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1 Introduction
When a block of ioe crystal $is$ illuminated by strong beams, the ice crystal starts to
melt inside of the crystal as well as the surface and each water region forms a snowflake-
like-pattem which has six petals, called “Tyndall figure” (see Figure 1 $(a)$ ). This figure
has a vapor bubble in water region and when this figure is refrozen, the vapor bubble
remains in the ice as a hexagonal disk (see Figure 1 $(b)$ ). This hexagonal disk is a kind
of negative crystals and the interior region is filled with water vapor saturated at that
temperature. McConne1([7]) found these disks in the ice of Davos lake. Nakaya called
this hexagonal disk “Kuuzou(空像)” in Japanese and investigated its properties [8].

(a) (b)
Figure 1: (a) Tyndall figures (seen from $45^{o}$ to the c-axis) and (b) a negative crystal

(by U. Nakaya).

In [6], we proposed a simple two dimensional model to understand the process of
formation of negative crystals after the water region in a Tyndall figure is completely
refrozen. This model equation is obtained by a gradient flow of total surface energy
under an area-preserving constraint:

$V_{1}=\overline{H}-H_{i}$ .
Here $V_{1}$ is the outward normal velocity on the i-th facet $s_{:}$ of vapor region $\Omega(t)$ (en-
closed region by a polygon), $H_{i}$ is the crystalline curvature of $S_{i}$ and $\overline{H}$ is the average of
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all crystalline curvatures. This equation is called area-preserving crystalllne curvature
flow. Crystalline curvature flow is asingular weighted curvature flow with non-smooth
surface energy $\gamma$ and J. $Taylor[9]\bm{t}d$ Angenent and Gurtin [1] proposed the framework
of crystalline motions. In this framework, the interfaces are restricted in the class of
polygonal curves (two dimensional case) which satisfy an admissibility condition based
on the equilibrium shape of the crystal. This equilibrium shape is called the Wulff
shape $\bm{t}d$ plays important roles for not only the definition of the crystalline curvature
and admissibility condition, but also the asymptotic behavior of the solution polygons.
The detailed formulations will be mentioned in next section.

When an initial shape $\Omega(0)$ is convex, the solution polygon $\Omega(t)$ keeps its convexity.
S. Yazaki ( $[10],[11$ , Part I]) show that no edges disaPpear globally in time and the
solution polygon converges to the rescaled Wulff shape whose area is equal to that of
$\Omega(0)$ in the Hausdorff metric. In thi8 note, we consider non-convex case. In this case,
there appear some singularities: edge-disappearing and self-touching of the boundary.
Thus, the admissibility of solution polygons may break down in finite time. We show
the sufficient conditions on the $Wu1ff_{8}hape\bm{t}d$ an initial polygon to keep admissibility
of the solution polygons. We also $\dot{s}how$ that under this sufficient conditions non-convex
solution polygons eventually become convex.

2 Area-preserving crystalline curvature flow
Crystalline energy and the Wulff shape. Let $\gamma=\gamma(n)$ be a positive continuous
function defined on $S^{1}$ and describe interfacial energy density for the direction $n$ . In
this note, we consider the case where the Wulff shape of $\gamma,$ $\mathcal{W}_{\gamma}=\{x\in \mathbb{R}^{2}|x\cdot n\leq$

$\gamma(n)$ for all $n\in S^{1}$ }, is a convex polygon. Such $\gamma$ is called crystalline energy. If $\mathcal{W}_{\gamma}$

is a J-sided convex polygon $(J\geq 3)$ , then $\mathcal{W}_{\gamma}$ is expressed as

$\mathcal{W}_{\gamma}=\bigcap_{i=1}^{J}\{x\in \mathbb{R}^{2};x\cdot\nu_{i}\leq\gamma(\nu_{i})\}$ ,

where $\nu_{i}=n(\phi_{i})$ and $\phi_{i}$ is the exterior normal angle of the i-th edge with $\phi_{i}\in$

$(\phi_{i-1}, \emptyset:_{-1}+\pi)$ for all $i(\phi_{0}=\phi_{J}, \phi_{J+1}=\phi_{1})$ . We define a set of normal vectors of
$\mathcal{W}_{\gamma}$ by $\mathcal{N}_{\gamma}=\{\nu_{1}, \nu_{2}, \ldots, \nu_{J}\}$ .
Polygons and polygonal curves. Let $\Omega$ be N-sided polygon in the plane $\mathbb{R}^{2},$ $\mathcal{P}$ its
boundary, that is, $\mathcal{P}=\partial\Omega$ and label the position vector of vertices $p_{i}(i=1,2, \ldots, N)$

in an anticlockwise order: $\mathcal{P}=\bigcup_{i=1}^{N}S_{1}$ , where $S_{1}=\{(1-t)p_{i}+tp_{i+1};t\in[0,1]\}$ is
the i-th edge $(p_{0}=p_{N}, p_{N+1}=p_{1})$ . The length of $S_{i}$ is $d_{i}=|p_{i+1}-p_{i}|$ , and then
the i-th unit tangent vector is $t_{i}=(p_{i+1}-p_{i})/d_{i}$ and the i-th unit outward normal
vector is $ni=-t_{1}^{\perp}$ , where $(a, b)^{\perp}=(-b, a)$ . We define a set of normal vectors of $\mathcal{P}$

by $\mathcal{N}=\{n_{1}, n_{2}, \ldots, n_{N}\}$ . Let $\theta_{i}$ be the exterior normal angle of $S_{i}$ . Then $n_{i}=n(\theta:)$

and $t_{i}=t(\theta_{i})$ hold $(\theta_{0}=\theta_{N}, \theta_{N+1}=\theta_{1})$ , where $t(\theta)=$ (-sin $\theta$ , cos $\theta$).
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We define the i-th hight function $h_{i}=p_{i}\cdot n_{i}=p\cdot$ n $(h_{0}=h_{N}, h_{N+1}=h_{1})$ .
By using $\{h_{i-1}, h_{i}, h_{i+1}\}$ and $\{n_{i-1}, n_{i}, n_{i+1}\}$ , the length of i-th edge $d_{i}$ is described
as follows:

$d_{i}= \frac{\chi_{i-1,i}(h_{i-1}-(n_{i-1}\cdot n_{1})h_{1})}{\sqrt{1-(n_{i-1}n_{i})^{2}}}+\frac{\chi_{i,i+1}(h_{i+1}-(n_{1}\cdot n_{i+1})h_{i})}{\sqrt{1-(n_{1}n_{i+1})^{2}}}$ , $i=1,2,$ $\ldots,$
$N$,

where $\chi_{i,j}=sgn(n_{i}\wedge n_{j})$ and $a_{1}\wedge a_{2}=\det(a_{1}, a_{2})$ is the determinant of the 2 $x2$

matrix with column vectors $a_{1},$ $a_{2}$ . Since $n_{i}\cdot n_{j}=\cos(\theta_{i}-\theta_{j})$ , we have another
expression:

$d_{i}=-(\cot\theta:+\cot\theta_{i+1})h_{i}+h_{i-1}$ cosec $\theta_{i}+h_{i+1}$ cosec $\theta_{i+1}$ , $i=1,2,$ $\ldots$ , $N$, (1)

where $\theta_{i}=\theta_{i}-\theta_{i-1}$ . Note that $0<|\theta_{i}|<\pi$ holds for all $i$ . Furthermore, the i-th
vertex $p_{i}(i=1,2, \ldots, N)$ is described as follows:

$P \iota=h_{i}n_{i}+\frac{h_{i-1}-(n_{i-1}\cdot n_{i})h_{i}}{n_{i-1}\cdot t_{i}}t_{i}$ . $=1,2,$ $\ldots$ , N. (2)

Admissibility and crystalline curvature. We call $\Omega$ and $\mathcal{P}$ N-admissible (asso-
ciated with $\mathcal{W}_{\gamma}$ ) if and only if $\mathcal{N}=N_{\gamma}$ holds and any adjacent two normal vectors
in the set $\mathcal{N}$ are also adjacent in the set $\mathcal{N}_{\gamma}$ , i.e., for any $i$ , there exists $j$ such that
$\{\nu_{j}, \nu_{j+1}\}=\{n_{i},n_{i+1}\}$ holds.

Let $\mathcal{P}$ be an N-admissible polygonal curve. For each edge $S_{i}$ a crystalline cumature
is defined by

$H(S_{1})=\chi_{i^{\frac{l_{\gamma}(n_{1})}{d_{1}}}}$ , $i=1,2,$ $\ldots,$
$N$,

where $\chi_{i}=(\chi_{i-1,i}+\chi_{i,i+1})/2$ is the transition number and it takes +1 (resp. $-1$ )
if $\mathcal{P}$ is convex (resp. concave) around $S_{1}$ in the direction $of-n_{i}$ , otherwise $\chi_{i}=0$ ;
and $l_{\gamma}(n_{i})$ is the length of the j-th edge of $\mathcal{W}_{\gamma}$ if $n_{i}=\nu_{j}$ . If $\Omega$ is an N-admissible
convex polygon, then $n_{i}=\nu_{i}$ and $\chi_{i}=1$ for all $i=1,2,$ $\ldots,$ $N=J$; and moreover, if
$\Omega=\mathcal{W}_{\gamma}$ , then the crystalline curvature is 1. In this note, we call a edge which zero
transition number “inflection edge.”

We note that the total interfacial crystalline energy on $\mathcal{P}$ is

$\mathcal{E}_{\gamma}=\sum_{i=1}^{N}\gamma(n_{i})d_{i}$ , (3)

and the crystalline curvature $H(S_{i})$ is characterized as the first variation of $\mathcal{E}_{\gamma}$ on $\mathcal{P}$

at $S_{1}$ with a suitable norm. Here and hereafter, we denote $H(S_{1})$ by $H_{i}$ for short.
Area-preserving crystalline curvature flow. The normal velocity on $S_{1}$ in the
direction $n_{i}$ is $V_{i}=\dot{h}_{i}$ . Here and hereafter, we denote that the derivative of a function
$u=u(t)$ with respect to time $t$ by $\dot{u}$ . The area-preserving crystalline curvature flow
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is the gradient flow of $\mathcal{E}_{\gamma}$ along $\mathcal{P}$ which encloses a fixed area, and it is described as
follows:

$V_{1}=\overline{H}-H_{i}$ , $i=1,2,$ $\ldots,$
$N$, (4)

where
$\overline{H}=\frac{\sum_{|arrow 1}^{N}H_{1}d_{i}}{\mathcal{L}}$

is the average of the crystalline curvature, and $\mathcal{L}=\sum_{k=1}^{N}d_{k}$ is the total length of the
curve $\mathcal{P}$ . IiYom (1), we have

$\dot{d}_{1}=-(\cot\theta_{i}+\cot\theta_{i+1})V_{i}+V_{i-1}$ cosec $\theta_{i}+V_{i+1}$ cosec $\theta_{1+1}$ , $i=1,2,$ $\ldots$ , N. (5)

Furthermore, by (2) we have

$\dot{p}_{1}=V_{i}n:+\frac{V_{1-1}-(n_{i-1}\cdot.n_{1})V_{1}}{n_{1-1}\cdot t_{1}}t_{i}$ , $i=1,2,$ $\ldots,$ N. (6)

Note that (4), (5) and (6) are equivalent each other. It is easy to check that the
enclosed area $A(t)= \sum_{1=1}^{N}h_{\iota^{d}:/2}$ is preserving in time: $\mathcal{A}(t)=\sum_{i=1}^{N}V_{1}d_{i}=0$ .

3 Problem
Applying the area-preserving crystalline curvature flow to understand the motion of
the boundary of negative crystals, we will introduce the concept of negative polygons.
For usual crystal case, enclosed region describes the crystal and then normal vector
$n$ is direction from the crystal to its outside region. However, for negative crystal
case, the outside region describes the crystal. Thus, we need to consider $\gamma(-n)$ as the
interfacial energy density. Therefore, from now on, we use the figure:

$\bigcap_{1=1}^{J}\{x\in \mathbb{R}^{2};x\cdot(-\nu_{1})\leq\gamma(\nu_{1})\}$ ,

as the Wulff shape.
Our problem is stated as follows:

Problem. For a given admissible polygon $\Omega_{0}$ , find a family of admissible polygons
$\{\Omega(t)\}_{0\leq t<T}$ satisfying (4) with $\Omega(0)=\Omega_{0}$ . Since (5) are the system of ordinary
differential equations, the maximal existence time is positive: $T>0$ .

4 Results
Known results for convex polygons. What might happen to $\Omega(t)$ as $t$ tends to
$T\leq\infty$? For this question, we have the following two results. The first result is the
case where motion is isotropic.
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Theorem 1 Let the interfacial energy be isotropic $\gamma\equiv 1$ . Assume the initial polygon
$\Omega_{0}$ is an N-sided admissible convex polygon. Then the solution admissible polygon
$\Omega(t)$ exists globally in time keeping the area enclosed by the polygon constant $\mathcal{A}$,
and $\Omega(t)$ converges to the shape of the boundary of the Wulff shape $\partial \mathcal{W}_{\gamma_{*}}$ in the
Hausdorff metric as $t$ tends to infinity, where $\gamma_{*}(n_{i})\equiv\sqrt{2\mathcal{A}/\sum_{k=1}^{N}l_{1}(n_{k})}$ is constant.
In particular, if $\Omega_{0}$ is centrally symmetric with respect to the origin, then we have an
exponential rate of convergence.

This theorem is proved by Yazaki [10] by using the isoperimetric inequality and the
theory of dynamical systems. We note that $\partial \mathcal{W}_{\gamma}$. is the circumscribed polygon of a
circle with radius $\gamma_{*}$ , and then this result is a semidiscrete version of Gage [3].

The second result is the case where motion is anisotropic and polygon is admissible.

Theorem 2 Let the crystalline energy be $\gamma>0$ . Assume the initial polygon $\Omega_{0}$ is
an N-sided admissible convex polygon. Then the solution admissible polygon $\Omega(t)$

exists globally in time keeping the area enclosed by the polygon constant $\mathcal{A}$ , and $\Omega(t)$

converges to the shape of the boundary of the Wulff shape $\partial \mathcal{W}_{\gamma}$. in the Hausdorff metric
as $t$ tends to infinity, where $\gamma.(n_{i})=\gamma(n_{i})/W,$ $W=\sqrt{|\mathcal{W}_{\gamma}|}/\mathcal{A}$ for all $i=1,2,$ $\ldots,$

$N$

and $| \mathcal{W}_{\gamma}|=\sum_{k=1}^{N}\gamma(n_{k})l_{\gamma}(n_{k})/2$ is enclosed area of $\mathcal{W}_{\gamma}$ .
This theorem is proved in Yazaki [11, Part I] by using the anisoperimetric inequality
or Br\"unn and Minkowski’s inequality and the theory of dynamical systems which is
the similar technique as in Yazaki [10].

Our results for non-convex polygons.
In the previous case, the solution polygon keeps its convexity and admissibility,

that is, the length of each edge is positive globally in time and the self-touching of
$\mathcal{P}(t)$ never occur. However, if $\Omega_{0}$ is non-convex, edge-disappearing singularity and
the self-touching singularity may occur in finite time. Indeed, we can easily construct
the example of the self-touching of $\mathcal{P}(t)$ and $\Omega(t)$ becomes non-admissible after the
singularity. Thus, the admissibility of solution polygons may break down in finite time.
To track the motion globally in time in the class of admissible polygons, we prepare
the following three assumptions:

(AO) $\mathcal{W}_{\gamma}$ is symmetric with respect to the origin.

(A1) $\Omega_{0}$ is an N-admissible non-convex polygon in the plane $\mathbb{R}^{2}$ .

(A2) transition numbers of $\Omega_{0}$ are all nonnegative: $x:\geq 0(\forall i)$ .
From (AO), the number of edges of $\mathcal{W}_{\gamma}$ is even, and $\gamma(n(\phi_{*}+\pi))=\gamma(n(\phi_{i}))$ holds

for all $i$ . Under the assumption (A1) and (A2), crystalline curvatures of $\Omega_{0}$ are also
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all nonnegative and there exists at least one edge which crystalline curvature is zero.
These polygons are said to be “almost convex”.

Theorem 3 Assume the assumptions (AO), (A1) and (A2). Then, there exists $T_{1}>0$

such that the solution polygon is an N-sided admissible polygon for $0\leq t<T_{1}$ and
there exists at least one inflection edge whose length tends to zero as $tarrow T_{1}$ . Moreover,
$\Omega(t)$ converges to an admissible polygon $\Omega^{*}$ in the Hausdroff topology as $tarrow T_{1}$ and
area of $\Omega^{*}$ is equal to area of $\Omega(0)$ .

In fact, two consecutive inflection edges disappear at $t=T_{1}$ locally on $\mathcal{P}$ since
number of consecutive inflection edges is even for almost convex polygons.

This theorem means that we can restart the motion with the initial polygon $\Omega^{*}$

and obtain the solution in the class of admissible polygons beyond the singularity.
Again by Theorem 3, the number of edges is monotone non-increasing in time and

we have a finite sequence of edge-disappearing time: $0<T_{1}<T_{2}<\cdots<T_{m}<+\infty$ .
Then, we obtain the following convexity result.

Theorem 4 Assume that the same assumption as in Theorem 3. Then, the solution
polygon becomes convex at $t=T_{m}$ .

After the convexity phenomena occurs, we can apply Theorem 1 and 2. Therefore,
the solution polygon exists globally in time in the class of admissible polygons and the
solution polygon finally converges to the rescaled Wulff shape.
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