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Abstract

In this note, as a sequel to our previous $work[\eta$ , we are concerned with adaptive models
for uncertain Markov decision processes with regularly communicating structure where the
state space is decomposed into a single communicating class and a absolutely transient
class.

We give a pattern-matrix learning algorithm which finds the regularly communicating
structure, by which an asymptotic sequenoe of adaptive properties $w\cdot ith$ nearly average-
optimal properties is constructed. A numerical experiment is given.

Keywords: adaptive Markov decision processes, pattern-matrix learning algorithm, average-
optimal adaptive policy, regularly communicating case.

1 Introduction and notation

In our previous work[7], we considered the adaptive Markov decision processes(MDPs) in which
the state space is a single communicating class and constructed an average-optimal adaptive
policy of reward-penalty types(cf. [9, 10]) by applying the perturbation $th\infty ry(cf. [16])$ .

In this note, as a sequel to [7], we are concerned with adaptive models for uncertain MDPs
with regularly communicating structure where the state spaoe is assumed to be decomposed into
a single communicating class and a transient class(cf. [1, 6, 11]). In this case, the corresponding
adaptive policy will be compelled to learn the pattern of the structure.

Here, we give a pattern-matrix learning algorithm for regularly communicating structure,
by which an asymptotic sequence of adaptive properties with nearly average-optimal properties
is constructed by extending the results of [7].

For general discussions of adaptive MDPs, refer to [4, 5, 12, 13, 18] and for an approach by
the $neuro- d\}^{\prime namiC}$ programming refer to [2, 8, 17].

In the reminder of this section, we formulate the adaptive MDPs with uncertain transition
matrices.

Consider a controlled dynamic system with finite state space $S=\{1,2, \ldots, N\}$ , containing
$N<\infty$ elements. For each $i\in S$ , the finite set $A(i)$ denotes the set of available actions at
state $i$ . Let $\mathbb{Q}$ denote the parameter space of unknown transition matrices, i.e.,

$\mathbb{Q}=$ { $q=(q_{ij}(a))|q_{ij}(a) \geqq 0,\sum_{j\in S}q_{ij}(a)=1$
for $i,j\in S$ and $a\in A(i)$ }. (1.1)

The sample space is the product space $\Omega=(S\cross.4)^{\infty}$ such that the projections $X_{t},$ $\Delta_{t}$ on
the t-th factors $S,$ $A$ describe the state and action at the t-th stage of the process $(t\geqq 0)$ . Let
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$\Pi$ denote the set of all policies, i.e., for $\pi=(\pi_{0}, \pi_{1}, \ldots)\in\Pi$ , let $\pi_{t}\in P(\wedge 4|(S\cross A)^{t}\cross S)$ for all
$t\geqq 0$ , where, for any finite sets $X$ and $Y,$ $P(X|1^{r})$ denotes the set of all conditional probability
distribution on $X$ given 1“. A policy $\pi=(\pi_{0}, \pi_{1}, \ldots)$ is called randomized stationary if a
conditional probability $\gamma=$ $(\gamma(\cdot|i) : i\in S)\in P(.4|S)$ such that $\pi_{t}(\cdot|x_{0}, a_{0}, \ldots , x_{t})=\gamma(\cdot|x_{t})$ for
all $t\geqq 0$ and $(x_{0}, a_{0}, \ldots, x_{t})\in(S\cross A)^{t}\cross S$ . Such a policy is simply denoted by $\gamma$ . We denote
by $F$ the set of functions on $S$ with $f(i)\in A$ for all $i\in S$ . A randomized stationary policy $\gamma$

is called stationary if there exists a function $f\in F$ with $\gamma(\{f(i)\}|i)=1$ for all $i\in S$ , which is
denoted simply by $f$ .

We will construct a probability space as follows: For any initial state $X_{0}=i,$ $\pi\in\Pi$ and
a transition law $q=(q_{ij}(a))\in \mathbb{Q}$, let $P(X_{t+1}=j|X_{0}, \Delta_{0}, \ldots, X_{t}=i, \Delta_{t}=0.)=q_{ij}(a)$ and
$P(\Delta_{t}=a|X_{0}, \Delta_{0}, \ldots ,\wedge Y_{t}=i)=\pi_{t}(a|X_{0}.\Delta_{0}, \ldots , X_{t}=i)(t\geqq 0)$. Then, we can define the
probability measure $P_{\pi}(\cdot|X_{0}=i, q)$ on $\Omega$ . For a given reward function $r$ on $SxA$, we shall
consider the long-run expected average reward:

$\psi(i, q|\pi)=\lim_{Tarrow}\inf_{\infty}\frac{1}{T+1}E_{\pi}(\sum_{t=0}^{T}r(X_{t}, \Delta_{t})|X_{0}=i,q)$ (1.2)

where $E_{\pi}(\cdot|\lambda_{0}’=i, q)$ is the expectation operator with respect to $P_{\pi}(\cdot|X_{0}=i, q)$ .
Let $\mathcal{D}$ be a subset of $\mathbb{Q}$. Then, the problem is to maximize $\psi(i, q|\pi)$ over all $\pi\in\Pi$ for any

$i\in S$ and $q\in D$ . Thus, denoting the optimal value function as

$\psi(i,q)=\sup_{\pi\in n}\psi(i,q|\pi)$ . (1.3)

a policy $\pi^{*}\in\Pi$ will be called q-optimal if $\psi(i, q|\pi^{*})=\psi(i,q)$ for all $i\in S$ and called adaptively
optimal for IP if $\pi^{*}$ is q-optimal for all $q\in D$ .

Let $q\in \mathbb{Q}$. A subset $E\subset S$ is called a communicating class for $q$ if

(i) for any $i,j\in E$ , there exists a path in $E$ from $i$ to $j$ with positive probability, rewritten
by $iarrow j’$ , i.e., it holds that

$q_{i_{1}i_{2}}(a_{1})q_{i_{2}i_{S}}(a_{2})$ . . . $q_{1_{l-1}i_{l}}(a_{l-1})>0$ (1.4)

for some $\{i_{1}=i, i_{2}, \ldots, i_{l}=j\}\subset E$ and $a_{k}\in A(i_{k})$ and $2\leqq l\leqq N$, and

(ii) $E$ is closed, i.e., $\sum_{j\in E}q_{1j}(a)=1$ for $i\in E,$ $a\in A(i)$ .
The transition matrix $q\in \mathbb{Q}$ is said to be regularly communicating if there exists an E C $S$

such that

(i) $\overline{E}$ is a communicating class for $q$ and

(ii) $T=S-\overline{E}$ is an absolutely transient class, i,e.,

$P_{\pi}$ ( $X_{t}\in\overline{E}$ for some $t\geqq 1|X_{0}\in T$ ) $=1$ (1.5)

for all $\pi\in\Pi$

For a regularly communicating $q\in \mathbb{Q}$, this corresponding communicating class $\overline{E}$ will be de-
noted by $\overline{E}(q)$ depending on $q\in \mathbb{Q}$. For any $i_{0}\in S$ , we denote by $\Psi(i_{0})$ the set of regularly
communicating $q\in \mathbb{Q}$ with $i_{0}\in\overline{E}(q)$ .
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Let $n(D)$ denotes the number of elements in a set $D$ . For any $q\in \mathbb{Q}^{*}(i_{0})$ , the pattern-matrix
Al $(q)$ (cf. [6]) corresponding with $q$ is generally represented as follows:

$M(q)=(\begin{array}{lll}E j O l -\overline{\neg}|--\overline{R}_{|},\overline{\overline{A}}^{\nearrow}\end{array})$

where $E$ is an $n(\overline{E}(q))\cross n(\overline{E}(q))$-matrix and $R$ is an $n(S-\overline{E}(q))\cross n(\overline{E}(q))$-matrix whose
elements of both $E$ and $R$ are all 1 and that $iarrow j$ means that the $(i,j)$ element of $M(q)$ is 1.

The adaptive policy for $q\in Q^{*}(i_{0})$ will be necessary to find the pattern-matrix $M(q)$ , whose
algorithm will be called the pattern-matrix learning one.

The sequence of policies $\{\tilde{\pi}^{n}\}_{n=0}^{\infty}\subset\Pi$ is called an asymptotic sequence of adaptive policies
with nearly optimal properties for $\mathcal{D}\subset \mathbb{Q}$ and $E\subset S$ if

$\lim_{narrow\infty}\psi(i, q|\tilde{\pi}^{n})=\psi(i, q)$ (1.6)

for all $q\in \mathcal{D}$ and $i\in E$ .
In [9], an adaptively optimal policy for

$\mathbb{Q}^{+}$ $:=$ { $q=(q_{ij}(a))\in \mathbb{Q}|q_{ij}(a)>0$ for all $i;j\in S$ and $a\in A(i)$ }, (1.7)

was constructed by applying the value iteration and policy improvement algorithm (cf. [3])
which was extensively applied to the communicating case of multi-chain MDPs in Iki et. al. [7].

In this note, using the method of pattern-matrix learning we will construct an asymptotic
sequence of adaptive policies with nearly optimal properties for $\mathbb{Q}^{*}(i_{0})$ with $i_{0}\in S$ , which is
thought of as a wider clas$s$ for uncertain MDPs than the communicating case treated in [7].
In order to treat with the regularly communicating case with $q\in \mathbb{Q}^{*}(i_{0})$ , we use the so-called
vanishing discount approach which studies the average case by considering the corresponding
$(1-\tau)$-discounted one as letting $\tauarrow 0$ . The expected total $(1-\tau)$-discounted reward is defined
by

$v_{\tau}(i,q| \pi)=E_{\pi}(\sum_{t=0}^{\infty}(1-\tau)^{t}r(X_{t}, \Delta_{t})|X_{0}=i,$ $q)$ (1.8)

for $i\in S,$ $q\in \mathbb{Q}$ and $\pi\in\Pi$ , and $v_{\tau}(i, q)= \sup_{\pi\in\Pi}v_{\tau}(i, q|\pi)$ is called a $(1-\tau)$-discounted value
function, where $(1-\tau)\in(0,1)$ is a given discount factor.

Let $B(S)$ be the set of all functions on $S$ . For any $q=(q_{ij}(a))\in \mathbb{Q}$ and $\tau\in(0,1)$ , we define
the operator $U_{\tau}\{q\}$ : $B(S)arrow B(S)$ by

$U_{\tau} \{q\}u(i)=\max_{a\in A}\{r(i,a)+(1-\tau)\sum_{j\in S}q_{ij}(a)u(j)\}$ (1.9)

for all $i\in S$ and $u\in B(S)$ . We have the following.

Lemma 1.1 ([14, 15]). It holds that

(i) the operator $C^{\gamma_{\tau}}\{q\}$ is a contraction with the modulus $(1-\tau)$ ,

(ii) the $(1-\tau)- discoun,t$ value function $v_{r}(i, q)$ is a unique fixed point of $U_{\tau}\{q\},$ $i.e.$ ,

$v_{\tau}=U_{\tau}\{q\}v_{\tau}$ , (1.10)
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(iii) $v_{\tau}(i, q)=v_{\tau}(i., q|f_{r})$ and $\tauarrow 01i_{l}n\tau v_{\tau}(i, q)=\psi(i, q)$ , where $f_{\tau}$ is a maximizer of the right-hand
side in (1.10).

In Section 2, some elementary lemmas are given which show the effectiveness of pattern-
matrix leaning algorithm developed in the sequel. Section 3 is devoted to the construction of
adaptive policies with nearly average-optimal properties for $\Phi(i_{0})$ . A numerical experiment is
given in Section 4.

2 Preliminary lemmas
In this section, several lemmas are given which are used in Section 3.

Let $i_{0}\in S$. For anv $q\in\Phi(i_{0})$ and $E\neq\subset\overline{E}(q)$ , we define the sequence $J_{k}(E)(k=1,2, \ldots)$

iteratively by

$J_{1}(E)=$ {
$i \in E|\sum_{j\in\overline{E}(q)-E}q_{ij}(a)>0$

for some $a\in A(i)$ }

and (2.1)

$J_{k}(E)=$ { $i \in E-\bigcup_{l=1}^{k-1}J_{l}(E)|\sum_{j\in J_{k-1}(E)}q_{ij}(a)>0$ for some $a\in A(i)$ } $(k\geqq 2)$ .

Letting $K(\overline{E}(q))=$ { $(i,$ $a,j)|p_{ij}(a)>0,i,j\in\overline{E}(q)$ and $a\in A(i)$ }, put $\delta:=\min p_{ij}(a)$ where
the minimum is taken over $(i, a,j)\in K(\overline{E}(q))$ . Then, from the definition of communicating
class $\overline{E}(q)$ , the following can be easily shown.

Lemma 2.1. For any $q\in \mathbb{Q}^{*}(i_{0})$ with $i_{0}\in S$ and $E\neq\subset\overline{E}(q)$ , there exists $l(E)(1\leqq l(E)\leqq N)$

for which $J_{k}(E)\neq\emptyset(k=1,2, \ldots , l(E))$ and $J_{l(E)+1}(E)=\emptyset$ .
Lemma 2.2. Let $q\in\Phi(i_{0})$ with $i_{0}\in S.$ Let a policy $\tilde{\pi}=(\tilde{\pi}_{0},\tilde{\pi}_{1}, \ldots)$ and a decreasing
sequence of positive numbers $\{\epsilon_{t}\}_{t=0}^{\infty}$ satisfy that for each $t\geqq 0\tilde{\pi}_{t}(a|h_{t})\geqq\epsilon_{t}$ with $a\in A(x_{t})$

and $h_{t}=$ $(x_{0}, a_{0}, x_{1}, \ldots , x_{t})\in H_{t}$ . Then, it holds that for any $E\neq\subset\overline{E}(q)$ ,
$P_{\overline{\pi}}$ ( $X_{t+l}\in\overline{E}(q)-E$ for some $l(1\leqq l\leqq N)|X_{t}\in E$ ) $\geqq(\delta\epsilon_{t+N})^{N}$ . (2.2)

Proof. By Lemma 2.1, it holds that

the left-hand side of $(2.2)\geqq(\epsilon_{t}\delta)(\epsilon_{t+1}\delta)\cdots(\epsilon_{t+l(E)}\delta)$

$\geqq(\delta\epsilon_{t+N})^{N}$ ,

which completes the proof.1
For $q\in\Phi(i_{0})$ with $i_{0}\in S$ , a sequence of stopping times $\{\sigma_{t}\}$ and subsets $\{E_{\sigma_{t}}\}\subset\overline{E}(q)$

will be defined as follows:
$E_{0}$ $:=\{i_{0}\},T_{0}$ $:=\overline{E}(q)-E_{0},$

$\sigma_{1}$ $:= \min\{t|X_{t}\in T_{0},t>0\}$ ,
$E_{\sigma_{1}}=E_{0}\cup\{X_{\sigma_{1}}\},T_{\sigma_{1}}$ $:=\overline{E}(q)-E_{\sigma_{1}}$ ,
and iteratively for $n=2,3,$ $\ldots$ , (2.3)
$\sigma_{n}$ $:= \min\{t|X_{t}\in T_{\sigma_{n-1}},t>\sigma_{n-1}\},$ $E_{\sigma_{\mathfrak{n}}}=E_{\sigma_{n-1}}\cup\{X_{\sigma_{n}}\},T_{\sigma_{\mathfrak{n}}}=\overline{E}(q)-E_{\sigma_{n}}$,
where $\min\emptyset=\infty$ .

For any $E\subset\overline{E}(q)$ , let $\overline{\uparrow\iota}.(E)=\min\{n\geqq 1|E_{\sigma_{n}}=\overline{E}(q)\}$ . If $\overline{n}(E)<\infty$ , we can find the
pattern-matrix $M(q)$ . Here, we have the following.
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Lemma 2.3. Let $q\in\Phi(i_{0})$ with $i_{0}\in S$ and $\overline{\pi}$ satisfy condition in Lemma 2.2 with $\sum_{t=0}^{\infty}\epsilon_{t}^{N}=$

$\infty$ . Then, for any $E\subsetneqq\overline{E}(q)$ it holds that

(i) $P_{\overline{\pi}}(\overline{n}(E)<\infty|X_{0}=i_{0}, q)=1$, and

(ii) for any $k\leqq\overline{n}(E),P_{\overline{\pi}}(\sigma_{k}<\infty|X_{0}=i_{0}, q)=1$ .

Proof. For any $E\neq\subset\overline{E}(q)$ , from Lemma 2.2 and $\sum_{t=0}^{\infty}\epsilon_{t}^{N}=\infty$ it follows that

$P_{\overline{\pi}}$ ( $\wedge\chi_{t+l}^{*}\in E$ for all $l\geqq 1|\lambda_{t}’\in E,q$ ) $\leqq\prod_{l=1}^{\infty}(1-\delta^{N}\epsilon_{t+lN}^{N})\leqq e^{-\delta^{N}}\sum_{l=1}^{\infty}\epsilon_{\iota+lN}^{N}=0$ . (2.4)

So, taking $E=E_{0}$ in (2.4), we have

$P_{\overline{\pi}}(\sigma_{1}<\infty|X_{0}\in E_{0}, q)=1-P\pi(\sigma_{1}=\infty|X_{0}\in E_{0},q)$

$=1-P_{\overline{\pi}}$ ($X_{t}\in E_{0}$ for all $t\geqq 1|X_{0}\in E_{0},q$ )
$=1$ .

For (ii), inductively on $k(k=2,3, \ldots)$ , if $E_{\sigma_{k-1}}\subsetneqq\overline{E}(q)$ , we have &om (2.4) that

$P_{i}(\sigma_{k}<\infty|X_{0}\in E_{0}, q)$

$= \sum_{l=1}^{\infty}P_{\tilde{\pi}}(\sigma_{k-1}=l|X_{0}\in E_{0}, q)\cdot P_{\overline{\pi}}$ ($X_{t+l}\in\overline{E}(q)-E_{l}$ for some $0<t<\infty|X_{l}\in E_{l},$ $q$ )

$= \sum_{l=1}^{\infty}P_{\overline{\pi}}(\sigma_{k-1}=l|X_{0}\in E_{0}, q)$

(2.5)

$=P_{\tilde{\pi}}(\sigma_{k-1}<\infty|X_{0}\in E_{0},q)$

$=1$ .
Obviously, (i) follows from (ii), which completes the proof.$\blacksquare$

We note that a sequence $\{(1+t)^{-N}\}_{t=0}^{\infty}$ satisfies Assumption concerning $\{\epsilon_{t}\}_{t=0}^{\infty}$ given in
Lemma 2.3.

3 Pattern-matrix learning algorithms

In this section, we give a pattern-matrix learning algorithm by which an asymptotic sequence
of adaptive policies with nearly average-optimal properties for $\mathbb{Q}^{*}(i_{0})$ with $i_{0}\in S$ is given.

For any sequence $\{b_{n}\}_{n=0}^{\infty}$ of positive numbers with $b_{0}=1,0<b_{n}<1$ and $b_{n}>b_{n+1}$ for
all $n\geqq 1$ , let $\phi$ be any strictly increasing function that $\phi:[0,1]arrow[0,1]$ and $\phi(b_{n})=b_{n+1}$ for
all $n\geqq 0$ .

Here, we consider the following iterative scheme called a pattern-matrix learning algorithm
with $i_{0}\in S,$ $\{b_{n}\}$ and $\tau\in(0,1)$ , denoted by PMLA$(i_{0}, \{b_{n}\}, \tau)$ .
PMLA$(i_{0}, \{b_{n}\}, \tau)$ ;

1. Set $E_{0}=\{i_{0}\},T_{0}=S-E_{0},\tilde{v}_{0}(i)=0(i\in E_{0}),$ $X_{0}=i_{0}$ and $\tilde{\pi}_{0}^{\tau}(a|X_{0})=n(A(i_{0}))^{-1}$ for
$a\in A(i_{0})$ .
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2. Suppose that $E_{n}\subset S,$ $T_{n}=S-E_{n}$ and $\{c^{\sim}fn(i) : i\in E_{n}\}$ are given. Moreover, suppose that
the n-th decision rule $\tilde{\pi}_{n}^{\tau}(a|i)=Prob.(\Delta_{n}=0|H_{n-1}, \Delta_{n-1}, X_{n}=i)(i\in E_{n}, a\in A(i))$

are given, where $H_{n-1}=(X_{0}, \Delta_{0}, X_{1}, \ldots,X_{n-1})$ is a history until the $(n-1)$-th step.

3. Choose an action $\Delta_{n+1}\in A(X_{n}^{-})$ from $\overline{\pi}_{n}(\cdot|H_{n})$ . Then, according to the value of $X_{n+1_{!}}$.
we put $E_{n+1}=E_{n}\cup\{X_{n+1}\}$ if $X_{n+1}\in T_{n}$ and $E_{n+1}=E_{n}$ if $X_{n}^{-}\in E_{n}$ .
Calculate $N_{n+1}(i,j|a)= \sum_{t=0}^{n}I_{\{\lambda_{t}=i,\Delta_{t}=a.\lambda_{t+1}=j\}}$ and $N_{n+1}(i|a)= \sum_{t=0}^{n}I_{\{X_{t}=i,\Delta_{t}=a\}}$ for
$i,j\in E_{n+1}$ and $a\in A(i)$ .
Set $q^{n+1}=(q_{ij}^{n+1}(a))$ by

$q_{ij}^{n+1}(a)=\{\begin{array}{ll}\frac{N_{n+1}(i,j|a)}{N_{n+1}(i,a)} if N_{n+1}(i|a)>0, (i,j\in E_{n+1},a\in A(i))q_{j}^{0} otherwise,\end{array}$ (3.1)

where $q^{0}=$ $(q_{j}^{0} : j\in E_{n+1})$ is any distribution on $E_{n+1}$ with $q_{j}^{0}>0$ for all $i\in E_{n+1}$ .
4. For each $i\in E_{n+1}$ , choose $\tilde{a}_{n+1}(i)$ which satisfies

$\tilde{a}_{n+1}(i)\in\arg\max_{(a\in Ai)}\{r(i,a)+(1-\tau)\sum_{j\in E_{n+1}}q_{ij}^{n+1}(a)\tilde{v}_{n}(j)\}$

and update $\overline{\pi}_{n+1}^{\tau}(a|i)=Prob.(\Delta_{n+1}=a|H_{n}, \Delta_{n+1},X_{n+1}=i)$ as follows:.

$\tilde{\pi}_{n+1}^{\tau}(a_{i}|i)=\{\begin{array}{ll}1-\sum_{a\neq a:}\phi(\tilde{\pi}_{n}^{\tau}(a|i)) (a_{i}=\tilde{a}_{n+1}(i))\phi(\tilde{\pi}_{\mathfrak{n}}^{\tau}(a_{i}|i)) (a_{i}\neq\tilde{a}_{n+1}(i)).\end{array}$ (3.2)

Moreover, put $\overline{v}_{n+1}=L^{\gamma_{\mathcal{T}}}\{q^{n+1}\}\tilde{v}_{n}$ on $E_{n+1}$ .
5. Set $narrow n+1$ and return to step 3.

We need the folowing condition on $\{b_{n}\}$ .
Condition $t*$ )

$b_{n}arrow 0$ as $narrow\infty$ and $\sum_{n=0}^{\infty}b_{n}^{N}=\infty$. (3.3)

The folowing theorem says that the policy $\tilde{\pi}^{\tau}=(\tilde{\pi}_{0}^{\tau},\overline{\pi}_{1}^{\tau}, \ldots)$ constructed by
PMLA $(i_{0}, \{b_{\mathfrak{n}}\}, \tau)$ has nearly average-optimal properties for $\varphi(i_{0})$ when $\tauarrow 0$ .
Theorem 3.1. Under condition $(*)$ , a sequence $\{\tilde{\pi}^{\tau_{n}}\}_{n=1}^{\infty}$ with $\tau_{n}arrow 0$ as $narrow\infty$ is an
asymptotic sequence of adaptive policies with nearly average-optimal prvperties for $\Phi(i_{0})$ .
Prvof Under condition $(*)$ , the policy $\tilde{\pi}‘=(\tilde{\pi}_{0}^{\tau},\tilde{\pi}_{1}^{\tau}, \ldots)$ constructed in
PMLA $(i_{0}, \{b_{n}\}, \tau)$ satisfies assumptions in Lemma 2.3. So, by Lemma 2.3 we observe that
PMLA $(i_{0}, \{b_{n}\}, \tau)$ finds the pattern $\overline{E}(q)$ with $P_{\overline{\pi}^{f}}(\cdot|X_{0}=i_{0}, q)$ -probability 1, i.e.,

$E_{n}=\overline{E}(q)$ for all $n\geqq\overline{n}(E_{0})$ ,

where $\overline{n}(E_{0})$ is given in Lemma 2.3.
Thus, a learning algorithm for communicating MDPs on $\overline{E}(q)$ for $q\in \mathfrak{U}i_{0}$ ), which was

developed in [7] using the vanishing discount approach(Lemma 1.1), are applicable to the
pattern-matrix learning case, which completes the $proof_{\blacksquare}$
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4 A numerical experiment

In this section, we give a simulation result for pattern-matrix learning algorithm.
Consider the six-state MDPs with $S=\{1,2,3,4,5,6\}$ , where data for simulation and

transition diagrams are given in Table 4.1. and Fig. 4.1.

Table 4.1: Data of simulated MDPs

We denote by $\tilde{\psi}_{n}$ the average present value until n-th time, defined by

$\tilde{\psi}_{n}=\frac{1}{n}\sum_{t=0}^{n-1}r(X_{t}, \triangle_{t})$ $(n\geqq 1)$ .

To calculate the quantity explicitly, we set $E_{0}=\{2\}$ . We use a strictly increasing function
$\phi$ such that

$\phi(x)=(\frac{x^{N}}{1+x^{N}})^{1/N}$

where $N$ denotes the number of states in $S$ .
The pattern matrix $M(q)$ and reordered matrix $\overline{JI}$ corresponding to communicating states

are easily computed, which are shown as follows.
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12 3 4 5 6 235614

$M=$
$654321$ $(\begin{array}{llllll}1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1\end{array})$ ,

$\overline{\Lambda f}=$

$465321$ ( $111111$ $111111$ $111111$ $111111$ $000011$ $000011$ ).

Figure 4.1: Transition diagrams of numerical experiment. The first quantity in brackets near
the arc is action number and the second one is its transition probability if the action is chosen.

Now, we make numerical experiments with vanishing parameter $\tau=0.1$ and 0.01 and show
the results given in Table 4.2. and Fig. 4.2.

Table 4.2: The simulation value of $\tilde{\psi}_{n}$ and $\tilde{\pi}_{n}^{\tau}$ for each $\tau=0.1,0.01$ .
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Figure 4.2: The trajectories of $\tilde{\psi}_{n}(\tau=0.01)$ . The dotted line means the optimal value of
average reward in $\overline{E}(q)$ .

Considering the optimal average reward $\psi(i,q)=91/12\approx 7.583(i\in\overline{E}(q))$ and the q-
optimal stationary policy $f^{*}$ for $\overline{E}(q)$ is $f^{*}(2)=1,$ $f^{*}(3)=2,$ $f^{*}(5)=1,$ $f^{*}(6)=1$ , it is seen
that $\tilde{\psi}_{n}arrow\psi(i, q)=91/12$ and $\tilde{\pi}_{\mathfrak{n}}^{\tau}(1|1),\tilde{\pi}_{n}^{r}(2|2),\tilde{\pi}_{n}^{\tau}(2|3)arrow 1$ as $narrow\infty$ hold from the above
Table 4.2 and Fig. 4.2. The results of the above simulation show that the pattern-matrix
learning algorithm is practically effective for the communicating class of transition matrices.
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