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1 Introduction and main theorems
In this paper we gather the papers [5], [6] and [12] for our talk at Kyoto
University. In particular we make the proofs of theorems in [5] easier by
using the methods in [12] and other.

We consider solutions of the initial value problem for the equation

$\{\begin{array}{ll}u_{t}=\Delta u+f(u), x\in R^{n},t>0,u(x,0)=u_{0}(x), x\in R^{n}.\end{array}$ (1)

The nonlinear term $f\in C^{1}(\overline{R}_{+})$ saitsfies that

$\int_{G}^{\infty}\frac{d\xi}{f(\xi)}<\infty$ with some $C\geq 0$ , (2)

and

$\{\begin{array}{ll}there exists afunctio \Phi\in C^{2}(R_{+}) such that\Phi(v)>0, \Phi’(v)>0 \bm{t}d \Phi’’(v)\geq 0 for v>0,\int_{1}^{\infty}\frac{d\xi}{\Phi(\xi)}<\infty, and f’(v)\Phi(v)-f(v )\Phi’(v)\geq c\Phi(v)\Phi’(v) for v>bwith some b\geq 0 an c\geq 0.\end{array}$ (3)

Remark. The conditions (2) and (3) were used in [$12J$. They are weaker
than the conditions used in [$5Jand/\theta J$:

$f(\delta b)\leq\delta^{p}f(b)$

for all $b\geq b_{0}$ and for all $\delta\in(\delta_{0},1)$ with some $b_{0}>0$ , some $\delta_{0}\in(0,1)$ and
some $p>1$ .
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The initial data $u_{0}$ is assumed to be a measureable function in $R^{n}$ satis-
fying

$0\leq u_{0}(x)\leq M$ a.e. in $R^{n}$ (4)

for some positive $M$ . We are interested in initial data such that $u_{0}arrow M$ as
$|x|arrow\infty$ for $x$ in some sector of $R^{n}$ . We assume that there exists a sequence
$\{x\}_{m=1}^{\infty}\subset R^{n}$ such that

$\lim_{marrow\infty}u_{0}(x+x_{m})=M$ a.e. in $R^{n}$ . (5)

Remark. The condition (5) was given $in/12J$. This condition is equivalent
to the condition in [$5J$ with [$6J$:

$ess\inf_{x\in\overline{B}_{m}}(u_{0}(x)-M_{m}(x-x_{m}))\geq 0$ for $m=1,2,$ $\ldots$ ,

where $\tilde{B}_{m}=B_{r_{m}}(x_{m})$ with a sequence $\{r_{m}\}_{m=1}^{\infty}$ , a sequence of hnctions
$\{M_{m}(x)\}_{m=1}^{\infty}$ satisfying

$\lim_{marrow\infty}r_{m}=\infty$ , $\Lambda l_{m}(x)\leq M_{m+1}(x)$ for $m\geq 1$

$\lim_{marrow\infty\epsilon\in}\inf_{[1,r_{m}]}\frac{1}{|B_{\epsilon}|}\int_{B.(0)}M_{m}(x)dx=M$ ,

and some sequence of vectors $\{x_{m}\}_{m=1}^{\infty}$ . Here $B_{r}(x)$ denotes the opened ball
of radius $r$ centered at $x$ .

Problem (1) has a unique bounded solution at least locally in time. How-
ever, the solution may blow up in finite time. For a given initial value $u_{0}$

and nonlinear term $f$ let $T”=T^{*}(u_{0}, f)$ be the maximal existence time of
the solution. If $T^{*}=\infty$ , the solution exists globally in time. If $\tau*<\infty$ , we
say that the solution blows up in finite time. It is well known that

$\lim_{tarrow T}\sup\Vert u(\cdot,t)\Vert_{\infty}=\infty$ , (6)

where $\Vert\cdot\Vert_{\infty}$ denotes the $L^{\infty}$-norm in space variables.
In this paper we are interested in behavior of a blowing up solution near

space infinity as well as location of blow-up directions defined below. A point
$x_{BU}\in R^{n}$ is called a blow-up point if there exists a sequence $\{(x_{m}, t_{m})\}_{m=1}^{\infty}$

such that

$t_{m}\uparrow T^{*}$ , $x_{m}arrow x_{BU}$ and $u(x_{m}, t_{m})arrow\infty$ as $marrow\infty$ .
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If there exists a sequence $\{(x_{m}, t_{m})\}_{m=1}^{\infty}$ such that

$t_{m}\uparrow T^{*}$ , $|x_{m}|arrow\infty$ and $u(x_{m)}t_{m})arrow\infty$ as $marrow\infty$ ,

then we say that the solution blows up to at space infinity.
A direction $\psi\in S^{n-1}$ is called a blow-up direction if there exists a sequence

$\{(x_{m},t_{m})\}_{m=1}^{\infty}$ with $x_{m}\in R^{n}$ and $t_{m}\in(0,T")$ such that $u(x_{m}, t_{m})arrow\infty$ as
$marrow\infty$ and

$\frac{x_{m}}{|x_{m}|}arrow\psi$ as $marrow\infty$ . (7)

We consider the solution $v(t)$ of an ordinary differential equation

$\{$

$v_{t}=f(v)$ , $t>0$ , (8)
$v(0)=M$.

Let $T_{v}=T$“ $(M, f)$ be the maximal existence time of solutions of (8), I. $e.$ ,

$T_{v}= \int_{M}^{\infty}\frac{ds}{f(s)}$ .

We are now in position to state our main results.

Theorem 1. Assume that $f\in C^{1}(R_{+})$ is nondecreasing function and locally
Lipschitz in $\overline{R}_{+}$ . Let $u_{0}$ be a continuous function satisfying (4) and (5). Then
there $exist_{8}$ asubsequence of $\{x_{m}\}_{m=1}^{\infty}$ , independent of $t$ such that

$\lim_{marrow\infty}u(x+x_{m},t)=v(t)$ in $R^{n}$ . (9)

The convergence is uniform in every compact subset of $R^{n}\cross[0, T_{v}$ ). More-
over, the solution blows up at $T_{v}$ .

For this theorem we should introduce the results of Gladkov [7]. In his
paper there is the result [7, Theorem 1] relative to our first theorem. He
considered the initial-boundary value problem:

$\{\begin{array}{ll}u_{t}=u_{xx}+f(x,t,u), x>0,0<t<T_{0},u(x,0)=u_{0}(x), x>0,u(0, t)=\mu(t) 0<t<T_{0},\end{array}$

and the ordinary differential equation

$\{\begin{array}{ll}v_{t}=f(t,u), 0<t<T_{0},v(0)=M, \end{array}$
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where $T_{0}\in(0, \infty$], $0\leq f(x, t,u)\leq\tilde{f}(t,u),$ $\lim_{xarrow\infty}f(x, t, u)=\tilde{f}(t, u)$ ,
$0\leq u_{0}\leq M$ and $\lim_{xarrow\infty}u_{0}(x)=M$ . For the equations he had $u(x, t)arrow v(t)$

as $xarrow\infty$ uniformly for $[0, T]$ with $T<T_{0}$ . For the proof of this result, he
used the fundamental solution of the heat equation.

In [5] the expression (9) was the weak sense:

$\lim_{narrow\infty}u(x_{m}, t)=v(t)$ . (10)

After [5], (9) was used in [12]. However, for proving Theorems 2 and 3, we
can select even the expression (10).

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypothe8es of Theorem 1 and that $f$ satisfies
(2) and (3). Let $u_{0}\not\equiv Ma.e$ . in $R^{n}$ . Then the solution of (1) has no blow-up
points with $\infty$ in $R^{n}$ . (It blows up only at space infinity.)

There is ahuge literature on location of blow-up points $sInce$ the work of
Weissler [15] $\bm{t}d$ Riedmt-McLeod [1]. (We do not intend to list references
exhaustively in this paper.) However, most results consider either bounded
domains or solutions decaying at space infinity; such asolution does not blow
up at space infinity [2].

As far as the authors know, before the result of [4] the only paper dis-
cussing blow-up at space infinity is the work of Lacey [8]. He considered
the Dirichlet problem in ahalf line. He studied various nonlinear tems td
proved that asolution blows up only at space infinity. His method is based
on $con8truction$ of $8uitable$ subsolution8 $\bm{t}d$ supersolutions. However, the
construction heavily depends on the Dirichlet condition at $x=0$ and does
not apply to the Cauchy problem even for the case $n=1$ .

As previously described, the Gig&Umeda [4] proved the statement of
Theorems 1and 2assuming that $\lim_{|x|arrow\infty}u_{0}(x)=M$ for positive solutions
of $u_{t}=\Delta u+u^{p}$ . Later, $Simoj\overline{o}[13]$ had the same $re8ults$ as in [4] by relaxing
the assumptions of initlal data $u_{0}\geq 0$ which is similar to that in the present
paper. His approach i8 aconstruction of asuitable supersolution which
implie8 that $a\in R^{\mathfrak{n}}$ is not ablow-up point. Although he restrIcted $him8elf$

for $f(s)=s^{p}$ , his idea works our $f$ under slightly strong assumption on $u_{0}$ .
Here we give adifferent aPproach.

By $Simoj\overline{o}’ sresults[13]$ it is natural to consider aproblem of “blow-up
direction” defined in (7). We next study this “blow-up direction” for the
value $\infty$ .
Theorem 3. Assume the same hypotheses of Theorem 1. Let a direction
$\psi\in S^{n-1}$ . If and only if there exists sequences $\{y_{m}\}_{m=1}^{\infty}$ and satishing
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$\lim_{marrow\infty}y_{m}/|y_{m}|=\psi$ such that

$\lim_{marrow\infty}u_{0}(x+y_{m})=Ma.e$ . in $R^{n}$ , (11)

then $\psi$ is a blow-up direction.

After [5] there are some results in this field. Shimojo had the result of
the upperbound and the lowerbound:

$v(t-\eta(x, t))\leq u(x, t)\leq v(t-c\eta(x, t))$

with some function $\eta$ and $c\in(0,1)$ . Moreover, he proved the complete
blow-up of the solution. Seki-Suzuki-Umeda [12] and Seki [11] improved the
results of [5] for the quasilinear parabolic equation:

$u_{t}=\Delta\varphi(u)+f(u)$ .

In particular they had more results for more general case. In [3] some of the
$proof_{8}$ of theorems in [5] were corrected.

This paper is organized as follows. In section 2 we prove Theorem 1 by
using the fundamental solution of the heat equation. The proof of Theorem
2 is given in section 3 by using the argument used in [12]. In section 4 we
show Theorem 3 using Theorem 1 and Lemma 3.2.

2 Behavior at space infinity

In this section we prove Theorem 1. We give proof of Theorem 1 which is
inspired in private communication with Y. Seki and M. Shimoj6.

Proof of Theorem 1. Put $w=v-x$. Then, we have for $t\in(0,T_{0}$] with
$T_{0}\in(0,T(M))$ ,

$w_{t}=\Delta w+f(v(t))-f(u(\cdot,t))\leq\Delta w+C(v-u)$ ,

where

$C= \sup_{t\in[0,To]}\Vert\int_{0}^{1}f’(\theta v(t)+(1-\theta)u(\cdot,t))d\theta\Vert_{\infty}$ .

Then, by comparison we obtain

$w(x,t) \leq e^{CT_{0}}e^{\Delta t}(M-u_{0}(x))=\frac{1}{(4\pi t)^{n/2}}\int_{R^{n}}e^{-|x-y|^{2}/4t}(M-u_{0}(y))dy$ .
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From (5) we have

$\lim_{marrow\infty}u(x+x_{m},t)=v(t)$ in $R^{n}$ . (12)

It remains to prove that $u$ blows up at $t=T_{v}$ . For this purpose it suffices
to prove that $\lim_{marrow\infty}u(x_{m}, t_{m})=\infty$ for some sequence $t_{m}arrow T_{v}$ . We argue
by contradiction. Suppose that $\lim_{marrow\infty}u(x_{m}, t_{m})\leq C$ for some $C\in[M, \infty$).
Then we could take $t_{0}\in(0,T_{v})$ satisfying $v(t_{0})\geq C$ and $v_{t}(t)>0$ for $t\geq t_{0}$ .
By (12) we have

$\lim_{marrow\infty}u(x_{m},$ $\frac{t_{0}+T_{v}}{2})=v(\frac{t_{0}+T_{v}}{2})>C$,

which yields a contradiction. We thus proved that $\lim_{marrow\infty}u(x_{m},t_{m})=\infty$ ,
so that $u(x,t)$ blows up at $T_{v}$ . $\square$

3 No blow-up point in $R^{n}$

In this section we prove Theorem 2. We use three lemmas for proving the
theorem..

Lemma 3.1. Assume the same hypothesis of Theorem 1. Let $u$ and $v$ be
solutions of (1) and (8) with $u_{0},$ $M$ and $f$ satisfying (2), (3) and (4). Then
there exist $\delta=\delta(a, t_{0}, u_{0}, f)\in(O, 1)$ such that for $(x, t)\in B_{1}(a)\cross[t_{0}, T_{v})$ ,

$u(x,t)\leq\delta v(t)$

with $t_{0}\in[0, T_{v}$).

Proof. By (2) there exist $M_{f}=M_{f}(f)>M$ and $\delta_{f}=\delta_{f}(f)\in(0,1)$ satisfy-
ing for $r\geq M_{f}$ and $\delta\in(\delta_{f}, 1)$ ,

$f(\delta r)\leq\delta f(r)$ . (13)

Let $T_{0}=T_{0}(u_{0}, f)\in(0, T_{v})$ such that $v(T_{0})=M_{f}$ . Since $u_{0}\leq M$ and
$u_{0}\not\equiv M$ a.e. in $R^{n}$ , we have $u(x,T_{0})<v(T_{0})$ . Note that $u(x, t)<v(t)$ for
$t\in(O,T_{0}]$ . Let $w$ be the solution of

$\{\begin{array}{ll}w_{t}=\Delta w, x\in R^{\mathfrak{n}}, t\in(T_{0}, T^{*}),w(x, T_{0})=\max\{u(x, T_{0})/v(T_{0}))\delta_{f}\}, x\in R^{n}.\end{array}$

Put $\overline{u}=vw$ . Then we have

$\{\begin{array}{ll}\overline{u}_{t}=\Delta\overline{u}+wf(v), x\in R^{n}) t\in(T_{0},T^{*}),\overline{u}(x,T_{0})=\max\{u(x, T_{0}), \delta_{f}v(T_{0})\}, x\in R^{n}.\end{array}$
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Since $w(x, t)\in[\delta_{f}, 1)$ and $v(t)\geq M_{f}$ , we have

$wf(v)\geq f(wv)=f(\overline{u})$

by (13). This $\overline{u}$ is supersolution of (1).
Since for any $x\in R^{n},$ $\sup_{t\in[T_{0},T)}w(x, t)<1$ , we can take $\delta=\delta(a, T_{0}, u_{0}, f)\in$

$(0,1)$ satisfying $w(x, t)\leq\delta$ for $(x, t)\in B_{1}(a)\cross[T_{0}, T_{v})$ . Thus, we obtain

$u(x, t)\leq\overline{u}(x, t)=w(x,t)v(t)\leq\delta v(t)$

and Lemma 3.1 is proved. $\square$

For any $a\in R^{n}$ , we consider the solutIon $\phi=\phi_{a}$ of the equation:

$\{\begin{array}{ll}\phi_{t}=\Delta\phi+f(\phi), x\in B_{1}, t\in(t_{1},T_{v}),\phi(x, 0)=\phi_{0}(x), x\in B_{1},\phi(x,t)=v(t), x\in\partial B_{1}, t\in(t_{1}, T_{v}),\end{array}$ (14)

where $\phi_{0}(x)=v(t_{1})$ ( $1-\epsilon$ cos $\frac{\pi|x|}{2}$ ) with $\epsilon=\epsilon(u_{0}, f, a)>0$ sufficiently small
$satis\theta ing$

$\phi_{0}(x)\geq u(x+a,t_{1})$ (15)

and $B_{1}$ denotes the open ball of radius 1 and centered at $0$ . It is easily seen
that

$\Delta\phi_{0}(x)+f(\phi_{0}(x))\geq 0$ .

By the maximum principle [10] we have

$\phi(x, t)\geq u(x+a, t)$ and $\phi_{t}\geq 0$ for $x\in\overline{B}_{1},$ $t\in[t_{1},T_{v}$). (16)

If $w$ has no blow-up point in $R^{n}$ , the $u$ has no blow-up point in $R^{n}$ , neither.
We should show that $w$ has no blow-up point.

Lemma 3.2. Assume the same hypotheses of Lemma S. 1. Let $\Omega\in B_{1}$ be a
domain. If $\partial_{t}\phi(x, t)\geq 0$ in $\Omega x(t_{1}, T_{v})$ and there exist $\nu\in S^{n-1}$ and $\delta>0$ ,
such that

$\nu\cdot\nabla\phi(x, t)\leq-\delta|\nabla\phi(x,t)|<0$ in $\Omega\cross(t_{1},T_{v})$ ,

then $\phi$ does not unifomly blow-up in $\Omega$ :

$\inf_{x\in\Omega}\phi(x, t)\leq L<\infty$ for $t\in(t_{1},T_{v})$ .
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Proof of Lemma 3.2. This lemma is proved in [9] (See [9, Lemma 4.1]). 口

Proof of Theorem 2. Put $r\in(O, 1)$ . Define

$\mu(x, t)=\phi(2r-x_{1}, x’,t)-\phi(x_{1},x’, t)$ ,

where $x=(x_{1}, x’)$ with $x’=(x_{2}, x_{3}, \ldots , x_{n})\in R^{\mathfrak{n}-1}$ . Then, we obtain

$\{\begin{array}{ll}\mu_{t}\geq\Delta\mu+C(x, t)\mu, x\in D_{r},t\in(t_{1},T_{v}),\mu(x, 0)=\phi_{0}(2r-x_{1},x^{1})-\phi_{0}(x_{1},x’)\geq 0, x\in D_{r},\mu(x, t)\geq 0, x\in\partial D_{r;}t\in(t_{1},T_{v}),\end{array}$

where

$C(x, t)= \int_{0}^{1}\{\theta\phi(2r-x_{1}, x’, t)+(1-\theta)\phi(x_{1}, x’, t)\}d\theta$

$D_{r}=\{x:x_{1}<r\}\cap\{x:(x-2r)^{2}<1\}$ .

Thus, by the maximum principle [10] we have

$\mu\geq 0$ in $Dx[t_{1},T_{v}$ )

and

$\phi(2r-x_{1}, x’, t)\geq\phi(x_{1}, x’, t)$ in $Dx[t_{1}, T_{v}$ ).

Since $r\in(O, 1)$ is arbitrary, we obtain that $\phi_{x_{1}}\geq 0$ for $x\in\{x|x_{1}>0\}$ and

$-e_{1} \cdot\nabla\phi\leq-\phi_{x_{1}}\leq-\frac{\delta x_{1}}{|x|}|\nabla\phi|$ , in $D\cup\{x|x_{1}\geq 0\}$

with some $\delta>0$ , where $e_{1}={}^{t}(1, 0,0, \ldots , 0)$ . Since $\phi_{t}\geq 0$ and $\inf_{x\in B_{1}}\phi(x, t)=$

$\phi(0, t)$ , by Lemma 3.2 we have

$\lim_{tarrow T_{v}}\phi(0, t)\leq L$ with some $L<\infty$ .

$Thu8$

$\lim_{tarrow T_{w}}u(a, t)\leq L$ with same $L$ .

Since $a\in R^{n}$ is arbitrary, $u$ does not blow uP at $t=T_{v}$ in $R^{n}$ . 口
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4 On blow-up direction
We shall prove Theorem 3 which gives a condition for blow-up direction.

Proof of Theorem 3. We first prove that if $u_{0}$ satisfies (11), then $\psi$ is a blow-
up direction. By assumption we obtain that $u_{0}(x)$ satisfies (5) with some
sequences $\{x_{m}\}_{m=1}^{\infty}$ satisfying $\lim_{marrow\infty}x_{m}/|x_{m}|=\psi$ . Then, from the proof
of Theorem 1 it follows that

$\lim_{marrow\infty}u(x_{m},t_{m})=\infty$

with the sequence $\{t_{m}\}_{m=1}^{\infty}satis\Psi ing\lim_{marrow\infty}t_{m}=T_{v}$ . Since $\lim_{marrow\infty}x_{m}/|x_{m}|=$

$\psi$ by the assumption we obtain that $\psi$ is a blow-up direction.
We next show that if $\psi$ is a blow-up direction, then there exist $\{x_{m}\}_{m=0}^{\infty}\subset$

$R^{n}$ such that $x_{m}/|x_{m}|arrow\psi,$ $t_{m}arrow T_{v}$ and $u(x_{m}, ,t_{m})arrow\infty$ as $marrow\infty$ .
In contrary it says that if for any sequences $\{x_{m}\}_{m=1}^{\infty}\subset R^{\mathfrak{n}}$ satisfying
$\lim_{marrow\infty}x_{m}/|x_{m}|=\psi,$ $u_{0}$ does not satisfy (11), then $\psi$ is not a blow-up
direction.

Since $\lim_{marrow\infty}u_{0}(x+x_{m})=M$ a.e. in $R^{n}$ , we have

$\lim_{marrow\infty}\sup_{x\in B_{3}(x_{m})}\frac{1}{(4\pi t)^{n/2}}\int_{R^{n}}e^{-(x-y)^{2}/4t}u_{0}(y)dy<M$ (17)

for $t>0$ . Since the solution of (1) satisfies the integral equation

$u(x, t)=e^{\Delta t}u_{0}(x)+ \int_{0}^{t}e^{\Delta(t-\epsilon)}f(u(x, s))ds$,

we have

$u(x,t) \leq e^{\Delta t}u_{0}(x)+\int_{0}^{t}f(v(s))ds=v(t)-M+e^{\Delta t}u_{0}(x)$

for $(x, t)\in R^{\mathfrak{n}}x[0,$ $T$“).
Let $M_{f},$ $\delta_{f}$ and $T_{0}$ be the same as proof of Lemma 3.1. We consider the

solution $w$ of

$\{\begin{array}{ll}w_{t}=\Delta w, x\in R^{\mathfrak{n}},t\in(T_{0},T_{v}),w(x,T_{0})=masc\{\{v(T_{0})-M+e^{\Delta Tb}u_{0}(x)\}/v(T_{0}), \delta_{f}\}, x\in R^{n}.\end{array}$

We now introduce $\tilde{u}=vw$ . From the proof of Lemma 3.1, it follows that
$\tilde{u}\geq u$ for $(x, t)\in R^{\mathfrak{n}}x[T_{0},T$“). Then we have

$u(x, t) \leq v(t)e^{\Delta(t-T_{0})}\max\{\{v(T_{0})-M+e^{\Delta T_{0}}u_{0}(x)\}/v(T_{0}), \delta_{f}\}$
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for $(x, t)\in R^{n}\cross[T_{0}, T_{v})$ .
Put $U_{m}= \sup_{x\in B_{2}(x_{m})}e^{T_{0}}u(x)$ . From (17), there exists $M_{0}\in(0, M)$ such

that

$\lim_{marrow\infty}U_{m}\leq M_{0}(<M)$ .

There exists a sequence $\{V_{k}\}_{k=1}^{\infty}$ such that $V_{k}=(M_{0}+M)/2,$ $\lim_{karrow\infty}V_{k}=M_{0}$

$V_{k+1}\leq V_{k}$ and $V_{k}\geq U_{m_{k}}$ with a sequence $\{m_{k}\}_{k=1}^{\infty}$ satisfying $u_{k+1}>u_{k}$ for
$k\in N$ . Thus, since $(x-y)^{2}\leq 2x^{2}+2y^{2}$ , we obtain

$\sup_{x\in B_{1}(\tilde{x}_{k})}w(x, t)\leq W_{k}(t)$

$=e^{\Delta(t-T_{0})}$ max $\{\ovalbox{\tt\small REJECT}|<2\delta_{f}<1$

for $t\in[T_{0},T_{v}$ ), where $\tilde{x}_{k}=x_{m_{k}}$ . By comparison we have $W_{k+1}(t)\leq W_{k}(t)$

for $t\in[T_{0}, T_{v}$ ) and $k\in N$ . From Lemma 3.2 and comparison it follows that
there exist the sequence $\{\eta_{k}\}_{k=1}^{\infty}$ satisfying $0<\eta_{k+1}\leq\eta_{k}<\infty$ such that

$\lim_{tarrow T_{v}}u(x_{m_{k}},t)\leq\eta_{k}$ .

Since the sequence $\{x_{m}\}_{m=1}^{\infty}$ is arbitrary, we obtain that $\psi$ is not blow-up
direction. $\square$
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