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Abstract
In this note we describe the well studied process of renormalization of

quadratic polynomials from the viewpoint of their associated Riemann sur-
face laminations. The main result is that, when an infinitely renormalizable
quadratic map has a-priori bounds, the topology of the lamination is rigid
modulo its combinatorial equivalence. This is a joint work with C. Cabrera
(University of Warwick).

1 Renormalization and its combinatorics

Quadratic-like maps. Let $U$ and $V$ be topological disks in $\mathbb{C}$ with
$U$ compactly contained in $V$ . A quadratic-like map $g$ : $Uarrow V$ is a
proper holomorphic map of degree two. The filled Julia set is defined by
$K(g)$ $:= \bigcap_{n\geq 1}g^{-n}(V)$ .

In this note we assume that any quadratic-like map $g$ : $Uarrow V$ has
a connected $K(g)$ ; equivalently, the forward orbit of the critical point is
contained in $K(g)$ . $1$ We define the postcpitical set $P(g)$ by the closure
of the forward orbit of the critical polnt.

By the Douady-Hubbard straightening theorem, there exists a unique
$c=c(g)\in \mathbb{C}$ and a quasiconformal map $h$ : $Varrow V’$ such that $h$

conjugates $g:Uarrow V$ to $f_{c}$ : $U’arrow V’$ where $U’=h(U)=f_{c}^{-1}(V’)$ and
$\overline{\partial}h=0$ a.e. on $K(g)$ . The quadratic map $f_{c}$ is called the straightening
of $g$ and $h$ is called a straightening map. Though such an $h$ is not
uniquely determined, we always assume that any quadratic-like map $g$

is accompanied by one fixed straightening map $h=h_{g}$ .
$Thk$ not6 il $ba\epsilon Qd$ on $r$ talk atRIMS,$61k$at RIMS, 6 $S\cdot p$ . 2007.

$\uparrow R\epsilon e\cdot rch$ partially supported by JSPS.
1Note that any quadratic-like map $g$ has only one simple($=local$ degree two) critical point in $U$ .

数理解析研究所講究録
第 1586巻 2008年 160-168 160



Renormalization of quadratic maps. A quadratic-like map $g$ :
$Uarrow V$ is said to be renormalizable, if there exist a number $m>1$ ,
called the order of renormalization, and two open sets $U_{1}\subset U$ and
$V_{1}\subset V$ containing the critical point of $g$ , such that $g_{1}=g^{m}|U_{1}arrow V_{1}$ is
again a quadratic-like map with connected filled Julia set $K_{1}$ $:=K(g_{1})$ .

We also assume that $m$ is the minimal order with this property and
that $K_{1}$ has the following property: For any $1\leq i<j\leq m,$ $g^{i}(K_{1})\cap$

$g^{j}(K_{1})$ is empty or just one point that separates neither $g^{i}(K_{1})$ nor
$g^{j}(K_{1})$ . (Such a renormalization is called simple or non-crossing.)

Superattracting parameters associated with renormalizations.
For any (simple) renormalization $g_{1}=g^{m}$ : $U_{1}arrow V_{1}$ of $g:Uarrow V$ , the
combinatorial property of $g_{1}$ within the dynamics of $g$ is represented by a
uniquely determined superattracting quadratic map $f_{s}(z)=z^{2}+s$ with
$s=s(g, g_{1})$ and $f_{s}^{m}(0)=0$ . (Roughly put, the dynamics of $g$ is given by
the dynamics of $f_{s}$ with its $m$ periodic Fatou components replaced by $m$

small copies of $K_{1}=K(g_{1}).)$

More precisely, we can determine $s(g, g_{1})$ as follows: We can define
the $\beta- fixed$ point $\beta_{1}$ of quadratic-like map $g_{1}$ (not g) by pulling back
the $\beta- fixed$ point (the landing point of the external ray of angle $0$) of
quadratic map $f_{c_{1}}$ with $c_{1}=c(g_{1})$ via straightening map $h_{1}=h_{g_{1}}$ . Then
the forward orbit of $\beta_{1}$ by the dynamics of $g$ gives a repelling or parabolic
cycle $O$ . Next by the straightening map $h=h_{g}$ , we can send the cycle $O$

to the cycle $h(O)$ of $f_{c}$ with $c=c(g)$ . The set of angles of external rays
that land on $h(O)$ is called the ray portrait of $h(O)$ . There is a fact that
the ray portrait determines a unique superattracting parameter $s$ such
that the boundaries of the periodic Fatou components of $f_{s}$ contain a
repelling cycle $O_{s}$ with the same orbit portrait as $h(O)$ . Now we define
$s(g, g_{1})$ by this $s$ . (Conversely, superattracting parameter $s$ uniquely
determines such an orbit portrait. See Milnor’s [6])

Example. The diagram in the left of Figure 1 shows a quadratic-
like map $g_{1}$ as a renormalization of $g=f_{c}$ with $c\approx-0.1539+1.0377i$ .
(In this case we regard $g$ as a restriction of the quadratic map $f_{c}$ on a
large disk.)

161



The $\beta- fixed$ point of $g_{1}$ is the landing point of the external rays of
angles 2/15 and 9/15 for $g=f_{c}$ . In this case the orbit portrait is

$\{\{9/15,2/15\}, \{3/15,4/15\}, \{6/15,8/15\}, \{12/15, 1/15\}\}$ .

The diagram in the right shows the corresponding superattracting dy-
namics $f_{\epsilon}$ with $s=s(g, g_{1})\approx-0.15652+1.03225i$ , which satisfies
$f_{s}^{4}(0)=0$ .

Figure 1: Any simple renormalizatlon determlnes a unique superattracting parameter.

Inflnitely renormalizable maps and its combinatorIcs. We say
$f_{c}$ is infinitely renomalizable if there is an infinite sequence of numbers
$p_{0}=1<p_{1}<p_{2}<\cdots$ and two sequences of open sets $\{0\in U_{n}\}$ and
$\{V_{n}\}$ such that each $g_{n}=f_{c}^{p_{n}}$ : $U_{n}arrow V_{n}$ is a quadratic-like map, with
the property that $g_{n}’(0)=0$ and $g_{n+1}$ is a simple renormalization of $g_{n}$

of order $m_{n}$ $:=p_{n+1}/p_{n}>1$ . The index $n$ of $g_{n}$ is called the level of
renormalization.

For such an $f_{c}$ , the sequenoe $\{g_{n} : U_{n}arrow V_{n}\}_{n\geq 0}$ uniquely determines
the infinite sequence of superattracting parameters $\{s_{0}, s_{1}, s_{2}, \ldots\}$ given
by $s_{n}=s(g_{n}, g_{n+1})$ . We denote the sequence $\sigma(c)$ and call it the combi-
natorics of $f_{c}$ .

For example, the Feigenbaum parameter $c=$ -1.4011552.. has com-
binatorics $\sigma(c)=\{-1, -1, -1, . . ,\}$ , since every level of renormalization
determines the superattracting dynamics by $f_{-1}(z)=z^{2}-1$ .
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2 Inverse limits, natural extensions, and regular parts

Inverse Limits. Consider $\{f_{-n} : X_{-n}arrow X_{-n+1}\}_{n=1}^{\infty}$ , a sequence
of d-tol branched covering maps on the manifolds $X_{-n}$ with the same
dimension. The inverse limit of this sequence is defined as

$\lim_{arrow}(f_{-n}, X_{-n})$
$;= \{\hat{x}=(x_{0}, x_{-1}, x_{-2}\ldots)\in\prod_{n\geq 0}X_{-n} : f_{-n}(x_{-n})=x_{-n+1}\}$ .

The space $\lim_{arrow}(f_{-n}, X_{-n})$ has a natural topology which is induced from
the product topology in $\prod X_{-n}$ . The projection $\pi$ : $\lim_{arrow}(f_{-n}, X_{-n})arrow X_{0}$

is defined by $\pi(\hat{x})$ $:=x_{0}$ .
Example 1: Natural extensions of quadratic maps. When all the
pairs $(f_{-n}, X_{-n})$ coincide with the quadratic $(f_{c},\overline{\mathbb{C}})$ , following Lyubich
and Minsky [5], we will denote $\lim_{arrow}(f_{c},\overline{\mathbb{C}})$ by $N_{c}$ . The set $N_{c}$ is called
the natural extension of $f_{c}$ . In this case we denote the projection by
$\pi_{c}$ : $\mathcal{N}_{c}arrow\overline{\mathbb{C}}$ . There is a natural homeomorphic action $\hat{f}_{c}$ : $\mathcal{N}_{c}arrow \mathcal{N}_{c}$

given by $\hat{f}_{c}(z_{0}, z_{-1}, \ldots)$ $:=(f_{c}(\triangleleft), z_{0}, z_{-1}, \ldots)$ . Then $\pi_{c}$ semiconjugates
the action of $\hat{f}_{c}$ : $\mathcal{N}_{c}arrow \mathcal{N}_{c}$ to $f_{c}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$.
Example 2: Dyadic solenoid and solenoidal cones. A well-known
example of an inverse limit is the dyadic solenoid $S^{1}$

$:= \lim_{arrow}(f_{0},S^{1})$ ,
where $f_{0}(z)=z^{2}$ and $S^{1}$ is the unit circle in $\mathbb{C}$ . The dyadic solenoid is
a connected set but is not path-connected. Any space homeomorphic to
$\lim_{arrow}$( $f_{0}$ , C–ID) will be called a solenoidal cone. For $f_{c}$ with connected
filled Julia set $K(f_{c})$ , we have an important example of a solenoidal cone
$\lim_{arrow}(f_{c},\overline{\mathbb{C}}-K(f_{c}))$ in $\mathcal{N}_{c}$ by looking at $\lim_{arrow}$( $f_{0}$ , C-D) through the inverse

B\"ottcher coordinate $\psi_{c}^{-1}$ : $\overline{\mathbb{C}}-\overline{D}arrow\overline{\mathbb{C}}-K(f_{c})$ . One can also find a
solenoidal cone in any neighborhood of $\infty=\wedge\{\infty, \infty, \infty\}$ in $\mathcal{N}_{c}$ .
Example 3: Quadratic-like inverse limits. Let $g$ : $Uarrow V$ be
a quadratic-like map. By $\lim_{arrow}(g, V)$ we denote the inverse limit for the
sequence

$arrow g^{-2}(V)arrow g^{-1}(V)=Uarrow V$.
By using the Douady-Hubbard straightening, it is not difficult to prove

this
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Proposition 1. Let $g:Uarrow V$ be a quadratic-like map with straighten-
ing $f_{c}(z)=z^{2}+c$ . Then the inverse limit $\varliminf(g, V)$ is homeomorPhic to

$\mathcal{N}_{c}$ with a compact solenoidal cone at infinity removed.

Regular parts of quadratic natural extensions. Let $f_{c}$ be a
quadratic map. A point $\hat{z}=(z_{0}, z_{-1}, \ldots)$ in the natural extension $\mathcal{N}_{c}=$

$\lim_{arrow}(f_{c},\overline{\mathbb{C}})$ is regular if there is a neighborhood $U_{0}$ of $z_{0}$ such that the pull-
back of $U_{0}$ along $\hat{z}$ is eventually univalent. The regular part(or regular
leaf space) $\mathcal{R}_{f_{c}}=\mathcal{R}_{c}$ is the set of regular points in $\mathcal{N}_{c}$ . Let $\mathcal{I}_{f_{C}}=\mathcal{I}_{c}$

denote the set of irregular points.
The regular part is analytically well-behaved part of the natural ex-

tensions. For example, it is known that all path-connected components
(leaves’) of $\mathcal{R}_{c}$ are isomorphic to $\mathbb{C}$ or D. Moreover, $\hat{f}_{c}$ sends leaves to
leaves isomorphically. However, most of such leaves are wildly foliated
in the natural extension, indeed dense in $\mathcal{N}_{c}$ . See [5, \S 3] for more details.

Example: Regular part of superattracting maps. Let $f_{s}$ be a
superattracting quadratic map with superattracting cycle

$\{\alpha_{s}(1), \ldots, \alpha_{s}(m)=0\}$ .

Under the homeomorphic action $\hat{f}_{s}$ : $\mathcal{N}_{s}arrow \mathcal{N}_{s}$ , the points

$\hat{\alpha}_{s}(i)$ $;=(\alpha_{s}(i), \alpha_{s}(i-1),$ $\alpha_{s}(i-2),$ $\ldots$ )

form a cycle of period $m$ . In this case, the set $\mathcal{I}_{s}$ of irregular points
consists of $\{\infty\wedge, \hat{\alpha}_{s}(1), \ldots,\hat{\alpha}_{s}(m)\}$ . Thus the regular part $\mathcal{R}_{s}$ is $\mathcal{N}_{s}$ minus
these $m+1$ irregular points. Moreover, it is known that $\mathcal{R}_{s}$ is a Riemann
surface lamination with all leaves isomorphic to $\mathbb{C}$ .

3 Main Results

Regular part of inflnitely renormalizable maps. An infinitely

renormalizable $f_{c}$ is said to have a-priort bounds if there exist $\eta>0$ ,
independent of $n$ , such that mod$(V_{n}\backslash U_{n})>\eta$ . In this case the nested
domains of infinite renormalizations nicely shrink and the “remained”
postcritical set $P(f_{c})$ is a Cantor set.
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The following is due to Kaimanovich and Lyubich [3] 2:
Theorem 2 (Riemann surface lamination). If $f_{c}$ has $a- prio\dot{n}$ bounds,
then $\mathcal{R}_{c}$ is a locally compact Riemann surface lamination, whose leaves
are conformally isomorphic to planes.

The local compactness is important when we consider its end com-
pactification in the proof of Theorem 4. It is also known that there exist
quadratic maps with locally non-compact regular parts.

In addition to the theorem above, we can show that such an $\mathcal{R}_{c}$ can be
decomposed into “blocks” which are given by combinatorics determined
by the sequence of renormalization:

Theorem 3 (Structure Theorem, [2]). Let $f_{c}$ be infinitely renomal-
izable with a Priori bounds and $\{g_{n}=f_{c}^{p_{n}}|U_{n}arrow V_{n}\}_{n\geq 0}$ be the associated
sequence of renormalizations with combinatorics $\sigma(c)=\{s_{0}, s_{1}, \ldots\}$ . Set
$m_{n}$ $:=p_{n+1}/p_{n}$ . Then there exist disjoint open 8ubsets $\mathcal{B}_{0},$ $\mathcal{B}_{1},$

$\ldots$ of $\mathcal{N}_{c}$

such that:

1. For $n=0$, the set $\mathcal{B}_{0}$ is homeomorp hic to $\mathcal{R}_{s0}$ with the closure of
small solenoidal cones near $\mathcal{I}_{\epsilon_{0}}-\{\wedge\infty\}$ removed.

2. For each $n\geq 1$ , the set $\mathcal{B}_{n}$ is homeomorphic to $\mathcal{R}_{\epsilon_{n}}$ with the closure
of small solenoidal cones near $\mathcal{I}_{s_{n}}$ removed.

3. For any $n\geq 1$ and $1\leq i<j\leq p_{n}$ , the sets $\hat{f}_{c}^{i}(\mathcal{B}_{n})$ and $\hat{f}_{c}^{j}(\mathcal{B}_{n})$ are
$di8joint$.

4. For $0\leq n<n’$ , the closures $\overline{\mathcal{B}_{n}}$ and $\overline{\mathcal{B}_{n’}}$ intersects iff $n’=n+1$ .
In this case, for all $0\leq i\leq m_{n}-1$ the closures $\hat{f}_{c}^{p_{n}}{}^{t}(\mathcal{B}_{n+1})$ and $\overline{\mathcal{B}_{n}}$

share just one of their solenoidal boundary components.

5. The set $\mathcal{B}_{0}\cup\bigcup_{n=1}^{\infty}\bigcup_{i=0}^{p_{n}-1}\overline{\hat{f}_{c}^{1}(\mathcal{B}_{n})}$ is equal to the regular part $\mathcal{R}_{c}$ .

6. The original natural extension is given by $\mathcal{N}_{c}=\mathcal{R}_{c}uP(f_{c})u\wedge\{\infty\wedge\}$ ,
–

where $P(f_{c})$ is the set of the backward orbits remain in the postcritical
sseett $P(f_{c})$ .

2This theorem and $Th\infty r\cdot m3$ are originally proved under persiste$nt$ recurrence; that is, for any neighborhood $U0$ of
$z_{0}E$ (the $p$utcritical set) and any backward orbit $2=(z_{0}, z_{-1}, \ldots)$ , the $pull\cdot back8$ of $U_{0}$ along $z_{0}$ contalns the critical
point $z=0$. This condition is much weaker.
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See Figure 2. The open sets $\mathcal{B}_{n},\hat{f}_{c}(\mathcal{B}_{n}),$ $\cdots$ , $\hat{f}_{c}^{p_{\mathfrak{n}}-1}(\mathcal{B}_{n})$ form the “block”
of level $n$ . The theorem says that the regular part $\mathcal{R}_{c}$ is a tree-like struc-
ture which consists of the blocks $\{\hat{f}_{c}^{i}(\mathcal{B}_{n})$ : $n\geq 0,0\leq i<p_{n}\}$ . One
may compare this tree-like object with the Riemann surface $\mathbb{C}-P(f_{c})$ ,
where the postcritical set $P(f_{c})$ is a Cantor set. They have the same
configuration.

A remarkable fact is that, for a superattracting parameter $s$ , the object
$\mathcal{R}_{s}$ with the closure of small solenoidal cones near $\mathcal{I}_{s}-\{\wedge\infty\}$ (or $\mathcal{I}_{s}$ )

removed” is rigid; i.e., if such objects for $s$ and $s’$ are homeomorphic,
then $s=s’$ . (See [1].) Thus we may say that $\mathcal{B}_{n}$ are the “rigid blocks”.

$\approx$

Figure 2: A caricature of blocks in $\mathcal{R}_{c}$ .

Remark also that the statement of Theorem 3 is quite topological. For
instance, the block $\mathcal{B}_{n}$ which we will construct may not be an invariant
set of $\hat{f}_{c}^{p_{n}}$ . Nevertheless, we can prove that the topology of $\mathcal{R}_{c}$ given
by such blocks determines the original dynamics modulo combinatorial
equivalence:

Theorem 4 (Rigidity up to combinatorial equivalence, [2]). Let $c$

be a non-real complex number, such that the map $f_{c}$ is infinitely renor-
malizable with a-prtori bounds. If there enists an orientation $p$reserving

homeomorphism $h:\mathcal{R}_{c}arrow \mathcal{R}_{c’}$ , then $c$ and $d$ belong to the same combi-
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natorial class; $i.e.,$ $\sigma(c)=\sigma(c’)$ .
This implies that the topology of the regular part determines the com-

binatorics of the map. It is conjectured that for any infinitely renormal-
izable $c$ and $c’$ , if $\sigma(c)=\sigma(d)$ then $c=d$ . ($=Rigidity$ Conjecture, see
Lecture 4 of [4].). So the topology of the regular part may determine the
map itself. Note that the topology of the Riemann surface $\mathbb{C}-P(f_{c})$

does not determine the combinatorics of the map. In fact, $\mathbb{C}$ minus a
Cantor set always has the same topology.

From the viewpoint of the parameter plane, it is known that $c$ is com-
binatorially rigid if and only if the Mandelbrot set is locally connected
at $c$ . So we have the following

Corollary 5. Assume that $c$ is as in the Main Theorem and that the
Mandelbrot set is locally connected $(MLC)$ at $c$ , then $c=d$ .

Lyubich proved MLC for $f_{c}$ with a-priori bounds with some extra
condition on combinatorics, called secondary limb condition. In this
direction, there is recent work by Kahn and Lyubich where they prove
a-priori bounds and MLC for infinite renormalizable parameters with
special combinatorics.
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