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Abstract

In this note, consider dynamics of a rational mapping $F$ on 2-dimensional
complex projective space $P^{2}$ which has a periodic indeterminate point $p$ . By
using a symbol sequence $j\in\{1,2\}^{N}$ , we will define some family $\{V_{j}\}_{j\in J}$ which
consists of locally invariant holomorphic curves at $p$ by $F$ , algebraically.

1. Introduction.
In this note, we consider a local dynamical structure of a rational mapping $F$ of

$P^{2}$ near a periodic indeterminate point $p$ . Using a blow up, we construct a family
$\{V_{j}\}_{j\in J}$ which consists of locally invariant curves at $p$ by $F$ , where $J$ is a subset of

the Cantor set $\{1, 2\}^{N}$ .
Here, prepare some notation and terminology. Let $f_{1}(x, y,t)(i=0,1,2)$ be homo-

geneous polynomials with degree $d,$ $F:[x:y:t]rightarrow[f_{0} : f_{1} : f_{2}]$ a rational mapping

on $P^{2}$ and $\tilde{F}$ : $(x, y,t)rightarrow(f_{0}, f_{1}, f_{2})$ a polynomial mapping on $C^{3}$ . Then, we have
$\pi\circ\tilde{F}=F\circ\pi$ on $C^{3}$ except some analytic sets, where $\pi$ : $C^{3}\backslash \{(0,0, O)\}arrow P^{2}$

is the canonical projection. A point $p\in P^{2}$ is said to be an indetenninate point

of $F$ if $\tilde{F}(\tilde{p})=(0,0,0)$ for some point $\tilde{p}\in\pi^{-1}(p)$ . In general, if $p$ is an indeter-

minate point, then $\bigcap_{U_{p}}\overline{F(U_{p}\backslash \{p\})}$ is not a single point, where the intersection is

taken over all open neighborhoods $U_{p}$ of $p$ . So, no definition of the image $F(p)$

makes the mapping $F$ be continuous. Moreover, if $p \in\bigcap_{U_{p}}\overline{F(U_{p}\backslash \{p\})}$ , it is called a

periodic indeterminate point. It can be seen from the definition that a periodic inde-

terminate point has a certain recurrent property, hence we expect a local dynamical

structure at this point.
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In this note, we assume that $F$ : $P^{2}arrow P^{2}$ is a rational mapping with an

indeterminate point $p=[0:0:1]$ . We often identified $C^{2}$ with the affine chart of
$P^{2}$ which is defined by $\{[x:y:t]\in P^{2}|t\neq 0\}$ , and put $p=(0,0)$ . Let

$X$ $:=\{(x,y)x[u:v]\in C^{2}xP^{1}|xv-yu=0\}$

be a subset of $C^{2}xP^{1}$ . Then, $X$ is a subvariety of $C^{2}xP^{1}$ and covered by the

following two coordinate neighborhoods $\{(U^{j},\mu^{j})\}_{j=0,1}$ ,

$U^{0}$ $:= \{(x, y)x[u : v]\in X|y=\frac{v}{u}x\},$ $\mu^{0}$ : $U^{0}\ni(x,y)x[u : v]\mapsto(x,$ $\frac{v}{u})\in C^{2}$ ,

$U^{1}$ $:= \{(x, y)x[u : v]\in X|x=\frac{u}{v}y\},$ $\mu^{1}$ : $U^{1}\ni(x,y)x[u : v]-\rangle$ $( \frac{u}{v},y)\in C^{2}$ .

Definition 1 (see [4]). The mapping $\pi$ : $Xarrow C^{2}$ defined by restricting the first
projection $C^{2}xP^{1}arrow C^{2}$ is called the blow up of $C^{2}$ centered at $p=(0,0)$ and
$E:=\pi^{-1}(0,0)=(0,0)xP^{1}$ is called the exceptional curve.

It is remarked here that $\pi:X\backslash Earrow C^{2}\backslash \{(0,0)\}$ is a biholomorphic mapping,

and by replacing $C^{2}$ with the affine chart $\{[x:y:t]\in P^{2}|t\neq 0\}$ of $P^{2}$ , it can be

naturally extended as the blow up of $P^{2}$ centered at $p=[0$ : $0$ : 1 $]$ . To simplify the

notation, we call it blow up of $P^{2}$ centered at $p$ , too.

The study of local dynamics of a periodic indeterminate point was started by Y.

Yamagishi (see [8] and [9]). Here, introduce his results. Set $\tilde{F}$ $:=F\circ\pi$ : $Xarrow P^{2}$ .
Assume that $F$ satisfies the following assumption.

$(A.0)\{\begin{array}{l}\tilde{F}E\tilde{F}^{-1}(p)\cap E=\{p_{1},p_{2}\}N_{1}p_{1}\tilde{F}|_{N}i=1,2\end{array}$

Here, we remark that $p$ is a periodic indeterminate point of $F$ . Moreover, he

assumed that $\tilde{F}$ is contracting in the horizontal direction on $N_{i}$ . Then, it has been

proved that there exists a family of local stable manifolds of $p$ which is indexed by

the Cantor set

$\{1, 2\}^{N}$ $:=$ {$j=(j_{1},j_{2},$ $\ldots)|j_{n}=1,2$ for $n\in N$}.

110



It ls called the Cantor bouquet (for detail, see [8] and [9]).
In this note, we consider the following family of curves which is a generalization

of the Cantor bouquet.

Definition 2. A family $\{W_{\lambda}\}_{\lambda\in\Lambda}$ of curves is locally invariant at $p$ by $F$ if
(1) every $W_{\lambda}$ is given by a graph of some continuous function

$\phi_{\lambda}$ : $\Delta_{\rho_{\lambda}}\ni xrightarrow y=\phi_{\lambda}(x)\in C$

with $\phi_{\lambda}(0)=0$ , where $\Delta_{\rho_{\lambda}}$ $:=\{x\in C||x|<\rho_{\lambda}\}$ , and
(2) for any $W_{\lambda}$ there is a $\lambda’\in\Lambda$ and some open neighborhood $N_{\lambda’}$ of $p$ such that
$\lim_{xarrow 0}F(x, \phi_{\lambda}(x))=p$ and

$F(x, \phi_{\lambda}(x))\cap N_{\lambda’}\subset W_{\lambda’}$ for $x\in\Delta_{\rho_{\lambda}}\backslash \{0\}$ .
Especially, if every $\phi_{\lambda}$ is a holomorphic function, then $\{W_{\lambda}\}$ is called a family of
holomorphic curves.

Remark. Let be a mapping $\Phi_{\lambda}$ : $\Delta_{\rho_{\lambda}}arrow C^{2}$ by $\Phi_{\lambda}(x)=(x, \phi_{\lambda}(x))$ . Assume
that $\Phi_{\lambda}$ is a holomorphic mapping. Then, $Fo\Phi_{\lambda}$ is well-defined on $\Delta_{\rho_{\lambda}}$ , even if
$p$ is an indeterminate point of $F$ , that is, there is a unique holomorphic mapping
$g$ : $\Delta_{\rho_{\lambda}}arrow C^{2}$ such that $g(z)=Fo\Phi_{\lambda}(z)$ for $z\in\Delta_{\rho\lambda}\backslash \{0\}$ (for detail, see [1]).

Now, we state our Main theorems. In the reminder of this note, denote $j_{n}=1,2$

for every $n\in N$ . Assume that $F$ satisfies the condition (A.O). Then, the following
claim (A.1) holds.

(A.1) $\{\begin{array}{l}F_{0}:=\pi^{-1}0\tilde{F}N(E)\{p_{1},p_{2}\}F_{0}N(E)E\pi_{j_{1}}X_{j_{1}}arrow XXp_{j_{1}}\tilde{F}_{j_{1}}:=F_{0}\circ\pi_{j_{1}}X_{j\iota}arrow X\tilde{F}_{j\iota}|_{Eg_{1}}E_{j_{1}}arrow Ep_{j_{1}j_{2}}:=\tilde{F}_{j_{1}}^{-1}(p_{j_{2}})\in E_{j\iota}N_{j_{1}j_{2}}p_{j_{1}j_{2}}\tilde{F}_{j_{1}}|_{N_{j_{1}f_{2}}}\end{array}$

Theorem 1 (see [5]). We can repeat this process inductively for all $n\in N$ and
$8ymbol$ sequences $j=(j_{1}, \ldots)\in\{1,2\}^{N}$ , and succeed with infinitely many times of
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blow ups $\pi_{j_{1}\ldots j_{n+1}}$ : $X_{j_{1}\ldots j_{n+1}}arrow X_{j_{1}\ldots j_{n}}$ . In particular, there exist sequences of points

$p_{j_{1}\ldots j_{n+1}}\in X_{j_{1}\ldots j_{n}}$ .

In addition to the condition (A.0), we suppose the following condition (B).

$(B)p_{j_{1}\ldots j_{n}}\in U_{j_{1}\ldots j_{\mathfrak{n}-1}}^{0}$ for every $n\in N$ ,

where $U_{j\iota\cdots j_{n-1}}^{0}$ is the coordinate neighborhood of $X_{j_{1}\ldots j_{n-1}}$ analogue to that defined

for $X$ . Then, we can set $p_{j_{1}\ldots j_{n}}$
$:=(0, \alpha_{j_{1}\ldots j_{n}})$ by using the local coordinates system

of $U_{j\iota\cdots j_{n-1}}^{0}$ . Finally, for all symbol sequences $j\in\{1,2\}^{N}$ with $j=(j_{1},j_{2}, \ldots)$ , define

a formal power series

$y=\phi_{j}(x)$ $:=\alpha_{j_{1}}x+\alpha_{j_{1}j_{2}}x^{2}+\cdots$ ,

$J:=\{j\in\{1,2\}^{N}|\phi_{j}(x)$ has a positive convergent radius $\rho_{j}>0\}$ ,

$V_{j}$ $:=\{(x, y)\in N_{j}|y=\phi_{j}(x)$ on $\Delta_{\rho_{f}}\}$ for all $j\in J$.

Then, we have the following Theorem 2.

Theorem 2 (see [5]). $\{V_{j}\}_{j\in J}$ is a family of locally invariant holomorphic curves

at $p$ by F. In particular, every family $\{W_{\lambda}\}_{\lambda\in\Lambda}$ of locally invariant holomorphic

curves at $p$ by $F$ must be a subfamily of $\{V_{j}\}_{j\in J}$ .

As applications, consider the following rational mappings of $C^{2}$ .

$(*1)$ $F(x,y)=(ax,$ $\frac{y(y-x)}{x^{2}})$ , $|a|>4$ ,

$(*2)$ $F(x,y)=(x+ax^{2},$ $\frac{y(2y-x)}{x^{2}}$

ノ

, $|a|\neq 0$ .

Theorem 3 (see [6]). Suppose that $F$ is the rational mapping in $(*1)$ . For all

symbol sequences $j=(j_{1},j_{2}, \ldots)\in\{1,2\}^{N}$ , one of the following claims holds.

(1) If there exists an integer $n_{0}$ such that $j_{n}=1$ for any $n\geq n_{0}$ , then $V_{j}\neq\emptyset$ and

$V_{j}\subset F^{-n0}(V_{11}\ldots)=F^{-n0}(\{y=0\})$ . Especially, $V_{j}$ are unstable manifolds of $p$ .
(2) If there exist infinitely many $n_{0}\in N$ with $j_{\mathfrak{n}0}=2$ , then $V_{j}=\emptyset$ .

For the rational mapping $F$ in $(*2)$ , the following theorems 4 and 5 hold.
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Theorem 4. For every symbol sequence $j\in\{1,2\}^{N}$ there exists a continuous
function $y=\psi_{j}(x)$ on $\Delta_{\delta}$ . Put

$W_{j}$ $:=\{(x, y)\in C^{2}|y=\psi_{j}(x)$ on $\Delta_{\delta}\}$ .

In particular, $\{W_{j}\}_{j\in\{1,2\}^{N}}$ is a family of curves which is locally invariant at $p$ by $F$ .

Theorem 5. For any symbol sequence $j\in\{1,2\}^{N}$ , there enists $j’=(j_{1}’,j_{2}’, \ldots)\in$

$\{1,2\}^{N}$ such that the fomal power series $\phi_{j’}(x)=\sum\alpha_{j_{1}’\ldots j_{n}’}x^{n}$ is the asymptotic
expansion of $\psi_{j}(x)$ . That is, for all $n\in N$ , there exist positive constants $\delta_{n}$ and $M_{n}$

such that
$|\psi_{j}(x)-\alpha_{j_{1}’}x-\cdots-\alpha_{j_{1}’\ldots j_{n-1}’}x^{n-1}|\leq M_{n}|x|^{n}$,

for any $x\in\Delta_{\delta_{n}}$ .

Remark. Although $\phi_{j’}$ may not be a convergent power series, for any fixed
$n\in N,$ $\psi_{j}(0)$ is approximated by the polynomial $\alpha_{j_{1}’}x+\cdots+\alpha_{j_{n-1}’}x^{n-1}$ with the
order $O(|x|^{n})$ by taking the limit as $xarrow 0$ .

Theorems 1, 2 and 3 have been obtained by [5] and [6]. In this note, we will give
an outline of proof of Theorems 4 and 5.

2. Proof of Theorem 4.

Put $q(x)$ $:=x+ax^{2}$ . This is the first component of $F$ in $(*2)$ . We begin with

basic facts on dynamics of the polynomial $q(x)$ at $x=0$ (for detail, see [7]). For
the polynomial $q(x),$ $x=0$ is a rationally indifferent fixed point and there exist an
attracting petal $P$ and a repelling petal $R$ such that

(1) $q( \overline{P})\subset P\cup\{0\},\bigcap_{n=1}^{\infty}(F)=\{0\}$ ,

(2) $(q|_{R})^{-1}( \overline{R})\subset R\cup\{0\},\bigcap_{n=1}^{\infty}(q|_{R})^{-n}(\overline{R})=\{0\}$ ,

(3) $\{0\}\cup P\cup R$ is an open neighborhood of $0$ .

Now, let us start the proof of Theorem 4. In the following part, we shall give a
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proof which is based on an argument by Hadamard-Perron Theorem in [3] and the
construction of the Cantor bouquet in [8].

For $\alpha_{j}\in C,$ $p=(O,O)\in C^{2}$ and $p_{j}$ $:=(0, \alpha_{j})\in C^{2}$ , define the following sets;

$\Delta_{r}(\alpha_{j})$ $:=\{x\in C||x-\alpha_{j}|<r\}$ , $\Delta_{f}$ $:=\Delta_{r}(0)$ ,

$\Delta_{r}^{2}(p)$ $:=\Delta_{r}x\Delta_{r}$ , $\Delta_{r}^{2}(p_{j})$ $:=\Delta_{r}x\Delta_{r}(\alpha_{j})$ .

From some easy calculation, one can check that our $F$ satisfies the conditions
(A.0) and $(B)$ . Hence, Theorems 1 and 2 hold and for any infinite symbol sequence
$j\in\{1,2\}^{N}$ , there exists the sequence of points $\{\alpha_{j_{1}\ldots j_{n}}\}_{n\geq 1}$ .

In the reminder of this note, denote $k,$ $l=1,2$ . IFMrom (A.0), $\tilde{F}$ is alocally biholo-
morphic mapping on some neighborhoods of $p_{l}$ , and there are positive constants $r$

and $r’$ and branches $G_{l}$ : $\Delta_{r}^{2}(p)arrow\Delta_{r}^{2},(p_{l})$ of $\tilde{F}$ , Let $\rho:C^{2}arrow[0,1]$ be a $C^{1}$-function
such that

$\rho(x,y)=\{\begin{array}{ll}1 on \Delta_{f}^{2}(p_{k})0 on \Delta_{2r}^{2}(p_{k})^{c}.\end{array}$

By using this $C^{1}$-function $\rho$ , define a $C^{1}$-mapping $f_{kl}$ : $C^{2}arrow C^{2}$ such that

$f_{kl}=\{\begin{array}{ll}G_{l}o\pi on \Delta_{r}^{2}(p_{k})J(G_{l}\circ\pi)_{p} on \Delta_{2r}^{2}(p_{k})^{c},\end{array}$

where $J(G_{l}o\pi)_{p_{k}}$ is the Jacobian matrix of $G_{l}\circ\pi$ at the point $p_{k}$ . Set

$C_{\gamma^{k}}^{p}$ $:=$ {$\phi:Carrow C$ , Lipshitz ft. with Lipshitz constant $\gamma$ and $\phi(0)=\alpha_{k}$ },

$C_{\gamma}$ $:=C_{\gamma}^{p\iota}\cup C_{\gamma}^{P2}$ .
Then, $C_{\gamma}$ is a complete metric space with respect to the metric $d$ defined as follows;

$d(\phi, \psi)$ $:=\{\begin{array}{ll}\sup_{x\in}^{\phi x-x}c_{\backslash \{0\}}^{\ovalbox{\tt\small REJECT}_{|x|}} if \phi, \psi\in C_{\gamma^{h}}^{p}3if \phi\in C_{\gamma}^{Ph} a d \psi\in C_{\gamma^{l}}^{p}(k\neq l).\end{array}$

It can be seen that for any $\phi\in C_{\gamma^{k}}^{p}$ there exists $\psi\in C_{\gamma}^{Pl}$ such that

$f_{kl}$ (graph $\phi$) $=graph\psi$ .

By using this fact, one can define the action of $g_{l}$ on $C_{\gamma}$ by

$g_{l}(graph\phi):=graph((f_{kl}).\phi)$ , if $\phi\in C_{\gamma}^{Pk}$
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and know that $g_{l}$ : $C_{\gamma}arrow C_{\gamma^{l}}^{p}$ is a contraction mapping.

Let $S$ be the space of non-empty compact subsets of $C_{\gamma}$ . Then, $S$ is a complete

metric space with respect to the Hausdorff metric. Setting a mapping

. $G:Sarrow S$, by $A\mapsto G(A)$ $:=g_{1}(A)\cup g_{2}(A)$

we can show that $G$ is contraction on $S$ , since $g_{l}$ is a contraction mapping.

Thus, it follows from Banach’s contraction mapping theorem that $G$ has the

unique fixed point $E\in S$ , and $G^{n}(A)$ converges to $E$ for any $A\in S$ . Here, we
choose a subset $A$ of $S$ satisfying $g_{l}(A)\subset A$ for $l=1,2$ . Then

$\bigcap_{n=0}^{\infty}G^{n}(A)=E$ .

Consequently, since $g_{1}(A)\cap g_{2}(A)=\emptyset$ , there exists the unique point $\tilde{\phi}_{j}\in C_{\gamma}$ such

that $g_{j_{1}}\circ\cdots\circ g_{j_{n}}(A)arrow\tilde{\phi}_{j}(narrow\infty)$ for every symbol sequenoe $j\in\{1,2\}^{N}$ .
By using $\tilde{\phi}_{j}$ , let us set

$\tilde{W}_{j}$ $:=\{(x,y)\in C^{2}|y=\tilde{\phi}_{j}(x)\}$ .

Then, it implies that $g_{l}(\tilde{W}_{j})=\tilde{W}_{\sigma(j)}$ , where $\sigma$ is the shift mapping on $\{1, 2\}^{N}$ . Ihke

a small positive constant $\delta$ with $0<\delta<r$ , and put

$\tilde{W}_{j}^{\delta}$ $:=\tilde{W}_{j}\cap\Delta_{\delta}xC$ and $W_{j}:=\pi(\tilde{W}_{j}^{\delta})$ .

Finarlly, we can prove that

$W_{j}=\{(x, y)\in C^{2}|y=x\tilde{\phi}_{j}(x)\}$

and $\{W_{j}\}_{j\in\langle 1,2\}^{N}}$ is a family of curves which is locally invariant at $p$ by $F$ . This is

required.

Remark. Unfortunatelly, $\tilde{\phi}_{j}$ depends on the construction of an extension map-

ping $f_{kl}$ and does not have uniqueness. However, $\tilde{\phi}_{j}(x)$ is determined uniquely for

any $x\in P$ , where $P$ is an attracting petal of $q(x)$ at $0$ , and

$F^{n}(x,y)arrow p$ as $narrow\infty$ for any $(x,y)\in W_{j}\cap\{P\cross C\}$ with $x\neq 0$ .
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3. Proof of Theorem 5.

To prove Theorem 5, we need the following Lemmas 1 and 2.

Lemma 1. For every symbol sequence $j\in\{1,2\}^{N}$ the following claims hold;
(1) there exists a point $p_{j_{1}’}\in\{p_{1},p_{2}\}$ such that $\overline{\pi^{-1}(W_{j}\backslash \{p\})}\cap E=\{p_{j_{1}’}\}$ , and put

$(W_{j})_{j_{1}’}$ $:=\overline{\pi^{-1}(W_{j}\backslash \{p\})}$ ,

(2) there exists a continuous function $\phi_{j_{1}’}$ on $\Delta_{\delta}$ such that

$(W_{j})_{j_{1}’}=\{(x, y)\in\Delta_{\delta}xC|y=\phi_{j_{1}’}(x)$ on $\Delta_{\delta}\}$ .
Since $\{W_{j}\}_{j\in\{1,2\}^{N}}$ is a family of curves which is locally invariant at $p$ by $F$ ,

for every $W_{j}$ there exists a symbol sequence $i=(i_{1}, i_{2}, \ldots)\in\{1,2\}^{N}$ and an open
neighborhood $N_{i}$ of $p$ such that $F(W_{j}\backslash \{p\})\cap N_{i}\subset W_{i}$ . IFlrom Lemma 1 (1), there
is a point $p_{1_{1}’}\in\{p_{1},p_{2}\}$ such that $\pi^{-1}(VV_{i}^{r}\backslash \{p\})\cap E=\{p_{i_{1}’}\}$ . Put

$(W_{i})_{i_{1}’}$ $:=\overline{\pi^{-1}(VV\cdot\backslash \{p\})}$ and $F_{0}$ $:=\pi^{-1}\circ\tilde{F}$ .

Then, we have the following lemma.

Lemma 2.
(1) There exists an open neighborhood $(N_{1})_{i_{1}’}$ of $p_{i_{1}’}$ such that

$\lim_{xarrow 0}F_{0}(x, \phi_{j_{1}’}(x))=p_{i_{1}’}$ and $F_{0}((W_{j})_{j_{1}’}\backslash \{p_{j_{1}’}\})\cap(N_{i})_{i_{1}’}\subset(W_{i})_{i_{1}’}$

(2) There exist positive constants $\delta_{j_{1}}$ and $M_{j_{1}}$ such that

$|\psi_{j}(x)-\alpha_{j_{1}’}x|\leq M_{j_{1}}$ for $x\in\Delta_{\delta_{j_{1}}}$ .

We can repeat this process inductively for every $n\in N$ and prove Theorem 5.
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