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1 The Riemann zeta function and the Lindel\"of
hypothesis

The Riemann zeta function is defined as an absolutely convergent series

$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^{\epsilon}}$ $(\Re s>1)$

in the right half plane $\Re s>1$ and it can be extended meromorphically to the
whole complex plane with only a simple pole at $s=1$ with residue 1. It satisfies
the functional equation as

$\zeta(s)=2\Gamma(1-s)$ sin $\frac{\pi s}{2}(2\pi)^{\iota-1}\zeta(1-s)$ $(s\in C)$ . (1)

So the values for $\Re s\leq 0$ is given by those for $\Re s\geq 1$ . It is easy to see that

$\zeta(\sigma)^{-1}\leq|\zeta(\sigma+it)|\leq\zeta(\sigma)$ (2)

for $\sigma>1$ since $\zeta(s)^{-1}=\sum_{n=1}^{\infty}\mu(n)n^{-s}$ for ${\rm Re} s>1$ , where $\mu(n)\in\{0, \pm 1\}$ is the
M\"obius function. Here we adopt the notation of the complex variable $s=\sigma+it$ .
This inequality (2) implies that there is no zero in the right half plane $\Re s>1$ . For
$\Re s<0,$ $\Gamma(1-s)$ is non-zero, and sin $\frac{\pi\iota}{2}$ has zeros of order 1 at $s=-2n,$ $n\leq 0$

and $\zeta(1-s)$ has only a pole of order 1 at $s=0$ . Therefore, $\zeta(s)$ has zeros only at
even negative integers in $\Re s<0$ . Hence other zeros are located inside the so-called
critical strip $0\leq\Re s\leq 1$ . The Riemann hypothesis says that

(RH). All non-real zeros lie on the critical line $\Re s=1/2$ .
As everyone knows, it still remains open.

’This note is based on the talk on Oct. 16, 2007 at IIAS in Kyoto
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The following figures are drawn by using Mathematica 5.2.

Figure 1: $\zeta(\frac{1}{2}+it)$ and $\zeta(\frac{s}{4}+it)$ $(0\leq t\leq 50)$ .

Figure 2: $\zeta(\frac{1}{2}+it)$ and $\zeta(\frac{3}{4}+it)$ $(100000\leq t\leq 100010)$ .
Another conjecture closely related to (RH) is the so-called Lindel\"of hypothesis

which is about how fast $\zeta(\sigma+it)$ grows as the imaginary part $t$ goes to $\infty$ . We
define the order $\mu(\sigma)$ as the least upper bound of the real numbers $c$ such that
$|\zeta(\sigma+it)||t|^{-c}$ is bounded as $tarrow\infty$ , i.e.,

$\mu(\sigma)=\lim_{tarrow}\sup_{\infty}\frac{\log|\zeta(\sigma+it)|}{\log t}$

For $\sigma>1$ , it is obvious that $\mu(\sigma)=0$ because of (2). For $\sigma<0$ , by the functional
equation (1) and the asymptotics of the F-function

$|\Gamma(s)|=(2\pi)^{1/2}(|t|+2)^{\sigma-1/2}e^{-\pi|t|/2}(1+O(|t|+2)^{-1}))$

uniformly for arbitrary strip $\sigma_{1}\leq\sigma\leq\sigma_{2}$ , we get
$\zeta(\sigma+it)_{\wedge}\cdot(|t|+2)^{-\sigma+1/2}$ $(\sigma<0)$ .

Hence $\mu(\sigma)=-\sigma+1/2$ if $\sigma<0$ . The remaining problem is to see what occurs in
between $0\leq\sigma\leq 1$ . It is known that $\mu(\sigma)$ is non-negative, continuous and non-
increasing, and by the Phragm\’en-Lindelof convexity principle, one can see that the
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order $\mu(\sigma)$ is convex. So we can conclude at least $\mu(\sigma)\leq(1-\sigma)/2$ if $0\leq\sigma\leq 1$ .
In particular, on the critical line $\sigma=1/2$ , we have

$\zeta(1/2+it)\ll|t|^{1/4}$ .

Hardy-Littlewood showed that $\mu(\sigma)\leq 1/6=0.16666$ , after that many mathemati-
cians improved again and again. So far, Huxley [4] has obtained the best result
$\mu(\sigma)\leq 32/205\fallingdotseq 0.156098$ . The ultimate goal of this problem is considered as the
following.

(LH). The Lindel\"of hypothesis says that $\mu(1/2)=0$ . In other words,

$\zeta(1/2+it)\ll|t|^{\epsilon}$ $\forall\epsilon>0$ .

Remark. The Riemann hypothesis (RH) implies the Lindel\"of hypothesis (LH). In-
deed, it is known that if (RH) is true, then

$\zeta(1/2+it)=O(\exp(c\frac{\log t}{\log\log t}))$

for some $c$ , and it is stronger than (LH).
(LH) says that the Riemann-zeta function grows very slowly, on the other hand, it
is shown that for $1/2<\sigma\leq 1$ , the set $\{\zeta(\sigma+it), t\in R\}$ is dense in $C$ , and it is
believed that this is also the case for $\sigma=1/2$ .

2 Asymptotic behavior of the variance of ran-
domized values of Riemann’s zeta function

The behavior of the mean-value, for example,

$\frac{1}{T}\int_{0}^{T}|\zeta(\sigma+it)|^{2k}dt$ $(k=1,2, \ldots)$

is easier to analyze than that of the order of $|\zeta(\sigma+it)|$ itself. The integral above
is considered as the $2k$-th moment of the random variable $\zeta(\sigma+iU)$ with uniform
random variable $U$ on $[0, T]$ , and $\zeta(\sigma+it)$ is considered as a (trivial) stochastic
process $\{\zeta(\sigma+iS_{t}), t\geq 0\}$ with $\{S_{t}=t, t\geq 0\}$ . It might be natural to study a
random varlable ($(\sigma+iX)$ or a stochastic process $\{((\sigma+iS_{t}), t\geq 0\}$ .

Let $\xi_{1},$

$\ldots,$
$\xi_{n}$ are i.i. $d$ . Cauchy random variables whose probability law is given

by
$\frac{P(\xi_{1}\in dx)}{dx}=\frac{1}{\pi(1+x^{2})}$

and its characteristic function is $e^{-|\lambda|}$ . The Cauchy random walk is defined as the
sum of i.i. $d$ . Cauchy random variables, $S_{n}=\xi_{1}+\cdots+\xi_{n},$ $n=1,2,$ $\ldots$ . Lifshits
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and Weber [5] discussed the limiting behavior of randomized values of the Riemann
zeta function on the critical line

$\zeta_{n}=\zeta(\frac{1}{2}+\dot{\iota}S_{n})$

sampled by the Cauchy random walk. The mean $E\zeta_{n}$ goes to 1 as $narrow\infty$ (see (5)
below). For the second moment, they obtained the following results.

Theorem 1 ([5]). As $narrow\infty,$ $var(\zeta_{n})=$ log $n+A+o(1)$ . The constant $A$ is
explicitly given as an integral.

Also, they show an almost sure convergence result for the sum of randomized
values.

Theorem 2 ([5]). For any real $b>2$ ,

$\sum_{k=1}^{n}\zeta(\frac{1}{2}+iS_{k})=n+o(n^{1/2}(\log n)^{b})$

as $narrow\infty$ .
Since $\zeta(1/2+it)$ lives beyond the domain of absolutely convergence, we cannot

directly deal with the power series in the definition of the Riemann zeta function.
The main idea of the proof of these results is to consider the random variable

$Z_{n}(x)= \sum_{k\leq x}k^{-\frac{1}{2}-iS_{n}}-\int_{0}^{x}u^{-\frac{1}{2}-iS_{\hslash}}du$

$= \sum_{k\leq x}k^{-}2\iota_{e^{i(-\log k)S_{n}}-}\int_{0}^{x}u^{-\frac{1}{2}}e^{i(-\log u)S_{n}}du$ (3)

which approximates $\zeta(1/2+iS_{n})$ by using the approximate functional equation due
to Hardy-Littlewood:

Proposition 1. Let $x>1$ .

$\zeta(s)=\sum_{k\leq x}k^{-s}-\int_{0}^{x}u^{-\iota}ds+O(x^{-\sigma})$

uniformly on $\sigma_{0}\leq\sigma<1$ and $|t| \leq\frac{2\pi x}{c}$ with $C>1$ .
Proof. See Theorem 4.11 in [10] and recall the identity

$\frac{x^{1-s}}{1-s}=\int_{0}^{x}u^{-s}ds$

which is valid for $0<\Re s<1$ . 口

89



When $S_{n}$ is the Cauchy random walk, all quantity such as the mean and the
variance for $Z_{n}(x)$ can be computed explicitly (for example, see (5) below) and
that is one reason why they take up the Cauchy random walk.

We would like to see what happens if we replace the Cauchy random walk by
other stochastic processes. The natural candidate for this problem is the L\’evy
processes. In this note, we discuss the same problem as studied in [5] for a special
class of L\’evy processes, the symmetric $\alpha$-stable process with $1\leq\alpha\leq 2$ which
includes the Cauchy random walk as a special case of $\alpha=1$ . Our argument goes
essentially parallel to [5] with a little modification.

Here we recall the L\’evy processes (cf. [1, 9]). The L\’evy process $\{S_{t}, t\geq 0\}$ is
a stochastic process which has stationary independent increments. The outstand-
ing feature coming from stationary independent increments is that there exists a
function $\Psi(\lambda)$ such that the characteristic function is given by the formula

$Ee^{i\lambda S_{t}}=e^{-t\Psi(\lambda)}$ (4)

The function $\Psi(\lambda)$ is called the characteristic exponent and has the L\’evy-Khintchin
representation:

$\Psi(\lambda)=i\lambda a+\frac{c\lambda^{2}}{2}+\int_{R}(1-e^{i\lambda x}+i\lambda xI_{|x|\leq 1})\Pi(dx)$ ,

where $a\in R,$ $c\geq 0$ and $\Pi(dx)$ is the so-called L\’evy measure satisfying $\Pi(\{0\})=0$

and $\int_{R}$ (1 A $x^{2}$ ) $\Pi(dx)<\infty$ . The symmetric $\alpha$-stable process is the special case
where

$\Psi(\lambda)=|\lambda|^{\alpha}$ $(0<\alpha\leq 2)$ , $\Pi(dx)=|x|^{-\alpha-1}dx$ $(0<\alpha<2)$ .
The case $\alpha=1$ corresponds to the Cauchy process and the case $\alpha=2$ the Brownian
motion.
Remark. The symmetric $\alpha$-stable process is recurrent when $1\leq\alpha\leq 2$ and transient
when $0<\alpha<1$ .

By (3) and (4), it is easy to see that

$EZ_{t}(x)= \sum_{k\leq x}k^{-\frac{1}{2}}e^{-t\Psi(-\log k)}-\int_{0}^{x_{1}}u^{-\pi}e^{-t\Psi(-\log u)}du$

and, in particular, when $\alpha=1$ , i.e., $\Psi(\lambda)=|\lambda|$ , we see that

$\lim_{xarrow\infty}EZ_{t}(x)=\zeta(t+1/2)-\frac{2t}{t^{2}-1/4}$ (5)

$arrow 1$

as $tarrow\infty$ . Remark that by the property that $\zeta(\overline{s})=\overline{\zeta(s)}$ , the mean $E\zeta(\sigma+iX)$

is real when $X$ is a symmetric random variable in the sense that $X_{\bm{t}}d-X$ have
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the same law. For a wide class of L\’evy processes even in the non-symmetric case,
$E\zeta(\sigma+iS_{t})$ goes to 1 as $tarrow\infty$ .

How well does the random variable $Z_{t}(x)$ approximate $\zeta(\frac{1}{2}+iS_{t})$ ?

Lemma 1. Suppose that $X$ is a random variable with density $p(x)$ which satisfies
$p(x)$ � $|x|^{-\gamma}$ with $\gamma>1$ . Then, $\zeta(1/2+iX)$ is an $L^{2}$ random variable. Furthermore,
there exists $M>0$ such that $p(x)$ is differentiable for $|x|>M$ and satisfies
$p(x)+ \int_{x}^{\infty}|p’(u)|du\ll|x|^{-\gamma}$ with $\gamma>3/2$ , then $Z_{X}(x)$ converges to $\zeta(1/2+iX)$ in
$L^{2}$ as $xarrow\infty$ , where $Z_{X}(x)$ is defined by (3) using $X$ in place of $S_{n}$ .

If we believe (LH), the integrability of $\zeta(1/2+iX)$ becomes much stronger. See
Problem 3 below. We do not know whether (LH) is true, so instead, we use a mean
value theorem

$\int_{0}^{T}|\zeta(1/2+it)|^{2}dt\sim T$ log $T$ $(Tarrow\infty)$

for the proof of this lemma.
FMrom now on, we consider the symmetric $\alpha$-process with $1\leq\alpha\leq 2$ . Let $p_{t}(x)$

be the transition density of the $\alpha$-stable process which is given by

$p_{t}(x)= \frac{1}{2\pi}\int_{R}e^{izx-t|z|^{\alpha}}dz=\frac{1}{\pi}\Re\int_{0}^{\infty}e^{izx-tz^{\alpha}}dz$.

It is clear from the above that the transition density has the scaling property

$p_{t}(x)=t^{-1/\alpha}p_{1}(t^{-1/\alpha}x)$ .
As in [12], by using the contour $\{z\in C;{\rm Im}(izx-z^{\alpha})=0\}$ , Cauchy’s theorem gives
us that

$p_{1}(x)= \frac{\alpha}{\pi(\alpha-1)}x^{\frac{1}{\alpha-1}}\int_{0}^{\pi/2}\varphi(\theta)$ exp $(-x^{\underline{A}}\overline{\alpha}\overline{1}\varphi(\theta))d\theta$

and also

$p_{1}’(x)= \frac{-1}{\pi(\alpha-1)}x^{\frac{2}{\alpha-1}}\int_{0}^{\pi/2}r(\theta)^{2}(1-\frac{\alpha\sin(\alpha-2)\theta}{\sin\alpha\theta})\exp(-x^{\frac{\alpha}{\alpha-1}}\varphi(\theta))d\theta$

where
$r( \theta)=(\frac{\cos\theta}{\sin\alpha\theta})^{\frac{1}{\alpha-1}}$ , $\varphi(\theta)=r(\theta)^{\alpha}\frac{\cos(\alpha-1)\theta}{\cos\theta}$ .

The main contribution comes from near $\theta=\pi/2$ as $xarrow\infty$ , we see that

$p_{1}(x)+ \int_{x}^{\infty}|p_{1}’(u)|du\leq C|x|^{-\alpha-1}$ .

Hence, Lemma 1 shows that $Z_{t}(x)$ approximates $\zeta(1/2+iS_{t})$ in $L^{2}$ and it is enough
to consider $Z_{t}(x)$ in order to compute the variance of $\zeta(1/2+iS_{t})$ .
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$Remo,7^{\cdot}k$ . For the case $0<\alpha<1$ , there are similar integral representations for the
transition density by duality around $\alpha=1$ .

Proposition 2. Let $S_{t}$ be the symmetric $\alpha$-stable process with $1\leq\alpha\leq 2$ and
$\zeta_{n}=\zeta(1/2+iS_{n})$ . Then, 下 s $narrow\infty$

(i) $E\zeta_{n}=1+O(n^{-1/\alpha})$ .
(ii) $var(\zeta_{n})=O(\log n)$ .
(iii) $cov(\zeta_{n}, \zeta_{m})=O(m^{-1/\alpha})\vee O(C_{\alpha}^{n-m})$ whenever $n>m$ for some $C_{\alpha}>0$ .

From this proposition, it is easy to see that

$var(\sum_{k=i}^{j}\zeta_{k})=\{\begin{array}{ll}O((j-i)j^{1-1/\alpha}) 1\leq\alpha\leq 2O((j-i)\log j) \alpha=1.\end{array}$

and we obtain the following almost sure convergence.

Theorem 3. Let $S_{t}$ be the symmetric $\alpha$-stable process with $1\leq\alpha\leq 2$ . Then,

$\sum_{k=1}^{n}\zeta(1/2+iS_{n})=n+o(n^{1-\Gamma^{1}\alpha}(\log n)^{b})$

for any $b>3/2$ if $1<\alpha\leq 2$ ; for any $b>2$ if $\alpha=1$ .
Although the random variables $\zeta_{n}-1,$ $n=1,2,$ $\ldots$ in our case are not orthogonal

but weakly dependent, an extension of Rademacher-Menchoff type almost sure
convergenoe theorem can be applied. Here we use a simplified version of a result
obtained in [11].

Proposition 3 ([11]). Let $\xi_{1},$ $\xi_{2},$
$\ldots$ be random variables and $\Phi$ : $(0, \infty)arrow(0, \infty)$

a concave nondecreasing function. Suppose

$E| \sum_{1}^{j}\xi_{k}|^{2}\leq\Phi(j)(j-i)$

for any $1\leq i<j$ . Then,

$\frac{\sum_{k--l}^{n}\xi_{k}}{(n\Phi(n))^{1/2}\log^{\tau}(1+n)}arrow 0$ $a.s$ .

with $\tau>3/2$ .
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3 Some related problems
Here we list some problems related to this topic.

Problem 1. What happens if we consider Dirichlet’s L-functions in plaoe of the
Riemann zeta function?

Problem 2. Lifshits and Weber gave the exact asymptotics of the variance in
Theorem 1, while here we just show $O(\log n)$ for it. Give the exact asymptotics for
the $\alpha$-stable case.

Problem 3. Heuristically, (LH) implies that

$E|\zeta(1/2+iX)|^{p}\ll E|X|^{pc}<\infty$

if $\epsilon>0$ is arbitrary small. Does it hold that $\zeta(\frac{1}{2}+iX)\in\bigcap_{p>0}L^{p}$ for a random
variable $X \in\bigcup_{p>0}L^{p}$?

Problem 4. Here we only dealt with the case where $S_{t}$ is the $\alpha$-stable process
with $1\leq\alpha\leq 2$ . As mentioned in the remark, the symmetric $\alpha$-stable process is
transient or recurrent according to $0<\alpha<1$ or $1\leq\alpha<2$ . Since the Lindel\"of
hypothesis corresponds to the deterministic (transient) process $S_{t}=t$ , the transient
case should be more appropriate to study. What happens for the $\alpha$-stable process
with $0<\alpha<1$? Moreover, what happens for $\alpha$-stable subordinator(increasing
L\’evy process) with $0<\alpha<1$ or, furthermore, for general L\’evy processes?

Problem 5. Related to Problem 4, we consider the Brownian motion $S_{t}$ with
constant drift whose characteristic exponent is $\Psi(\lambda)=\epsilon\lambda^{2}/2+ia\lambda(\epsilon>0, a\in R)$ .
In this case, we can compute directly the moments of $\zeta(1/2+iS_{t})$ by using another
integral representation of the Riemann zeta function

$\zeta(s)=s\int_{0}^{\infty}Q(x)x^{-(s+1)}dx$ $(0<\Re s<1)$

where $Q(x)=[x]-x$. If $E|S_{t}|<\infty$ ,

$E \zeta(\sigma+iS_{t})=\int_{-\infty}^{\infty}Q(e^{-u})e^{\sigma u}(\sigma-t\Psi’(u))e^{-t\Psi(u)}du$

and if $S_{t}$ is the Brownian motion with constant drift

$E[|\zeta(\sigma+iX_{t})|^{2}]$

$=2 \int_{0}^{\infty}Q(x)x^{-(1+2\sigma)}dx\int_{0}^{\infty}Q(xe^{-u})e^{\sigma u}\Re(\{\sigma^{2}+t\Psi’’(u)-(t\Psi’(u))^{2}\}e^{-t\Psi(u)})du$.
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In particular, when $\Psi(\lambda)=\frac{\epsilon\lambda^{2}}{2}+ia\lambda$ , setting $b=\epsilon^{-1}a$ and $T=t\epsilon$ , we obtain

$E[| \zeta(\sigma+iX_{t})|^{2}]=2\int_{0}^{\infty}Q(x)x^{-(1+2\sigma)}dx\cross\int_{0}^{\infty}Q(xe^{-u})e^{\sigma u}f(u;T, b)e^{-\tau_{\tau^{-du}}^{u^{2}}}$

where

$f(u;T, b)=(\sigma^{2}+T-T^{2}(u^{2}-b^{2}))\cos(h\iota T)-2T^{2}ubs\ln(buT)$ .

Compute the asymptotic behavior of the second moment as $Tarrow\infty$ , especially
when $b$ is non-zero.

Problem 6. It is well-known that (LH) is equivalent to one of the following con-
ditions

1. $E[|\zeta(1/2+iU_{T})|^{2k}]=O(T^{\epsilon})$ , $k=1,2,$ $\ldots$

2. $E[|\zeta(\sigma+iU_{T})|^{2k}]=O(T^{\epsilon})$ , $\sigma>\frac{1}{2},$ $k=1,2,$ $\ldots$

3. $\lim_{arrow\infty}E[|\zeta(\sigma+iU_{T})|^{2k}]=\sum_{n=1}^{\infty}\frac{d_{k}^{2}(n)}{n^{2\sigma}}$ , $\sigma>\frac{1}{2},$ $k=1,2,$ $\ldots$

where $U_{T}$ is a random variable uniformly distributed on $[0,T]$ and $d_{k}(n)$ denotes
the number of ways of representing integer $n$ \"as a product of $k$ factors. What kind
of family of random variables has the same property as $\{U_{T}, T\gg 1\}$ does.

Problem 7. It is known that $\frac{\log\zeta(l/2+1U_{T})}{\sqrt{}\log\log T}arrow N_{C}(0,1)$ as $Tarrow\infty$ where $U_{T}$ is dis-
tributed uniformly on $[0,T]$ (cf. [3]). Discuss limit theorems or the large deviations
for the process $\{\zeta(1/2+iS_{t}), t\geq 0\}$ or $\{\log\zeta(1/2+iS_{t}), t\geq 0\}$ .
Problem 8. The following normalized zeta function

$\xi(s)=\frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)$ .

is sometimes used. This is an entire function which satisfies the following simple
functional equation:

$\xi(s)=\xi(1-8)$ .
One of the important feature of this version is that it is real-valued on the critical
lIne. This function is related to probabilIty theory in this way: let $Y$ be a random
variable defined by

$Y=\sqrt{\frac{2}{\pi}}(\max_{0\leq*\leq 1}b_{\epsilon}-\min_{0\leq s\leq 1}b_{l})$

where $\{b_{s}, 0\leq s\leq 1\}$ is the standard Brownian bridge pinned at $(t, x)=(0,0)$
and $(t, x)=(1,0)$ . So $Y$ is the range of the Brownian bridge. The interesting
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connection between this random variable and the Riemann zeta function is given
by the following relation

$EY^{s}=2\xi(s)$ $(s\in C)$

Another related random variable is defined by

$S= \frac{2}{\pi^{2}}\sum_{n=1}^{\infty}\frac{\gamma_{n}}{n^{2}}$

where $\{\gamma_{n}, n=1,2, \ldots\}$ are i.i. $d$ . random variables such that the density $P(\gamma_{1}\in$

$dx)/dx=xe^{-x}$ . It is known that

$Y=d(\frac{\pi}{2}S)^{1/2}$ .

See [2] for this topic. Are there any approaches to the growth problem by using
this probabilistic interpretation?
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