 2.

Here, we remark that p is a periodic indeterminate point of F. Mdreover, he
assumed that F is contracting in the horizontal direction on IN;. Then, it has been
proved that there exists a family of local stable manifolds of p which is indexed by
the Cantor set

{1,2}N = {j = (i, Jo»-.-) | Jn = 1,2 forn € N}.
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It is called the Cantor bouquet (for detail, see [8] and [9)]).
In this note, we consider the following family of curves which is a generalization
of the Cantor bouquet.

Definition 2. A family {W)}xea of curves is locally invariant at p by F if

(1) every W), is given by a graph of some continuous function
¢,\:Ap‘\3$l—)y=¢,\($)ec

- with 5(0) =0, where A, = {z € C||z| < pr}, and
(2) for any Wy, there is a X' € A and some open neighborhood Ny of p such that
lim,_.o F(z, ¢a(z)) = p and

F(z,¢x(z)) NNy C Wy for z € A, \ {0}

Especially, if every ¢ is a holomorphic function, then {Wy} is called a family of

holomorphic curves.

Remark. Let be a mapping @) : A,, — C? by ®,(z) = (z,¢s(z)). Assume
that ®, is a holomorphic mapping. Then, F o ®, is well-defined on A,,, even if
p is an indeterminate point of F, that is, there is a unique holomorphic mapping
g: A, — C? such that g(2) = F o ®)(2) for z € A,, \ {0} (for detail, see [1]).

Now, we state our Main theorems. In the reminder of this note, denote j, = 1,2
for every n € N. Assume that F satisfies the condition (A.0). Then, the following
claim (A.1) holds.

( (1) F := 7' o F' is a meromorphic mapping on N(E) and {p:,p;} are
indeterminate points of Fy, where N(E) is an open neighborhood of E.
Let 7;, : X;, — X be the blow up of X centered at p;, and

(A1) 4 Fj, == Fyomj, : X;, — X. Then,

2) F; |E, : E;, — E is bijective, and one can set p;,j, := F‘-‘l(p,-,) € Ej,.
7 1Ej, b !

(3) There is an open neighborhood Nj,;, of pj,j, such that
Fj,|ny,4, i8 & biholomorphic mapping.

\

Theorem 1 (see [5]). We can repeat this process inductively for alln € N and
symbol sequences j = (j1,...) € {1,2}N, and succeed with infinitely many times of
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blow ups ;. joyr * Xitjnsr — Xiredn- In particular, there exist sequences of points
Pir.jntr € le---jn'

In addition to the condition (A.0), we suppose the following condition (B).

(B) Pi..in €U, for every n € N,

1.-Jn=1

where U) . | is the coordinate neighborhood of Xj;,..;._, analogue to that defined
for X. Then, we can set pj,..j, := (0,a;;..j,) by using the local coordinates system
of U] ., Finally, for all symbol sequences j € {1, 2}N with j = (j1, j2, . . .), define
a formal power series

y= ¢J(x) =0T+ ajl.izwz +eey
J = { j € {1,2} | ¢;(z) has a positive convergent radius p; > 0} ,
V; == {(z,y) € N;j | y = ¢;(z) on Ay} foralljeJ.

Then, we have the following Theorem 2.

Theorem 2 (see [5]). {V;}jes is o family of locally invariant holomorphic curves
at p by F. In particular, every family {Wi}rea of locally invariant holomorphic
curves at p by F must be a subfamily of {V;}jes.

As applications, consider the following rational mappings of C%.

(*1) F(z,y) = (aa:, y—%—z—-—ﬁ) , lal >4,

(2) Flo,y)= (x g M{—’f’-) .l A0,

Theorem 3 (see [6]). Suppose that F' is the rational mapping in (x1). For all
symbol sequences j = (j1,J2,.--) € {1, 2}V, one of the following claims holds.
(1) If there exists an integer no such that j, = 1 for any n > no, then V; # 0 and
V; € F~™(Wy.) = F~™({y = 0}). Especially, V; are unstable manifolds of p.
(2) If there exist infinitely many no € N with jn, = 2, then V; = 0.

For the rational mapping F' in (*2), the following theorems 4 and 5 hold.
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Theorem 4. For every symbol sequence j € {1,2}N there ezists a continuous
function y = v;(z) on As. Put

W; = {(x,y) € C? |y = 9,(z) on Aa}.

In particular, {W;},eq1,2pv s a family of curves which is locally invariant at p by F.

Theorem 5. For any symbol sequence j € {1,2}N, there exists j' = (5, 55,...) €
{1,2}N such that the formal power series ¢jy(z) = S aj..px™ is the asymptotic
expansion of ;(z). That is, for alln € N, there ezist positive constants 6, and M,
such that

[45(2) — apz =+~ 1.2 < Malal,

foranyz € A, .

Remark. Although ¢;; may not be a convergent power series, for any fixed
n € N, ¢;(0) is approximated by the polynomial aj;z + --- + a;;_ z*! with the
order O(|z|") by taking the limit as z — 0.

Theorems 1, 2 and 3 have been obtained by [5] and [6]. In this note, we will give
an outline of proof of Theorems 4 and 5.

2. Proof of Theorem 4.

Put g(z) := z + az®. This is the first component of F in (*2). We begin with
basic facts on dynamics of the polynomial q(z) at £ = 0 (for detail, see [7]). For
the polynomial g(z), £ = 0 is a rationally indifferent fixed point and there exist an
attracting petal P and a repelling petal R such that

(1) ¢(®) c PU{0}, NP =1{0},

n=1

@) (@)™ ® cRU{0}, ((ela)"(®) = {0},

n=1

(3) {0} U PUR is an open neighborhood of 0.

Now, let us start the proof of Theorem 4. In the following part, we shall give a
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proof which is based on an argument by Hadamard-Perron Theorem in [3] and the

construction of the Cantor bouquet in [8].

For o; € C, p= (0,0) € C? and p; := (0, ;) € C?, define the following sets;
Ar(oy) ={zeC|lz—aj|<r}, A,:=A(0),

Akp) == Ay x A, A%(p)) = A, x Ay(a).

From some easy calculation, one can check that our F' satisfies the conditions
(A.0) and (B). Hence, Theorems 1 and 2 hold and for any infinite symbol sequence
§ € {1,2}N, there exists the sequence of points {c;;..;, }n>1.

In the reminder of this note, denote k,l = 1,2. From (A.0), F is a locally biholo-
morphic mapping on some neighborhoods of p;, and there are positive constants r
and 7’ and branches G; : A%(p) — A2 (p;) of F. Let p: C* — [0, 1] be a C'-function

such that 3(py)
_ 1 on Ai(pk
p(w)y) = { 0 on A%,(Pk)c-

By using this C!-function p, define a C'-mapping fi : C* — C? such that

fu = Giom on A?(p)
M J(Gloﬂ')mg on Agr(pk)c’

where J(Gj o m),, is the Jacobian matrix of G; o  at the point p;. Set
CP := {¢ : C — C, Lipshitz ft. with Lipshitz constant v and ¢(0) = o},
Cy:=CR UCH.
Then, C, is a complete metric space with respect to the metric d defined as follows;

SUP,cC\(0} Ld_’(z)ﬁ_lﬂz)l if ¢, € CE
d(¢,¥) :=
3 if ¢ €Ct* and ¢ € CF (k #1).
It can be seen that for any ¢ € CF* there exists ¢ € C¥' such that
fiu(graph ¢) = graph .

By using this fact, one can define the action of g; on C, by

ai(graph ¢) := graph ((fu)@), if ¢ € CI*
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and know that g, : Cy — CF is a contraction mapping.
Let S be the space of non-empty compact subsets of C,,. Then, S is a complete

metric space with respect to the Hausdorff metric. Setting a mapping
G:8— 8, by A G(A) :=g1(A4) U g2(A)

we can show that G is contraction on S, since g; is a contraction mapping.

Thus, it follows from Banach’s contraction mapping theorem that G has the
unique fixed point E € S, and G"(A) converges to E for any A € S. Here, we
choose a subset A of S satisfying g;(A) C A for [ = 1,2. Then

A G*(A) = E.

n=0

Consequently, since g;(A) N ga(A) = 0, there exists the unique point é; € C, such
that gj, o - -+ 0 g;,(4) — @; (n — 00) for every symbol sequence j € {1, 2}N.
By using &,-, let us set

W; = {(z,v) € C* | y = §s(z) } .

Then, it implies that g;(Wj) = W,(,-), where o is the shift mapping on {1,2}N. Take
a small positive constant § with 0 < § < r, and put

W!:=W;NAs x C and W; :=r(W)).
Finarlly, we can prove that
W; = {(z,y) € C* | y = 2¢;(2)}

and {W;};e(1,2)~ is a family of curves which is locally invariant at p by F. This is
required.

Remark. Unfortunatelly, 5,- depends on the construction of an extension map-
ping fx and does not have uniqueness. However, &,- (z) is determined uniquely for

any T € P, where P is an attracting petal of g(z) at 0, and

F™(z,y) = pasn — oo for any (z,y) € W; N {P x C} with z # 0.
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3. Proof of Theorem 5.
'To prove Theorem 5, we need the following Lemmas 1 and 2.

Lemma 1. For every symbol sequence j € {1,2}" the following claims hold;
(1) there exists a point p;; € {p;,pz} such that ==I(W; \ {p}))NE = {pj1}, and put

(Wids; === (W; \ {p}),

(2) there exists a continuous function ¢;; on As such that

(W,)Ji = {(:c,y) €A;xCly= ¢Ji(.’L') on Ag} .

Since {W;}jeq1,2)~ is a family of curves which is locally invariant at p by F,
for every W; there exists a symbol sequence i = (i1,13,...) € {1,2}" and an open
neighborhood N; of p such that F(W; \ {p}) N N; C W;. From Lemma 1 (1), there
is'a point py € {p1,p;} such that 7=1(W; \ {p}) N E = {py}. Put

-~

(Wi)yy =72 (W;\ {p}) and Fy:=n"loF.

Then, we have the following lemma.

Lemma 2.

(1) There exists an open neighborhood (NN);; of py; such that
lim Fo(z, ¢5()) =py and Fo ((W,-),-; \ {pi }) N (Ni)yy, C (Wi)ut
(2) There exist positive constants d;, and M;, such that
[¥i(z) — apz| < Mj, for z € A, .

We can repeat this process inductively for every n € N and prove Theorem 5.
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