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1 Introduction

The aim of this paper is to review recent progress on semilinear parabolic equations

that are obtained by joint work with Eiji $Y_{\bm{t}}a\dot{g}da$ (Tohoku University). In this paper,
we investigate the behavior of solutions of the Cauchy problem

$\{\begin{array}{ll}u_{t}=\Delta u+|u|^{p-1}u, x\in \mathbb{R}^{N}, t>0,u(x,0)=u_{0}(x), x \mathbb{R}^{N},\end{array}$ (11)

where $u=u(x,t),$ $\Delta$ is the Laplace operator with respect to $x,$ $p>1$ and $u_{0}\not\equiv 0$

is a given cont血 uou function on $\mathbb{R}^{N}$ that decays to zero as $|x|arrow\infty$ . The problem

(1.1) has been studied in many papers, since Fujita studied the blow-up problem

[6]. Among them, the stabihty problem of stationary solutions is one of the most
important problems and we study the problem (1.1) along this line.

It is known that there exist critical exponents $p$ that govem the structure of
solutions. The exponent

$p_{S}=\{\begin{array}{ll}\frac{N+2}{N-2} for N>2,\infty for N\leq 2,\end{array}$

is wel known as the Sobolev exponent that is critical for the existence of positive

stationary solution of (1.1). Namely, there exists a classical positive radial solution $\varphi$

of
$\Delta\varphi+\varphi^{p}=0$, $x\in \mathbb{R}^{N}$ ,

if and only if $p\geq p_{S}[1,2,8]$ . We denote the solution by $\varphi=\varphi_{\alpha}(r),r=|x|,\alpha>0$,

where $\varphi_{\alpha}(0)=\alpha$ . Then $\varphi_{\alpha}.(r)$ satisfies the initid value problem

$\{\begin{array}{ll}\varphi_{\alpha,rr}+\frac{N-1}{r} +\varphi_{\alpha}^{p}=0,\varphi_{\alpha}(0)=\alpha, \varphi_{\alpha,r}(0)=0.\end{array}$
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For each $\alpha>0$ , the solution $\varphi_{\alpha}$ is strictly decreasing in $|x|$ and satisfies $\varphi_{\alpha}arrow$

$0$ as $|x|arrow\infty$ . We extend the solution by setting $\varphi_{\alpha}=-\varphi_{-\alpha}$ for $\alpha<0$ and
$\varphi_{0}=0$ . Then the set $\{\varphi_{\alpha};\alpha\in \mathbb{R}\}$ forms a one-parameter family of radial stationary

solutions.
The exponent

$p_{c}=\{\begin{array}{l}\frac{(N-2)^{2}-4N+8\sqrt N-\urcorner}{(N-2)(N-l0)}forN>l0\infty forN\leq 10\end{array}$

is another important exponent which appeared first in [15]. It is known that for
$p_{S}\leq p<p_{\epsilon}$ , any pair of positive stationary solutions intersects each other. For
$p\geq p_{c}$ , Wang [20] showed that the family of stationary solutions forms a simply

ordered set, that is, $\varphi_{\alpha}$ is strictly increasing in $\alpha$ for ea&x. We call it the ordering

property of $\{\varphi_{\alpha}\}$ . Moreover, $\varphi_{\alpha}$ satisfies

$\lim_{\alphaarrow 0}\varphi_{\alpha}(|x|)=0$ , $\lim_{\alphaarrow\infty}\varphi_{\alpha}(|x|)=\varphi_{\infty}(|x|)$,

for each $x$ , where $\varphi_{\infty}(|x|)$ is a singular stationary solution given by

$\varphi_{\infty}(|x|)=L|x|^{-m}$ , $x\in \mathbb{R}^{N}\backslash \{0\}$ ,

with
$m= \frac{2}{p-1}$ , $L=\{m(N-2-m)\}^{1/Cp-1)}$ .

It was also shown in [12] that each positive stationary solution has the expansion

$\varphi_{\alpha}(|x|)=\{\begin{array}{ll}L|x|^{-m}-a_{\alpha}|x|^{-m-\lambda_{1}}+h.0.t. p>p_{c},L|x|^{-m}-a_{\alpha}|x|^{-m-\lambda_{1}}\log|x|+h.0.t. p=p_{\epsilon},\end{array}$

as $|x|arrow\infty$ , where $\lambda_{1}$ is a positive constrt given by

$\lambda_{1}=\lambda_{1}(N,p):=^{N-2-2m-\sqrt{(N-2-2m)^{2}-8(N-2-m)}}\ovalbox{\tt\small REJECT}_{2}$ ,

and $a_{\alpha}=a(\alpha)$ is a positive number that is monotone decreasing in $\alpha$ . Note that $\lambda_{1}$

is a smaller root of the quadratic equation

$h(\lambda)$ $:=\lambda^{2}-(N-2\cdot-2m)\lambda+2(N-2-m)=0$ .
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WWe define by

$\lambda_{2}=\lambda_{2}(N,p):=^{N-2-2m+\sqrt{(N-2-2m)^{2}-8(N-2-m)}}\ovalbox{\tt\small REJECT}_{2}$ ,

a larger root of the quadratic equation.
Concerning the stabihty problem, Gui, Ni and Wang $[12, 13]$ showed that any

regular positive radial stationary solution is unstable in any reasonable sense if $p_{S}<$

$p<p_{e}$ and “weaJdy asymptotically stable” in a weighted $L^{\infty}$ norm if $p\geq p_{c}$. For
$p>p_{c}$ , Pol&ik and Yanagida $[18, 19]$ improved the above results and proved that the
solutions approach a set of stationary solutions for a wide class of the mitial data. As
a by-product, they also showed the existence of global unbounded solutions. We note
that the study of global unbounded solutions of (1.1) $[3, 5]$ is closely related to our
problem on bounded solutions mentioned later.

Recently, Fila, Winkler and Yanagida [4] carried out the further investigation
about the convergence of solutions of (1.1). They studied the following more general
problem: Let $u$ and $\overline{u}$ denote solutions of (1.1) with initial data $u_{0},\tilde{u}_{0}$ respectively.
They considered how fast these two solutions approach each other as $tarrow\infty$ . In
particular, in the case of $\tilde{u}_{0}=\varphi_{\alpha}(|x|)$ , then the rate of approach corresponds to the
convergence rate to the stationary solution. More precisely, they showed that if $p>p_{c}$

, $m+\lambda_{1}<l<m+\lambda_{2}$ and $u_{0},\tilde{u}_{0}$ satisfy

(H1) $|u_{0}|,$ $|\tilde{u}_{0}|\leq\varphi_{\alpha}(|x|)$ , $x\in \mathbb{R}^{N}$

and

(H2) $|u_{0}-\tilde{u}_{0}|\leq c_{1}(1+|x|)^{-l}$, $x\in \mathbb{R}^{N}$

with some constants $\alpha>0$ and $c_{1}>0$ , then $||u(\cdot,t)-\tilde{u}(\cdot, t)||_{t\infty}$ decays faster in time
than the rate $t^{-(i-m-\lambda\iota)/2}$ .

The above result is no longer valid for large $l$ and in fact they found a universal
lower bound for the rate of approach which applies to any initial data. More precisely,
they showed that if $p\geq p_{c}$ and $0\leq\tilde{u}_{0}(x)<u_{0}(x)\leq\varphi_{\infty}(|x|)$ then $\Vert u(\cdot,t)-\tilde{u}(\cdot,t)||_{L^{\Phi}}$

decays more slowly in time than the rate $t^{-(N-m-\lambda_{1})/2}$ . We note that there exists a
gap of the convergence rate between the rate $t^{-(\lambda_{2}-\lambda_{1})/2}$ which is obtained for the case
$l=m+\lambda_{2}$ and a universal lower bound of the rate $t^{-(N-m-\lambda_{1})/2}$ .

101



On the other hand, for the grow-up problem which can be regarded as a stabihty

problem of singular stationary solution, a sharp universal upper bound of the grow-
up rate was found by Mizoguchi [17], and optimal lower bound of the grow-up rate
was found by Fila, Winkler and Yanagida [3]. The results on the grow-up problem

strongly suggest that the above result of the convergence rate is not optimal.

The $m\dot{u}n$ purpose of this study is to obtain a shsrp bound of the convergence rate
in the case of $l>m+\lambda_{2}$ which leads to its optimal convergence rate. In fact, we
improve the results in [4] as $f_{0}n_{oWS}$ .

Theorem 1.1 ([14]) Let $p>p_{c}$ . Suppose that $u_{0}$ and $\tilde{u}_{0}satis\hslash$ (H1) and (H2).

(i) If $m+\lambda_{1}<l<m+\lambda_{2}+2$ , then there enists constant $C>0$ such that

$\Vert u(\cdot,t)-\tilde{u}(\cdot,t)||_{\iota\infty}\leq C(1+t)^{-(l-m-\lambda_{1})/2}$

for all $t>0$ .
(ii) If $l\geq m+\lambda_{2}+2$, then for any small $\epsilon>0$ there exists constant $C>0$ such

that
$||u(\cdot,t)-\tilde{u}(\cdot,t)||_{L^{\Phi}}\leq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2+\epsilon}$

for all $t>0$ .
Our next $th\infty rem$ shows that if $|u_{0}-\tilde{u}_{0}|$ decays faster in space, then we have a

slightly better estimate than in Theorem l.l(ii).

Theorem 1.2 ([14]) Let $p>p$ . Suppose that $u_{0}$ and $\tilde{u}_{0}satis\ovalbox{\tt\small REJECT}$ (H1) and

$|u_{0}-\tilde{u}_{0}|\leq c_{1}\exp(-\nu|x|^{2})$ , $x\in R^{N}$

with some constants $c_{1}>0$ and $\nu>0$ . Then there exists constant $C>0$ such that

$||u(\cdot,t)-\tilde{u}(\cdot,t)||_{t\infty}\leq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2}$

for all $t>0$ .

Remark 1.3 Let $p>p_{c}$ and $m+\lambda_{1}<l<N-2$ . In Iheoreml.2 of [4], it was shoum
that if $u_{0}$ and $\tilde{u}_{0}$ satish $\varphi_{\alpha}(|x|)\leq\tilde{u}_{0}<u_{0}\leq\varphi_{\infty}(|x|)$ and $u_{0}-\tilde{u}_{0}\geq c_{2}(1+|x|)^{-l}$
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with some constants $\alpha>0$ and $c_{2}>0$ , then $\Vert u(\cdot,t)-\tilde{u}(\cdot,t)\Vert_{L\infty}$ decays more slowly in
time than the rate $t^{-(l-m-\lambda_{1})/2}$ . Since we can show that $m+\lambda_{2}+2<N-2$ by direct
computation, we find that Theorem 1.1 yields a sharp estimate of the converg ence rate
in the case of $\tilde{u}_{0}=\varphi_{\alpha}(|x|)$ .

The next result shows that there exists a universal lower bound for the rate of
approUt which applies to any two initial data. This lower bound implies that the
convergence rate of Theorem 1.1 (i) can not be extended to the range $l>m+\lambda_{2}+2$ .

Theorem 1.4 ([14]) Let $p>p_{c}$ . Suppose that $u_{0}$ and $\tilde{u}_{0}$ satish

$\varphi_{\alpha}(|x|)\leq\tilde{u}_{0}(x)<u_{0}(x)\leq\varphi_{\infty}(|x|)$ , $x\in \mathbb{R}^{N}\backslash \{0\}$

with some $\alpha>0$ . Then for any $\epsilon>0$ there $\dot{\varpi}sts$ constant $C>0$ such that

$\Vert u(\cdot,t)-\tilde{u}(\cdot,t)||_{L^{\Phi}}\geq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2-\epsilon}$

for all $t>0$ .

On the other hand, we investigate the behavior of solutions of the Cauchy problem
with singular nonliear absorption tem

$\{\begin{array}{ll}u_{t}=\Delta u-u^{-q}, x\in \mathbb{R}^{N}, t>0,u(x,0)=u_{0}(x), x\in \mathbb{R}^{N},\end{array}$ (1.2)

where $u=u(x, t),$ $q>0$ and $u_{0}>0$ is a given continuous function on $\mathbb{R}^{N}$ that grows
to 血血山 ty as $|x|arrow\infty$ . The problem similar to (1.2) which includes $8\dot{i}$gular nonlinear
term has been studied in many papers, since Kawarada studied the quenching problem
[16].

We dso屋 study the problem (1.2) concening the stabihty of stationary solutions
and use the same notation as in the problem (1.1) here. Namely, we denote the
positive radial stationary solution by $\varphi=\varphi_{\alpha}(r),$ $r=|x|,$ $\alpha>0$ , where $\varphi_{\alpha}(0)=\alpha$ . We
see that $\varphi_{\alpha}(r)$ satisfies the imitial value problem

$\{\begin{array}{ll}\varphi_{\alpha,rr}+\frac{N-1}{r} -\varphi_{\alpha}^{-q}=0,\varphi_{\alpha}(0)=\alpha, \varphi_{\alpha.r}(0)=0.\end{array}$
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Then we can find similar structure for (1.2) as that in (1.1). For example, the solution
$\varphi_{\alpha}$ is strictly increasing in $|x|$ for each $\alpha>0$ and satisfies $\varphi_{\alpha}arrow\infty$ as $|x|arrow\infty$ .
The exponent

$q_{c}=\{\begin{array}{l}\frac{(N-2)^{2}-4N+8\sqrt{N-l}}{(N-2)(N-l0)}for3\leq N<10\infty forN\geq l0\end{array}$

is an important exponent for the problem (1.2) which appeared already in the problem
(1.1). It is iown that for $q>q_{c}$ , any pair of positive stationary solutions intersects
each other. For $0<q\leq q_{c}$ , Guo and Wei [9] showed that the family of stationary
solutions forms a simply ordered set, that is, $\varphi_{\alpha}$ is strictly increasing in $\alpha$ for each $x$ .
We also caJl it the ordering property of $\{\varphi_{\alpha}\}$ . Moreover, $\varphi_{\alpha}$ satisfies

$\lim_{\alphaarrow\infty}\varphi_{a}(|x|)=\infty$ , $\lim_{\alphaarrow 0}\varphi_{\alpha}(|x|)=\varphi_{0}(|x|)$ ,

for each $x$ , where $\varphi_{0}(|x|)$ is a singular stationary solution given by

$\varphi_{\infty}(|x|)=L_{q}|x|^{m_{q}}$ , $x\in \mathbb{R}^{N}\backslash \{0\}$,

with
$m_{q}= \frac{2}{q+1}$ , $L_{q}=\{m_{q}(N-2+m_{q})\}^{1/(q+1)}$ .

It was aJso shown in [9] that each positive stationary solution has the expansion

$\varphi_{\alpha}(|x|)=\{\begin{array}{ll}L_{q}|x|^{m_{q}}+b_{\alpha}|x|^{m_{q}-\lambda\epsilon}+h.0.t. 0<q<q_{c},L_{q}|x|^{m_{q}}+b_{\alpha}|x|^{m_{q}-\lambda_{8}}\log|x|+h.\cdot 0.t. q=q_{c},\end{array}$

as $|x|arrow\infty$ , where $\lambda_{3}$ is a positive constant given by

$\lambda_{3}=\lambda_{3}(N, q)^{N-2+2m_{q}-\sqrt{(N-2+2m_{q})^{2}-8(N-2+m_{q})}}:=\ovalbox{\tt\small REJECT}_{2}$,

and $b_{\alpha}=b(\alpha)$ is a positive constant that is monotone increasing in $\alpha$ . Note that $\lambda_{3}$

is a smaller root of the quadratic equation

$h_{q}(\lambda):=\lambda^{2}-(N-2+2m_{q})\lambda+2(N-2+m_{q})=0$ .

We denote by

$\lambda_{4}=\lambda_{4}(N, q)$ $:=^{N-2+2m_{q}+\sqrt{(N-2+2m_{q})^{2}-8(N-2+m_{q})}}\ovalbox{\tt\small REJECT}_{2}$,
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a larger root of the quadratic equation.
$\bm{i}$ the previous papers, Guo $\bm{t}d$ Wei [9, 10, 11] studied the problem (1.2). Con-

cerning the stabhty problem, they showed that $\bm{r}y$ regular positive radial stationary
solution is unstable in $\bm{r}y$ reasonable sense if $q>q_{c}\bm{t}d$ “weakly asymptotically sta-
ble” in aweighted $L_{q}^{\infty}$ nom if $0<q\leq q_{c}$ in [10]. Buildin$g$ on the results in $[9, 10]$ , for
$0<q<q_{\epsilon}$ , they improved the above results that showed global attrwtive propertiae
of the stationary solutions $\bm{t}d$ the solutions approa&aset of stationary solutions
for awide cloes of the $\dot{i}$itial data in [11]. As a $by- pr$oduct, they $ako$ showed the
exietence of global queniin$g$ solutions.

Our concern in this stage is to find similarity between the problem (1.1) $\bm{t}d(1.2)$

as Thmrem 1.1 $\bm{t}d$ so on (cf.[4, 14]). Namely, we wrt to $obta\dot{i}$ asharp bound of
the convergence rate for (1.2) whi&lea&to its optimal convergenoe rate. In fact, we
have some similar raeults $aga\dot{i}$ . For example, we obtain Theorem 1.5 $corraepond_{\dot{i}}g$

to Thmrem 1.1 as foUows.

Theorem 1.5 Let $0<q<q_{c}$ . Let $u_{0},\tilde{u}_{0}$ be two initial data and $u$ and $\tilde{u}$ denote the
cormsponding solutions of (1.2). Suppose that $u_{0}$ and $\tilde{u}_{0}$ satisk
(H3) $u_{0},\tilde{u}_{0}\geq\varphi_{\alpha}(r)$ for $r>0$

and

(H4) $|u_{0}-\tilde{u}_{0}|\leq c_{q}(1+r)^{-l}$ for $r>0$

with some $\alpha>0$ and $c_{q}>0$ .
(i) If $\lambda_{3}-m<l<\lambda_{4}-m+2$ , then there nists constant $C_{q}>0$ such that

$||u(\cdot,t)-\tilde{u}(\cdot,t)||_{L\infty}\leq C_{q}(1+t)^{-(\iota+m-\lambda\epsilon)/2}$

for all $t>0$ .

(ii) If $l\geq\lambda_{4}-m+2_{f}$ then for any small $\epsilon>0$ there exists constant $C_{q}>0$ such
that

$||u(\cdot,t)-\tilde{u}(\cdot,t)\Vert_{L}\infty\leq C_{q}(1+t)^{-(\lambda_{4}-\lambda_{\theta}+2)/2+\epsilon}$

for all $t>0$ .

105



In this article, we mainly focus our attention on the problem (1.1) in the $fo\mathbb{I}ow\dot{i}g$ ,
and omit the details for the problem (1.2) here.

Proofs of these theorems are obtained by a comparison techUique that is based
on matched asymptotics expansion. This expansion consists of two parts which are
called the inner expansion and the outer expansion. The inner expansion is used
to aPproximate the behavior of solutions near the origin and the outer expansion is
used to approximate the behavior of solutions near the spatial infinity. The inner
expansion is the same as in [4] and the key of our proof is a precise description of
the outer expansion. In fact, we will find a solution which behaves in a self-similar
way near the spatial infinity. Then we construct suitable super and subsolutions by
matching these inner and outer solutions.

This paper is organized as follows. In section 2, we recall Prehminary results in
[3] and [4]. The formal analysis in this section will give the idea of constructing super
and subsolutions, and a matching condition of these two $\exp_{\bm{t}}sions$ leads to the exact
convergence rate. In section 3, we derive an upper bound of the convergence rate. In
section 4, we derive a universal lower bound of the convergence rate.

2 Preliminary results on the linearized equation

In this section, we summarize previous results on the linear equations that are needed
in subsequent sections. For proofe of the results, see $[3, 4]$ .

We consider radial solutions $U=U(r,t),$ $r=|x|$ , of the linearized equation of
(1.1) at $\varphi_{\alpha}$ . Namely, let $P_{\alpha}$ be the linearized operator defined by

$P_{\alpha}U:=U_{rr}+ \frac{N-1}{r}U_{r}+p\varphi_{a}^{p-1}U$

and let $U(r,t)$ be a solution of

$\{\begin{array}{ll}U_{t}=P_{\alpha}U, r>0, t>0,U_{r}(0,t)=0, t>0,U(r,0)=U_{0} (r), r\geq 0,\end{array}$ (2.1)

where $U_{0}$ is a continuous function that decays to zero as $rarrow\infty$ . Ftom the maximum
principle, we see that $U(\cdot,t)>0$ for $aUt>0$ if $U_{0}\geq 0$ and $U_{0}\not\equiv 0$ . We will describe
some imdamental properties for the solution of (2.1).
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2.1 Comparison principle

Let $u$ and $\tilde{u}$ be solutions of (1.1) with initial data $u_{0}$ and $\tilde{u}_{0}$ respectively. We recall
some comparison results for $u-\tilde{u}$ and the solution $U$ of (2.1), which comes from the
ordering property and the convexity of nonlinearity.

Lemma 2.1 ([4]) Let $p\geq p_{c}$ . Suppose that $u_{0}$ and $\tilde{u}_{0}\cdot satish$ (H1). If

$|u_{0}(x)-\tilde{u}_{0}(x)|\leq U_{0}(|x|)$ , $x\in \mathbb{R}^{N},$ .

th en
$|u(x,t)-\tilde{u}(x,t)|\leq U(|x|,t)$ , $x\in \mathbb{R}^{N}$

for all $t>0$ .

Lemma 2.2 ([4]) Let $p\geq p_{c}$ . Suppose that $u_{0}$ and $\tilde{u}_{0}$ satisk

$\varphi_{\alpha}(|x|)\leq\tilde{u}_{0}(x)\leq u_{0}(x)\leq\varphi_{\infty}(|x|)$ , $x\in \mathbb{R}^{N}\backslash \{0\}$

unth some $\alpha>0$ . If

$0\leq U_{0}(|x|)\leq u_{0}(x)-\tilde{u}_{0}(x)$ , $x\in \mathbb{R}^{N}$ ,

then
$0\leq U(|x|,t)\leq u(x,t)-\tilde{u}(x,t)$ , $x\in \mathbb{R}^{N}$

for all $t>0$ .

2.2 Formal matched asymptotics

By the above comparison results, we may only consider the convergence of radial
solution of the linearized equation (2.1). In the following, we recall the asymptotic
analysis, which is only fomal but will be useful in the rigorous analysis in subsequent
sections.

First, following Fila, Winkler and Yanagida [4], the formal expansion of a solution
of (2.1) near the origin is given by

$U(r,t)=\sigma(t)\psi(r,t)+\sigma_{t}(t)\Psi(r,t)+h.0.t.$ , (22)
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where, $\sigma(t)=U(O, t),$ $\psi$ and $\Psi$ satisfy

$\{\begin{array}{ll}P_{\alpha}\psi=0, r>0,\psi(0)=1, \psi_{r}(0)=0\end{array}$ (2.3)

and

$\{\begin{array}{ll}P_{\alpha}\Psi=\psi, r>0,\Psi(0)=0, \Psi_{r}(0)=0,\end{array}$ (2.4)

respectively (see also [4] and [7] for details). We recall some results in [4] on the above
linear differential equations (2.3) and (2.4) in the foUowing.

Lemma 2.3 ([4]) For all $\alpha>0$ and $r\geq 0,$ $\alpha\mapsto\varphi_{\alpha}(r)$ is differentiable and

$\psi(r)$ $:= \frac{\partial}{\partial\alpha}\varphi_{\alpha}$

satisfies (2.3). Moreover, if $p\geq p_{c}$ , then $\psi(r)$ is positive and satisfies

$\psi(r)=c_{\alpha}r^{-m-\lambda_{1}}+o(r^{-m-\lambda_{1}})$ as $rarrow\infty$ ,

where $c_{\alpha}$ is a constant given by $c_{\alpha}= \frac{a\lambda}{m}\alpha^{-\frac{\dot{n}+\lambda}{m}}$ and $a_{1}=a(1)$ is a constant inde-
pendent of $\alpha$ .

Remark 2.4 The hnction $\psi$ defined in Lemma 2. $S$ satisfies $\psi_{r}<0$ for all $r>0$ .
Indeed, we see $fi\mathfrak{v}m(2.3)$ that $\psi$ does not auain a positive local minimum by the
$\dot{p}$ositivity of $\varphi_{\alpha}$ and $\psi$ .

$t$

Lemma 2.5 ([4]) If$p\geq p_{c}$ , then the solution $\Psi$ of (2.4) has the following properties:

(i) $\Psi(r)/\psi(r)$ is strictly increasing in $r>0$ . In particular, $\Psi$ is positive for all
$r>0$ .

(ii) $\Psi$ satisfies

$\Psi(r)=C_{\alpha}r^{-m-\lambda_{1}+2}+o(r^{-m-\lambda_{1}+2})$ as $rarrow\infty$ ,

where
$C_{\alpha}= \frac{c_{\alpha}}{g(m+\lambda_{1}-2)}$, $g(\mu):=h(\mu-m)$ .
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Next, let us consider the expansion of a solution of (2.1) near $r=\infty$ . By the

expansion of $\varphi_{\alpha}(r)$ near $r=\infty,$ $U(r,t)$ satisfies approximately

$U_{t}=U_{rr}+ \frac{N-1}{r}U_{r}+\frac{pL^{p-1}}{- r^{2}}U$, $r\simeq\infty$ . (2.5)

Fofowin$g[5]$ , we assume that $U$ is of a self-siMilar form

$U(r,t)=t^{-l/2}F(\eta)$ , $\eta=t^{-1/2}r$. (2.6)

Substituting this in (2.5), we see that $F$ satisfies

$F_{m}+ \frac{N-1}{\eta}F_{\eta}+\frac{\eta}{2}F_{\eta}+\frac{l}{2}F+\frac{pL^{p-1}}{\eta^{2}}F=0$. (27)

In order that the outer expansion matches with the inner solution (2.2), $F(\eta)$ must
satisfy

$\lim_{\etaarrow 0}\eta^{m+\lambda_{1}}F(\eta)=a_{0}$

in view of the spatial order of Lemma 2.3, where $a_{0}$ is an arbitrary constant dependmg
on imitial data. Matching the inner expansion (2.2) and the outer expansion (2.6),

and using Lemma 2.3, we obtain

$\sigma\simeq r^{m+\lambda_{1}}t^{-(l/2)}F(\eta)$

$=r^{m+\lambda_{1}}t^{-(m+\lambda_{1})/2}t^{(m+\lambda_{1})/2}t^{-(1/2)}F(\eta)$

$=t^{-(l-m-\lambda_{1})/2}\eta^{m+\lambda_{1}}F(\eta)$

$\simeq t^{-(l-m-\lambda_{1})/2}$ .

This gives the exact convergence rate given in Theorem 1.1 (i).

2.3 Properties of self-similar solutions

In this subsection, we recall the behavior of solutions of (2.7) satisfying

$\lim_{m0}\eta^{m+\lambda_{1}}F(\eta)=a_{0}>0$ ,

where $a_{0}>0$ is an arbitrary constant. To this end, we set

$f(\eta)=\eta^{m+\lambda_{1}}F(\eta)$ .
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Substituting this in (2.7), we see that $f$ satisfies

$\{\begin{array}{ll}f_{m}+\frac{N-1-2(m+\lambda_{1})}{\eta}f_{\eta 2}+qf_{\eta}+\frac{l-m-\lambda_{1}}{2}f=0, \eta>0,f(0)=a_{0}>0, f_{\eta}(0)=0. \end{array}$ (2.8)

The foUowing lemma charactenizes the behavior of $f$ as $\etaarrow\infty$ , and explains why
$l=m+\lambda_{2}+2$ is critical.

Lemma 2.6 ([3]) Let $f$ be the solution of (2.8).

(i) If $l\in(m+\lambda_{1}, m+\lambda_{2}+2)$ , then $f>0$ and $f_{\eta}<0$ for all $\eta.>0$ . Monover, for
each $\eta_{0}>0$ , there vist $d_{-}(\eta_{0})>0$ such that

$f(\eta)\geq d_{-}(m)\eta^{-(l-m-\lambda_{1})}$ for $\eta\geq$ 恥,

and $d_{+}>0$ such that

$f(\eta)\leq d_{+}\eta^{-(l-m-\lambda_{1})}$ for all $\eta>0$ .

(1i) If $l=m+\lambda_{2}+2$ , then $f(\eta)$ is given $e\varphi licitly$ by $f(\eta)=a_{0}e^{-\eta^{2}/4}$.
(iii) If $l>m+\lambda_{2}+2$ , then $f(\eta)$ vanishes at some finite $\eta$ .

3 Upper bound

Throughout this and the foUowing sections, we assume $p>p_{c}$ . The ain of this section
is to derive an’upper bound of the convergenoe rate. In the case $m+\lambda_{1}<l<m+\lambda_{2}+2$ ,
we will show that any solution of (2.1) with $0\leq U_{0}\leq(1+r)^{-l}$ decays faster in time
than the rate $t^{-(l-m-\lambda_{1})/2}$ . To this end, we construct a suitable supersolution $U^{+}$ of
(2.1):

$\{\begin{array}{ll}U^{+}-P_{\alpha}U^{+}\geq 0, r>0, t>0,U_{r}^{+}(0,t)=0, t> 0.\end{array}$
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3.1 Outer supersolution

First, we give an outer supersolution as follows.

Lemma 3.1 ([14]) If $m+\lambda_{1}<l<m+\lambda_{2}+2$ , then

$U_{out}(r,t):=(t+\tau)^{-z}F(\eta))\iota$ $\eta=(t+\tau)^{-1/2}r$,

is a supersolution of (2.1), where $\tau$ is an arbitrary positive constant.

Proof. Using (2.7), we have

$U_{out,t}-P_{\alpha}U_{out}=-(t+ \tau)^{-:-1}(\frac{l}{2}F+\frac{\eta}{2}F_{\eta}+F_{\mathfrak{m}}+\frac{N-1}{\eta}F_{\eta}+p\varphi_{\alpha}^{p-1}(t+\tau)F)$

$=p(t+\tau)^{-\}(\varphi_{\infty}^{p-1}-\varphi_{\alpha}^{p-1})\eta^{-(m+\lambda_{1})}f$ .

Then by the ordering property and the positivity of $f$ from Lemma 2.6, we obtain

$U_{out,t}-P_{\alpha}U_{out}\geq 0$

for all $r,t>0$. $\square$

3.2 Inner supersolution and matching

Next, we construct an inner supersolution $U_{in}(r,t)$ in the same way as [4].

Lemma 3.2 ([14]) Let $l>m+\lambda_{1}$ and set

$U_{in}(r,t)$ $:=(t+\tau)^{-q}\psi(r)-q(t+\tau)^{-q-1}\Psi(r)$ ,

where $q=(l-m-\lambda_{1})/2$ . If $\tau>0$ is suffeciently large, then there exist constants
$B>0$ and $c>0$ such that the following inequalities hold:

(i) $U_{ln,t}\geq P_{\alpha}U_{in}$ for all $r>0$ and $t>0$ .
$(\ddot{u}),$ $U_{in}(r,t)>0$ for all $t>0$ and $r\in[0, B(t+\tau)\}]$ .
(iii) $U_{in}(r,t)>cU_{out}(r,t)$ at $r=B(t+\tau)$ } for all $t>0$ .
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Proposition 3.3 ([14]) Suppose that $m+\lambda_{1}<l<m+\lambda_{2}+2$ and

$0<U_{0}(r)\leq c_{1}(1+r)^{-l}$ , $r\geq 0$

with some constant $c_{1}>0$ . Then there exists constant $C>0$ such that the solution

of (2.1) satisfies

$\Vert U(\cdot,t)\Vert_{\iota\infty}\leq C(1+t)^{-(l-m-\lambda_{1})/2}$ for all $t>0$ .

Proof. Let $U_{in}$ and $U_{out}$ be as given in Lemmas 3.2 and 3.1 respectively, and define

$U^{+}(r,t):=\{\begin{array}{ll}U_{in}(r,t) for r<r^{*}(t),cU_{out}(r,t) for r\geq r^{*}(t),\end{array}$

where $c>0$ is given in Lemma 3.2 and $r^{*}(t)$ is defined by

$r^{r}(t):= \sup${$r>0$ I $U_{in}(\rho,t)<cU_{out}(\rho,t)$ for $\rho\in[0,$ $r)$ }.

Then by the comparison principle, we obtain

$0<U(r,t)\leq C_{1}U^{+}(r,t)$ , $r\geq 0$ , $t>0$

with some constant $C_{1}>0$ and we see that $U^{+}$ satisfies

$\Vert U^{+}(r,t)||_{\iota\infty}\leq C_{2}(1+t)^{-(l-m-\lambda_{1})/2}$ for $ffit>0$

with some constant $C_{2}>0$ . The proof is now complete. $\square$

Proposition 3.4 ([14]) Suppose that

$0<U_{0}(r)\leq c_{1}\exp(-\nu r^{2})$ , $r\geq 0$

with some constants $c_{1}>0$ and $\nu>0$ . Then there $e$ vists constant $C>0$ such that
the solution of (2.1) satisfies

$||U(\cdot,t)||_{\iota\infty}\leq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2}$ for all $t>0$ .

112



Proof. The proof is similar to the procedure in the previous Proposition 3.3. $\square$

Now, let us complete the proofs of Theorem 1.1–1.2.
Proof of Theorem 1.1 (i). Taking

$U_{0}(r)=c_{1}(1+r)^{-l}$ ,

we have by assumption

$|u_{0}(x)-\tilde{u}_{0}(x)|\leq U_{0}(|x|)$ , $x\in \mathbb{R}^{N}$ .
By Lemma 2.1 and Proposition 3.3, this implies

$\Vert u(\cdot,t)-\tilde{u}(\cdot,t)\Vert_{\iota\infty}\leq\Vert U(r,t)||_{L\infty}\leq C(1+t)^{-(l-m-\lambda_{1})/2}$

for allt $>0withsomeconst\bm{r}tC>0$. $\square$

Proof of Theorem 1.1 (ii). Given any small $\epsilon>0$ , we set

$l:=m+\lambda_{2}+2-2\epsilon\wedge$ ,

and define
$\hat{U}_{0}(r):=c_{1}(1+r)^{-\ddagger}$.

We denote the solution of (2.1) with initial data $\hat{U}_{0}$ by $\hat{U}$ . Then $\hat{U}_{0}>U_{0}$ and it
follows &om the comparison principle that $\hat{U}(r, t)>U(r,t)$ for all $r,t>0$ . On the
other hand by Theorem 1.1 (i), $\hat{U}(r, t)$ satisfies

$\Vert U(r,t)\Vert_{\iota\infty}\leq\Vert\hat{U}(r,t)\Vert_{\iota\infty}\leq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2+e}$

for $f\dot{fi}t>0withsomeconst\bm{r}tC>0$ . $\square$

Proof of Theorem 1.2. Taking

$U_{0}(r)=c_{1}\exp(-\nu|x|^{2})$ ,

we have by assumption

$|u_{0}(x)-\tilde{u}_{0}(x)|\leq U_{0}(|x|)$ , $x\in \mathbb{R}^{N}$ .

By Lemma 2.1 and Proposition 3.4, this implies

$\Vert u(\cdot,t)-\tilde{u}(\cdot,t)\Vert_{\iota\infty}\leq\Vert U(r,t)|.|_{L\infty}\leq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2}$

for $aJlt>0withsomeconet\bm{t}tC>0$. $\square$
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4 Universal lower bound

In this section, we prove that there exists a universal lower bound of the convergence
rate which applies to any initial data from above or below to a stationary solution.
Our key idea is to modify the outer solution. We construct a suitable subsolution $U^{-}$

of (2.1):

$\{\begin{array}{ll}U_{t}^{-}-P_{\alpha}U^{-}\leq 0, r>0, t>0,U_{r}^{-}(0,t)=0, t> 0.\end{array}$

4.1 Outer subsolution

In this subsection, we construct a suitable subsolution of (2.1) with a vanishing prop-
erty; $U_{out}$ is identically equal to $0$ near $\eta=0$ and $\eta=\infty$ .

First, we recall the initial value problem (2.8):

$\{\begin{array}{ll}f_{m}+\frac{n-1}{\eta} f\eta.\text{十} f2f_{\eta}+g2f=0, \eta>0,f(0)=a_{0}>0, f_{\eta}(0)=0, \end{array}$

where $n=N-2(m+\lambda_{1}),$ $\beta=l-m-\lambda_{1}$ , and throughout this section, $l$ is fixed to
$l=m+\lambda_{2}+2+\epsilon$ , with an arbitrarily constant $\epsilon>0$. We note that $f$ vanishes at
some ffiite $m$ and $f>0$ for $0<\eta<m$ by Lemma 2.6.

Next, we modify this iniltial value problem as follows:

$\{\begin{array}{ll}\tilde{f}_{\eta}+\frac{\mathfrak{n}-1}{\eta}\tilde{f}+f\tilde{f}_{\eta}+\tilde{\rho}\tilde{f}=0, \eta>0,\tilde{f}(m/2)=f(m/2), \tilde{f}_{\eta}(m/2) f_{\eta}(m/2),\end{array}$ (4.1)

where $\tilde{\beta}=l-m-\lambda_{1}+\delta$ with any constant $\delta>0$ . Then, we see’that the solution of
(4.1) has a desired vanishing property as follows.

Lemma 4.1 ([14]) There erist two vanishing points of $\tilde{f}$ (denoted by $\eta_{1}$ and $\eta_{2}$) such
that $0<\eta_{1}<m/2<\eta_{2}<m$ and $0<\tilde{f}(\eta)<f(\eta)$ for $\eta_{1}<\eta<\eta_{2}$ .
Lemma 4.2 ([14]) Let $\tilde{\epsilon}$ be a positive constant $sat\dot{u}hing\tilde{\epsilon}>\delta>0$, and define

$U_{out}(r,t):=\{\begin{array}{ll}(t+\tau)^{-\Psi}\tilde{F}(\eta) \eta_{1}\leq\eta\leq\eta_{2},0 otherwise,\end{array}$
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with $\eta=(t+\tau)^{-1/2}r$, where $\tilde{F}(\eta)=\eta^{-(m+\lambda_{1})}\tilde{f}(\eta)$ . If $\tau>0$ is sufficiently large, then
$U_{out}$ is a subsolution of (2.1).

Proof. It is trivial that $U\equiv 0$ is a subsolution of (2.1). Thus, we only need to verify
the case of $\eta_{1}\leq\eta\leq\eta_{2}$ . We can cheCk $U_{out}$ becomes a subsolution for sufficient large
$\tau>0$ by straight forward computation. $\square$

4.2 Inner subsolution and matching

We use the same inner subsolution as in [4].

Lemma 4.3 ([4]) For any $q>0$,

$U_{in}(r,t):=(t+\tau)^{-q}\psi(r)$

$\dot{u}$ a subsolution of (2.1) for all $t>0$ .
Since the subsolution as above decays too slowly as $rarrow\infty$ , we shall only use it

in an inner region $0\leq r\leq r^{*}(t)$ with suitable positive function $r^{*}(t)$ .
In the outer region, we shaJl work with a different class of subsolutions defined in

Lemma 4.2 instead of the subsolution defined in Lemma 4.3.

Proposition 4.4 ([14]) Suppose $U_{0}(r)>0$ for all $r>0$ . Then for any small $\epsilon>0$ ,
there evzsts constant $C>0$ such that the solution of (2.1) satisfies

$U(O,t)\geq C(1+t)^{-(\lambda a-\lambda_{1}+2)/2-e}$ for all $t>0$ .
Proof. The proof is similar to the procedure in the previous Proposition 3.3. See [14]
for details. $\square$

Proof of Theorem 1.4. We take

$U_{0}(r)$ $:=m\dot{i}|u_{0}(x)-\tilde{u}_{0}(x)|>0$, $r\geq 0$ .
$|x|=r$

Then by Lemma 2.2 and Proposition 4.4, we have

$||u(\cdot,t)-\tilde{u}(\cdot,t)||_{\iota\infty}\geq U(0, t)\geq C(1+t)^{-(\lambda_{2}-\lambda_{1}+2)/2-\epsilon}$

for allt $>0withsomeconst\bm{r}tC>0$. $\square$

Remark 4.5 We can relax the condition of initial data. In fact, this theorem hol&

for the case $U_{0}=0$ for sufficient large $|x|>0$ .
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