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ABSTRACT. In this paper we discuss mesoscopic models describing pattem formation
mechanisms for a prototypical model of surface processes that involves multiple micro-
scopic mechanisms. We focus on a mean field partial differential equation, which con-
tains qualitatively microscopic information on particle-particle interactions and multiple
particle dynamics, and we rigorously derive the macroscopic cluster evolution laws and
transport structure. We show that the motion by mean curvature is given by $V=\mu\sigma\kappa$ ,
where $k$ is the mean curvature, $\sigma$ is the surface tension and $\mu$ is an effective mobility that
depends on the presence of the multiple mechanisms and speeds up the cluster evolution.
This is in contrast with the Allen-Cahn equation where $V=\kappa$ .

1. INTRODUCTION

In this paper we study the effect of multiple microscopic mechanisms such as surface
diffusion and $adsorption/desorption$ which are typically involved in surface processes, on
macroscopic cluster interface morphology and evolution. Although the starting point of
our discussion is the micromechanisms arising in surface process\’e, in this paper we focus
on asimplified mean field partial differential equation associated with the microscopics
arld rlgorously derive the corresponding cluster evolution laws and transport properties.
The simplified mean field type equation is acombination of Cahn-Hilliard and Allen-
Cahn type equations. The former models, as we show later, can describe surface diffusion
including $particle/particle$ interactions, while the latter describes asimplified model of
adsorption to and desorption from the surface. It is worth mentionlng that in the model
of discussion, the mobility is completely different from the Allen-Cahn equation and this
implies that the diffusion speeds up the mean curvature flow.

Surface processes, such as catalysis, chemlcal vapor deposition and epitaxial $growt1_{1}$ ,
typically involve transport and chemistry of precursors in agas phase; unconsumed reac-
tants and radicals adsorb onto the surface of asubstrate where numerous processes may
take place simultaneously, for instance surface diffusion, reactions and desorption back
to the gas phase. Surface processes have traditionally been modelled using continuum-
type reaction diffusion models [IE, $E$], where the adsorptive layer has been assumed to be
spatially unlform. This approach either neglects detailed interactions between particles
or treats them $phenomel$)$ol\dot{o}gically$, while on the other $h\bm{t}d$ non-equilibrium statistical
mechanics theories provide an exact microscocpic description, [GB].

Next we discuss microscopic mechanisms in surface processes and then connections to
mesoscopic e.g. Cahn-Hilliard/Allen-Cahn models.
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1.1. Microscopic Modeling. The mathematical tools employed in the statistical me-
chanics models are Interacting Particle Systems, which are Markov processes set on a lat-
tice corresponding to a solid surface; typical examples are the Ising-type systems [GLP],
describing the evolution of an order parameter at each lattice site. Such microscopic
models are an important computational tool in numerous applications and are numerically
solved using Monte Carlo algorithms, [LB]. Ising models are defined on the d-dimensional
lattice $\mathbb{Z}^{d}$ as follows. At each lattice site $x\in \mathbb{Z}^{d}$ an order parameter $\sigma(x)$-referred to as
“spin”– is allowed to take the values $0$ and 1 describing vacant and occupied sites respec-

tively. A spin configuration $\sigma$ is an element of the configuration space $\Sigma=\{0,1\}^{Z^{d}}$ and
we write $\sigma=\{\sigma(x) : x\in \mathbb{Z}^{d}\}$ . The energy $H$ of the system, evaluated at $\sigma$ , is given by a
Hamiltonian

$H( \sigma)=-\frac{1}{2}\sum_{x\neq y}J(x-y)\sigma(x)\sigma(y)+h\sum_{x}\sigma(x)$ ,

where $h$ is attributed to an external field and $J$ is a $particle/particle$ interaction energy; $J$

is even, $J(r)=J(-r)$ , decays rapidly at infinity and is nonnegative, i.e. the interactions
are attractive; we may also consider potentiais with both attractive and repulsive compo-
nents. Equilibrium states of the Ising model are described by the Gibbs states, defined at
a prescribed temperature $T$ and on a finnte domain [GLP]. The dynamics of microscopic
models consist of a sequence of spin flips and spin exchanges and correvpond to different
physical processes.

1.2. Stochastic Microscopic Dynamics. Next we briefly describe these detailed mi-
cromechanisms in the context of surface processes. For more details we refer to the review
article for surface processes, [KV03].

1.2.1. $Adsorption/Desorption$-Spin flip mechanism: A spin flip at the site $x$ is a spon-
taneous change in the order parameter, $0$ is converted to 1 and vice versa. Physically
this mechanism describes the desorption of a particle from the surface to the gas phase
and conversely the adsorption of a particle from the gas phase to the surface. Typically
the desorption mechanism depends on the interactions with neighbors manifested in the
potential $J$ , as well as the external filed $h$ . An obviouv requirement on the dynamics is
that they should leave the Gibbs states invariant and this condition is called a detailed
balanoe law. Typical choices of such dynamics are the Glauber and Metropolis dynamics.

1.2.2. Surface diffusion-Spin Exchange Dynamics: A spin exchange between the neigh-
boring sites $x$ and $y$ is a spontaneous exchange of the values of the order parameter at $x$

and $y$ . Physically this mechanism describes the diffusion of a particle on a surface, where
sites cannot be occupied by more than one particle. The simplest such dynamics are the
Kawasaki and Metropolis dynamics.

1.3. Mesoscopic Models. At large $space/time$ scales and for long range potentials with
interaction range $\gamma^{-1}$ it turns out that the small scale fluctuations of the Ising systems are
suppressed and an almost deterministic pattem emerges described by suitable integrodif-
ferential equations. The passage in the limit $\gammaarrow 0$ , (the interaction range is $\gamma^{-1}$ ), which
is related to coarse graining of quantities like the thermodynamical pressure, coverage,
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etc. is known as the Lebowitz-Penrose limit [GLP]. Along these lines we can study the
asymptotic $\dot{\lim}$it of the coarse-grained variable corresponding to a local coverage in space,

$u_{\gamma}(x, t)=|B_{x}|^{-1} \sum_{\nu\in B_{x}}\sigma_{t}(y)$
,

where $B_{x}$ is a ball centered at $x$ containing enough points so that, (a) the random fluc-
tuations will be (formally) suppressed due to the Law of Large Numbers, and (b) spatial
variations in the coverage are still captured. In the case of $adsorption/desorption$ dynam-
ics in asymptotic limit $\gammaarrow 0$ , we get a closed equation for the coverage, $u_{\gamma}(x, t)\approx u(\gamma x, t)$ ,
and $u$ solves the mesoscopic equation, [DOPT, KS],

$u_{t}=\Psi(-\beta(J*u+h))$ [$1-u-\exp(-\beta h)u$ exp $(-\beta J*u)$ ]. (1.1)

where $\Psi=\Psi(r)$ is associated with the microscopic dynamics: typical choices include
$\Psi(r)=(1+e^{r})^{-1}$ (Glauber dynamics), $\Psi(r)=e^{-r/2}$ or $\Psi(r)=e^{-r^{+}}$ (Metropolis dynam-
ics).

Equation (1.1) is equipped with a comparison principle, at least when $J\geq 0$ , and it
has one or three steady states. When intermolecular forces between the adsorbates are
strong we may have coexistenoe of dilute and dense phases, each one corresponding to a
different steady state of equation (1.1). For instance, when $h=-I_{0}/2,$ $(1.1)$ has tbree
steady states when

$\beta>\beta_{c}=\frac{4}{J_{0}}$ ,

where $J_{0}= \int J(r)$ dr. The stable states correspond to the dense and the dilute phases of
the system, i.e. we have bistability. Standing waves, for $h=-J_{0}/2$ , and travelling waves,
when $h\neq-J_{0}/2$ , but still in the presence of multiple steady states, for equation (1.1)
exist, and are crucial for the long $space/time$ cluster evolution analysis, since they connect
high and low density phases, across a cluster boundary. The rigorous existence, uniqueness
and stability of such solutions follows from the analysis in [Chen97], which covers a broad
class of integro- differential equations that have a comparison principle. Note that for
even potentialv which are not necessarily radial we obtain direction-dependent standing
and travelling waves [KS97].

In the case of surface diffusion it can be shown [LOP] that $u_{\gamma}(x, t\gamma^{-2})\approx u(\gamma x, t)$ , and
$u$ solves (for $h=0$)

$u_{t}- \nabla\cdot\{\mu[u]\nabla(\frac{\delta E[u]}{\delta u})\}=0$ , (1.2)

where $\mu[u]$ is the mobility and $E[u]$ is the free energy,

$E[u]=- \frac{1}{2}\int\int J(r-r’)u(r)u(r’)drdr’+\int\frac{1}{\beta}[u\ln u+(1-u)\ln(1-u)]dr$ .

In the case of $Metropolis/Kawas$aki dynamics (1.2) was derived in [LOP] where the mo-
bility is $\mu[u]=\Psi(0)\beta u(1-u)$ . Typical choices of $\Psi’ s$ associated with the microscopic
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diffusion dynamics are $\Psi(r)=2(1+e^{r})^{-1}$ (Kawasaki dynamics) and $\Psi(r)=e^{-r+}$ (Me-
tropolis dynamics).

Note that in both types of equations the coverage $u$ satisfies $0\leq u\leq 1$ due to the
presence of the term $u(1-u)$ in the mobilities, which enforces the exclusion principle $(i,e$ .
at most one particle per lattice site) at the mesoscopic level. Equation (1.2) includes two
competing mechanisms: a diffusion term associated with the entropy in $E[u]$ , which com-
petes with the attractive potential $J\geq 0$ . We expect that when the inverse temperature
$\beta$ is large enough $(\beta\geq\beta_{c})$ , the particles will tend to organize in clusters, overcoming the
diffusive effects. These heuristics can become more clear using a linearization argument
around a constant coverage $u_{0}$ , yielding a regime of spinodal decomposition, [KV03].

1.3.1. Mesoscopic models for multiple micromechanisms. Typically surface processes take
place simultaneously and interact. For instance we can consider [HM, KVOO] a combi-
nation of Arrhenius $adsorption/desorption$ dynamics, Metropolis surface diffusion and
simple unimolecular reaction; the corresponding mesoscopic equation is:

$u_{t}-D\nabla\cdot[\nabla u-\beta u(1-u)\nabla I_{m}*u]-[k_{a}p(1-u)-k_{d}u\exp(-\beta I_{d}*u)]+k_{r}u=0$ . $(1.3)$

Here $D$ is the diffusion constant, $k_{r},$ $k_{d}$ and $k_{a}$ denote, respectively the reaction, desorption
and adsorption constants and $p$ is the partial pressure of the gaseous species. The partial
pressure $p$ is related to the the external field $h$ in (1.1) and here is assumed to be a
constant, although realistically it is given by the fluids equations in the gas phase. The
steady states of (1.3) and (1.1) are identical and when $J_{d}=J_{m}$ and $k_{r}=0$ , they also
share the same standing wave. However there are no general rigorous results available on
the existence of travelling waves for (1.3); some numerical simulations were carried out in
[HM] indicating the existenoe of non-monotone travelling waves. Finally, it is easy to see
that, when $k_{r}=0$ , the free energy $E[u]$ is a Lyapunov functional for (1.3).

1.3.2. Relation to the Cahn-Hilliard and Allen-Cahn Models. Next we briefly discuss the
connections of the mesoscopic equations with well known models for phase separation
such as the Allen-Cahn and the Cahn-Hilliard models. If we rescale space as $xrightarrow x/\epsilon$

the potential $J$ gives rise to the approximation of the Dirac distribution $J^{\epsilon}(x)= \epsilon^{-d}J(\frac{x}{\epsilon})$ .
Then after a simple change of variables and formally expanding in Taylor series,

$J^{e}*u(x)= \int J(z)u(x+\epsilon z)dz=\int J(z)[u(x)+\epsilon\nabla u(x)\cdot z+\frac{\epsilon^{2}}{2}z^{T}\nabla^{2}u(x)z+O(\epsilon^{3})]dz$ .

Ignoring the $O(\epsilon^{3})$ terms and assuming that $J$ is radially symmetric, i.e. $J(r)=J(|r|)$ ,
we have that

$J^{\epsilon}*u(x) \approx J_{0}u(x)+\frac{\epsilon^{2}}{2}J_{2}\Delta u(x)$ ,

where $J_{0}= \int J(r)dr$ and $J_{2}= \int|r|^{2}J(r)dr$ . Then, for instance (1.1), is approximated by
a version of the Allen-Cahn equation with nonlinear diffusion,

$u_{t}=Du\exp(-\beta J_{0}u)\Delta u+c_{0}[1-u-\exp(-\beta h)u\exp(-\beta J_{0}u)]$ ,
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where $D=c_{0} \frac{\epsilon^{2}}{2}\beta J_{0}\exp(-\beta h)$ . Note that the function $f(u)=1-u-\exp(-\beta h)u\exp(-\beta J_{0}u)$

is bistable or equivalently is the derivative of a double well potential when $\beta>\beta_{c}=4/J_{0}$ .
We remind the reader that the Allen-Cahn equation has the non-dimensional form

$u_{t}=\Delta u+W’(u)$ ,

where $W$ is the double well potential $W(u)=(u^{2}-1)^{2}$ .
In the case of the surface diffusion we can rewrite the free energy as

$E[u]= \frac{1}{4}\int\int J(r-r’)[u(r)-u(r’)]^{2}drdr’+\int W_{\beta}(u)dr$

$W_{\beta}(u)= \frac{1}{2}J_{0}u(1-u)+\frac{1}{\beta}[u\ln u+(1-u)\ln(1-u)]$ . $W_{\beta}$ is a double-well potential provided

$\beta>\beta_{c}=4/J_{0}$ . Then, rescaling and expanding the convolution as before we have that

$E[u]\approx\overline{E}[u]$ $:= \int\frac{\epsilon^{2}J_{2}}{8}|\nabla u|^{2}+W_{\beta}(u)dr)$ (1.4)

after olnitting the higher order terms. This is the standard Ginsburg-Landau functional,
in which case (1.2) becomes a Cahn-Hilliard-type equation

$u_{t}- \nabla\cdot\{\mu[u]\nabla(\frac{\delta E[u]}{\delta u})\}=0$ , (1.5)

with nontrivial mobility $\mu(u)=Du(1-u)$ ; recall that in the standard Cahn-Hilliard model
$\mu(u)=1$ . Notice that the. truncations in the gradient expansions used here disregard
higher order effects as well as possible anisotropies in the potential $J$ . However, in the
vicinity of the critical temperature the Allen-Cahn and Cahn-Hilliard equations become
exact rescaled limits of the mesoscopic models and the underlying particle systems.

1.3.3. A simplified model with multiple microscopic mechanisms. To illustrate the effects
of the multiple mechanisms we consider a simplification of (1.3) which retains its funda-
mental structure and can be exactly obtained from rescalings of (1.2) close to the critical
temperature, when $k_{r}=0$ and $J_{m}=J_{d}=J$ :

$u_{t}=D\Delta(-\Delta u+W’(u))+\Delta u-W’(u)$ (1.6)

$W$ is a double-well potential with $wells\pm 1$ , the Cahn-Hilliard term corresponds to surface
diffusion, while the Allen-Cahn to $adsorption/desorption$ . We refer to (1.6) as a scalar
$CH/AC$ equation.

1.4. Mathematical structure of the scalar $CH/AC$ equation. In $t1_{1}e$ sequel of the
paper we study in a rigorous fashion the behavior of the scalar $CH/AC$ equation (1.6),
as time is rescaled with $\epsilon^{2}$ and spaoe is rescaled with $\epsilon$ , which describes the long-time
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behavior of large clusters. Under this diffusive rescaling the equation becomes

$\{\begin{array}{ll}\partial_{t}u = \epsilon^{2}D(-\Delta(\Delta u+\frac{f(u)}{\epsilon^{2}}))+\Delta u+\frac{f(u)}{\epsilon^{2}}u = 1, on \partial\Omega u(0, x) = u_{0}(x),\end{array}$ (1.7)

where $\Omega\subset R^{N},$ $N>1$ , is a smooth, bounded domain.
First we present some remarks on the mathematical structure of (1.6) and (1.7). The

free energy

$F_{\epsilon}(u):= \frac{1}{2}\int_{\Omega}\epsilon|\nabla u|^{2}+\int_{\Omega}\frac{1}{\epsilon}W(u)$ (1.8)

equals $\epsilon^{-1}\tilde{E}[u]$ , where $\tilde{E}[u]$ is as in (1.4) -up to different coefficients which do not affect
qualitative properties. The equation (1.7) is (up to a rescaling in time) a gradient flow
for the energy (1.8) with respect to the metric

$\langle f, g\rangle_{A^{*}}$ $:=\langle f,$ $(A)^{-1}g)$ , (1.9)

where $\langle\cdot, \cdot\rangle$ denotes the $L^{2}$-scalar product and
$A$ $:=$ $-D\Delta+I$ , $(Af)(x/\epsilon)=A^{e}(f(x/\epsilon))$

are self-adjoint operators w.r. $t$ to the $L^{2}$-scalar product. In particular
$A^{\epsilon}=-\epsilon^{2}D\Delta+I$ ,

i.e. it is a small perturbation of the identity operator, provided the second derivatives are
bounded.

Let
$\mathcal{A}^{\epsilon}(u)$ $:=\Delta u+\epsilon^{-2}f(u)$ , $f(u)=-W’(u)$ . (1.10)

The Allen-Cahn equation, see [AC97], becomes under a diffusive rescaling of spaoe and
time

$\partial_{t}u=\mathcal{A}^{\epsilon}(u)$ . (1.11)
$T1_{1}e$ equation under consideration in this paper, (1.7), has the structure

$\partial_{t}u=A^{\epsilon}(\mathcal{A}^{\epsilon}(u))$ .
So (1.7) is formally a small (yet singular) perturbation of (1.11), and one could expect
that the limit evolution will be described by the same limit evolution as the Allen-Cahn
equation, i.e. by motion by mean curvature: $uarrow\pm 1$ a.e., and the interface which bounds
the region where $u$ is negative moves according to

$V=\kappa$ ,
where $V$ is the velocity of the interfaoe in normal direction, and $\kappa$ the mean curvature of
the interface.

However, the small perturbation by a higher order term becomes relevant clove to the
interface, where the derivatives of $u$ become large. Therefore, we find qualitatively the
same behavior, i.e. motion by mean curvature, but with different coefficients.

We actually obtain
$V=\mu\sigma\kappa$ , (1.12)
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here $\mu$ is an effective mobility and $\sigma$ the surface tension. In order to define $\mu$ and $\sigma$,
we need the standing wave for the one-dimensional Allen-Cahn equatlon, i.e. a solution
(unique up to translations) $q:Rarrow(-1,1)$ of

$\partial_{zz}^{2}u=-f(u)$ $\lim_{zarrow\pm\infty}u(z)=\pm 1$ .

Then $\mu$ is given by

$\mu$ $=$ 2 ($\int_{R}x\partial_{z}q)^{-1}$ , (1.13)

where $\chi$ is defined as
$A\chi=\partial_{z}q$ . (114)

The mobility is completely different from the Allen-Cahn equation, where the correspond-
ing expression equals ([S]),

2 $( \int_{R}\partial_{z}^{2}q)^{-1}$ .

Later we will show that the mobility $\mu$ is larger than the one for the Allen-Cahn equation,
i.e. the underlying diffusion mechanism speeds up the cluster evolution. The surface
tension $\sigma$ is defined as, ([S])

$\sigma=\int_{-1}^{1}\sqrt{(1/2)W(s)}ds=\frac{1}{2}I_{R}|\partial_{z}q|^{2}$

which is the same as for the Allen-Cahn equation.
The mobility by using a linear response argument is defined in the following way: Look

for one-dimensional solutions of

$\partial_{t}u=\epsilon^{2}(-D\Delta(\Delta u-\frac{f(u)}{\epsilon^{2}}))+\Delta u-\frac{f(u)}{\epsilon^{2}}+\epsilon^{-1}h$, (115)

i.e. a small forcing is added to $f$. The solution will be of the form $u(t, x)=q(c(h)t-x)+$
$O(\epsilon)$ , and the function $c(h)$ is (at least at highest order) of the form

$c(h)=\mu h$ ,

which defines the mobility.
In order to find a quantitative expression of the mobility in terms of the one-dimensional

profile $q$ , we will need the linearization of (1.7) around a function $u$ :

$\mathcal{L}_{u}v:.=A(\Delta v+f’(u)v)$ , $\mathcal{L}^{\epsilon}v:=A^{\epsilon}(\Delta v+\epsilon^{-2}f’(u)v)$ , (1.16)
where $A=-D\Delta+I$ is as above.

For further use we define for $Q(z)\in L^{2}(R)$ the one dimensional linear operator

$\mathcal{L}_{1}Q$ $:=-D\partial_{z}^{2}(\partial_{z}^{2}Q+f’(q(z))Q)+\partial_{z}^{2}Q+f’(q(z))Q$ . (1.17)
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Note that $\mathcal{L}_{1}=AM$ , where
$\mathcal{M}$ $:=\partial_{z}^{2}+f’(q(z))$

is the linearized Allen-Cahn operator.
Now (1.13) can be understood from the following formal asymptotics:

$c\partial_{z}q-h=\mathcal{L}_{1}^{\epsilon}Q$,
and the Fredholm solvability condition gives (see for a rigorous derivation section 2.2)

$c \int_{R}\chi\partial_{z}q=\int_{R}\chi$ ,

and as

$\int_{R}\chi=\int_{R}\partial_{l}q+\int R\Delta\chi=\sim=01-(-1)=2$
,

we $obta\dot{i}$

$c=2( \int_{R}\chi\partial_{z}q)^{-1}h$

$\mu\sigma=\frac{\int_{-\infty}^{\infty}\partial_{z}^{2}qd\xi}{\int_{-\infty}^{\infty}\partial_{z}q\chi 4}$ . (118)

Note that by testing
$-D\partial_{zz}^{2}\chi+\chi=\partial_{l}q$

with the solution $\chi$ we obtain

$\int\chi^{2}\leq\int|\partial_{z}\chi|^{2}+\int\chi^{2}\leq||x\Vert_{2}\Vert\partial_{z}q\Vert_{2}$ ,

and therefore
$||\chi\Vert_{2}\leq\Vert\partial_{z}q\Vert_{2}$ .

$T1_{1}is$ implies that

$\int\chi\partial_{z}.q=\int|\partial_{z}\chi|^{2}+\int\chi^{2}\leq||\chi\Vert_{2}\Vert\partial_{z}q\Vert_{2}\leq||\partial_{z}q\Vert_{2}^{2}$ ,

and therefore

$\mu\sigma=\frac{\int_{-\infty}^{\infty}\partial_{z}^{2}qd\xi}{\int_{-\infty}^{\infty}\partial_{z}q\chi d\xi}\geq 1$,

so that the diffusion speeds up the mean curvature flow. Note that for $D=0$ , equation
(1.14) implies that $\partial_{z}q=\chi$, that is $\mu\sigma=1$ which corresponds to the Allen-Cahn equation.

While the limit evolution is-up to coefficients-the same as for the Allen-Cahn equa-
tion, the mathematical treatment is necessarily quite different, because the Allen-Cahn
equation has a comparison principle, while (1.7) lacks this important property. The limit
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evolution, on the other hand, has a comparison principle. Henoe our equation (1.7) is a
non-monotone approximation of a monotone evolution law. Therefore the powerful tools
for passing to the limit as $\epsilonarrow 0$ beyond singularities of the limit evolution, which are
based on the comparison principle (see e.g. [BS98]) are unavailable in our case. Instead,
we show convergence until the first singularity of the limit evolution occurs by making
a formal asymptotic expansion rigorous with the help of linear stability, in the spirit of
[ABC94].

1.5. Results. In the sequel we study rigorously the scalar $CH/AC$ equation for $D=1$ .
Let $\Omega_{0}\subset\Omega$ be a compact set with smooth domain, and let $\hat{T}$ be the first time at which
the evolution of the boundary $\partial\Omega(t)$ , which is determined by (1.12), becomes singular.
Let $d(t, x)$ be the signed distance from $\Omega(t)$ .

The main theorems are:
Theorem 1.1. (1) For any $k>0$ and any $T<\hat{T}$ there are functions $\overline{u}^{(k)}(t, x)$ such

that they solve (1.7) up to a $r\dot{\tau}ght$ hand side (residual) $r(\epsilon, k)$ such that

$\Vert r(\epsilon, k)\Vert_{C^{2}}<\epsilon^{k}$

for $\epsilon<\epsilon_{0}(k, T)$ and $t\in[0, T$).
(2) Moreover, there enists $C>0$ and a function $d(t, x, \epsilon)$ such that for $t\in[0, T$)

$\lim_{\epsilonarrow 0}|d(t, x, \epsilon)-d(t, x)|=0$ and

$|\overline{u}^{(k)}(t, x)-q(\epsilon^{-1}d(t, x, \epsilon))|\leq C\epsilon$ .

Theorem 1.2. Let $T<\hat{T}$ . Then there exists $k,$ $k_{0}\in N$ , such that for any $k>k_{0}$ there
exists $\delta=\delta(k)$ with both $\delta,$ $k$ depending on the space dimension and $\epsilon_{0}$ and $C$ depending

on $T$ (through the distance from the singular time $\hat{T}$) such that if
$\Vert\overline{u}^{(k)}(0, x)-u(O, x)\Vert_{\infty}<\epsilon^{k}$

then for any $0<t\leq T,$ $\epsilon<\epsilon_{0}$ and $p= \frac{2(N+4)}{N+2},$ it holds that

$\Vert\overline{u}^{(k)}(t, x)-u(t, x)||_{L^{p}}<\epsilon^{\delta}$ .

Following the lines of [ABC94] one can improve this estimate in order to get convergence
in $C^{t},$ $l\in N$ , if the order of approximation $k$ is taken sufficiently large. Then one gets the
following sharp interface limit as a corollary:

Theorem 1.3. For any $\delta>0$ and any $T<\hat{T}$ there exist functions $u_{0}(x)$ such that
the solution $u(t, x)$ of (1.7) starting from $u_{0}(x)$ has the property that $u(t, x)>0$ for
dist $(x, \Omega(t))>\delta$

’

and $u(t, x)<0$ for dist $(x, \Omega^{c}(t))>\delta i.e$ . the zero level set of the
solution is close to an interface which evolves by the limit evolution.

Essentially, Theorem 1.2 is a consequence of Theorem 1.1 and the following spectral
estimate:
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Theorem 1.4. There exists $\lambda_{0}>0$ such that for $u=\overline{u}^{(k)}$ as in Theorem 1.1 and for all

test functions $f\in H_{0}^{1,2}(\Omega)$

$\langle f, A^{\epsilon}(\Delta+\epsilon^{-2}f’(u))f\rangle_{A^{e}}=\langle f, (\Delta+\epsilon^{-2}f’(u))f\rangle\leq\lambda_{0}\Vert f\Vert_{A^{\epsilon}}$. (1.19)

1.6. Structure of the paper. The paper is organized as follows. In Section 2 we show
that for any required order of the residual in the small parameter $\epsilon$ , we can construct
asymptotic solutions which have a residual that is of this order. Naturally, we will need
many terms in the expansion. Luckily it is not necessary to construct them explicitly,
because it can be shown by induction that they have a certain structure, which allows
the use of Fredholm’s alternative in order to obtain existenoe and regularity. Following
e.g. [CC98] we treat fast variable (normal to the limit interface) and slow variable (tan-
gential to the interface) as independent variables in $R^{N+1}$ . This allows us to avoid the
complications arising $hom$ the use of a coordinate system on the limit interface. The
approximate solutions converge to $\pm 1$ in the interior and exterior, respectively, of a set
whose boundary evolves by the limit evolution law $V=(\mu\sigma)\kappa$ .

In Section 3 we show a limit theorem for developed interfaces in the spirit of [ABC94],
[CC98], [D04]: If the approximate solution constructed in section 2 has a sufficiently small
residual, then any solution of equation (1.7) with initial condition $u_{0}$ sufficiently close
to the initial condition will stay close to the approximate solution on the macroscopic
timescale, as long as the limit evolution (mean curvature flow) does not encounter a
singularity. In order to show this, we make use of the stability of the linearization around
the approximate solution. We prove the stability by adapting the result $obta\dot{i}$ed by
Chen [Che94] for the Allen-Cahn equation to our situation where we deal with the scalar
$CH/AC$ equation..

2. ASYMPTOTIC EXPANSIONS

In this section Theorem 1.1 is shown with the help of asymptotic expansions, following
e.g. [ABC94], [DS95], [D04], [KS].

This is done in several steps: First, an approximate solution in a neighborhood of a
smooth interface is constructed by expanding around the standing wave profile. Here
we use a fast and a slow variable, because the gradients are large. For the same reason
the inner expansion will be very different from the one for Allen-Cahn equation: The
fourth-order term becomes relevant.

Away from the interface we should in principle expand $around\pm 1$ . However, this ex-
pansion becomes trivial as we obtain immediately the constant $functions\pm 1$ .

The solutions for the inner expansion converge exponentially fast towards their limits
as the fast variable tends $to\pm\infty$ . This allows to construct the approximate solution by
interpolating between inner and outer solution with a cut-off function.

2.1. Inner Expansion. We look for approximate solutions of this form:

$M,\epsilon$

$u_{i}$
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where

$d(x, t, \epsilon)=\sum_{k=0}^{M}\epsilon^{k}d^{(k)}(x, t)$

and such that
$\partial_{t}u_{i}^{M,\epsilon}-A^{\epsilon}(\mathcal{A}^{\epsilon}(u_{i}^{M,e}))=r(\epsilon, M)=O(\epsilon^{M-1})$

$|\nabla d(x, t, \epsilon)|-1=O(\epsilon^{M})$ . (2.21)

We will show existenoe of $u_{1}^{M,\epsilon}$ for arbitrary $M$ by induction. In order to do so, it is

convenient to follow [CC98] or [D04] and look for $Q^{(k)}(z, x)$ , where the fast variable $z$ is
in $R$ and the slow variable $x$ is in a fixed neighborhood of the interface, i.e. in a subset
of $\Omega$ . This means that we rewrite (1.7) replacing the differential operator $\partial_{x}$ by

$\partial_{x}+\epsilon^{-1}\partial_{z}$

and collect terms of same order in $\epsilon$ . For each of these terms, we will use the solvability
condition obtained from Fredholm’s alternative in $z$ and treat $x$ as a parameter.

Of course $z$ and $x$ are not independent variables, but related by

$\epsilon z-d(x, t, \epsilon)=0$ .

This will lead to the necessity of adding additional terms of the form

$g(x, t, \epsilon)\eta(z)(z-\epsilon^{-1}d(x, t, \epsilon))$

to the equation. Here $\eta$ is a cut-off function which vanishes as $|z|arrow\infty$ . Note that this
does not affect the equation in the $phy_{8}ica1$’ region $\epsilon z-d(x, t, \epsilon)=0$ . Of course

$g(x, t, \epsilon)=\sum\epsilon^{k}g^{(k)}(x, t)$ .

At order $\epsilon^{-2}$ we obtain
$\partial_{z}^{2}q+f(q)=0$,

which justifies (and enforces) the choioe of the standing wave $q$ as highest order term in
the inner expansion.

2.2. The first order. At order $\epsilon^{-1}$ we get

$\partial_{z}q(d_{t}^{(0)}-\Delta d^{(0)})+\partial_{z}^{3}q\Delta d^{(0)}-\eta(z)g^{(0)}d^{\langle 0)}$ $=\mathcal{L}^{(1)}Q^{(1)}$ , (2.22)

$|\nabla d^{(0)}|^{2}$ $=$ $1$ , (2.23)

where $q$ and $Q^{(1)}$ are functions of the fast variable $z\in R,$ $\Delta$ is the Laplace operator in $x$ .
We consider Equation (2.22) as an equation in $z$ with $x$ and $t$ as parameters. Equation
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(2.22) is solvable and has a smooth and exponentially decaying solution (as $|z|arrow\infty$ ) if

for all $\chi\in Ker((\mathcal{L}^{(1)})^{*})$ it holds that

$\chi\perp(\partial_{z}q(d_{t}^{(0)}-\Delta d^{(0)})+\partial_{z}^{3}q\Delta d^{(0)}-\eta(z)g^{(0)}d^{(0)})$ . (2.24)

$(\mathcal{L}^{(1)})^{*}\chi=0$ if and only if

$\mathcal{M}(-\partial_{z}^{2}\chi+\chi)=0$,
where $\mathcal{M}$ is the linearized Allen-Cahn operator. Using that $Ker\mathcal{M}=\partial_{z}qR$ we obtain

$-\partial_{z}^{2}\chi+\chi=a\partial_{z}q$

for some $a\in R$ . By linearity it suffices to solve
$-\partial_{z}^{2}\chi+\chi=\partial_{z}q$. (2.25)

(This is uniquely solvable, and by the maximum principle for the operator $-\partial_{z}^{2}+I$ we
get $\chi>0$ ).

Thus $Ker\mathcal{L}^{*}=\chi R\cdot where$ $\chi$ solves (2.25). Now returning back to equation (2.22), $t1_{1}is$

equation is solvable for $Q^{(1)}$ if and only if (2.24) holds. That is:

$( \int_{-\infty}^{\infty}\partial_{z}q\chi dz)d_{t}-[\int_{-\infty}^{\infty}\partial_{z}q\chi dz-\int_{-\infty}^{\infty}\partial_{z}^{3}q\chi dz]\Delta d^{(0)}=g^{(0)}d^{(0)}\int-\infty\chi\eta dz\sim\infty c$

Using that

$\int_{-\infty}^{\infty}\partial_{z}q(\chi-\partial_{z}^{2}\chi)dz=\int_{-\infty}^{\infty}\partial_{z}^{2}qdz$

and
$\chi-\partial_{z}^{2}\chi=\partial_{z}q$ ,

we finally obtain

$\mu^{-1}\partial_{t}d^{(0)}(x, t)=\sigma\Delta d^{(0)}(x, t)+cg^{(0)}(x,t)d^{(0)}(x,t)$ ,

where $c= \int_{R}\chi\eta$ .
From (2.23) we derive that for any t, the set $\{x\in\Omega : d^{(0)}(x, t)=0\}isa\cdot hypersurface$ ,

where $d^{(0)}$ is the distanoe from it. On this hypersurfaoe we obtain the limit bee boundary
problem,

$V=\mu\sigma\kappa$ , $\mu\sigma$ as in (1.18),

because there $d^{(0)}(x, t)=0,$ $\partial_{t}d^{(0)}(x, t)=V$ and $\Delta d^{(0)}(x, t)=\kappa$ . But for $x$ away from

the interface, i.e. $d^{(0)}\neq 0$ , we could not solve this without $g$ . But as the curvature of
parallel surfaces is a smooth function of the distanoe and the second fundamental form of
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the surface, we can solve the equation in a $\epsilon$-independent neighborhood of the interface
by choosing

$g^{(0)}(x,t)$ $:=\mu\sigma[\Delta d^{(0)}(Pr_{\partial\Omega(t)}(x),t)-\Delta d^{(0)}(x, t)]/(cd^{(0)}(x, t))$ .
Here $Pr_{\partial\Omega(t)}(x)$ is the projection of the point $x$ on the interface $\partial\Omega(t)$ . Hence the solvability
condition can be fulfilled for all $x$ , in a neighborhood of the limit interface which does not
depend on $\epsilon$ .

The cut-off function $\eta$ has the following purpose: If $|z|arrow\infty$ , then the equation at
each level of $\epsilon$ , if considered as equation in $x$ with $z$ as a parameter, should converge to
the corresponding equation without the correction term in order to obtain exponential
convergenoe of $Q^{(1)}(z)$ as $|z|arrow\infty$ .

2.3. The higher orders. Let $k\geq 1$ . At order $\epsilon^{k-1}$ we obtain

$\mathcal{L}^{(1)}Q^{(k+1)}=\partial_{z}q(\partial_{t}d^{(k)}-\Delta d^{(k)})-\eta(z)(g^{(k)}d^{(0)}+g^{(0)}d^{(k)})+R^{(k)}$, (2.26)

and from (2.21) at order $\epsilon^{k}$

$\nabla d^{(k)}\nabla d^{(0)}=B^{(k)}$ . (2.27)

$R^{(k)}$ depends only on the already known $Q^{(1)}(z, x,t),$
$\ldots,$

$Q^{(k)}(z, x, t),$ $d^{(0)}(x, t),$
$\ldots,$

$d^{(k-1)}(x,t)$ ,
$g^{(0)}(x,t),$ $\ldots,g^{(k-1)}(x, t)$ , and $B^{(k)}$ only on $d^{(0)}(x, t),$

$\ldots,$
$d^{(k-1)}(x, t)$ .

We make the inductive assumption that $Q^{(1)}(z, x, t),$
$\ldots,$

$Q^{(k)}(z, x, t),$ $d^{(0)}(x, t),$
$\ldots,$

$d^{(k-1)}(x, t)$ ,
$g^{(0)}(x, t),$

$\ldots,$
$g^{(k-1)}(x,t)$ exist, are smooth, and, moreover, the $Q^{(l)}$ decay exponentially as

$|z|arrow\infty$ uniformly in $x,$ $t$ . Note that it holds for $Q^{(1)}$ , because $\partial_{z}q(z)$ decays exponentially.
The solvability condition

$\partial_{z}q(\partial_{t}d^{(k)}-\Delta d^{(k)})-\eta(z)(g(d+gd^{(k)})+R^{(k)}\perp Ker(\mathcal{L}^{(1)})^{*}$

and equation (2.27) yield

$\mu^{-1}\partial_{t}d^{(k)}(x, t)$ $=\sigma\Delta d^{(k)}(x,t)+cg^{(0)}(x, t)d^{(k)}(x, t)+\hat{R}^{(k)}(x, t)$ , on $\{d^{(0)}=oX^{2.28)}$

$\nabla d^{(k)}\nabla d^{(0)}$ $=$
$B^{(k)}$ on $U_{\delta}$ , (2.29)

$g^{(k)}(x, t)$ $=$ $(d^{(0)}(x,t))^{-1}l(x, t)$ on $U_{\delta}\backslash \{d^{(0)}=0\}$ , (2.30)

where $U_{\delta}$ is a $\delta$-neighborhood of the limit interface for some small $\delta$ which depends on
the interface, but not on $\epsilon$ , and

$l(x,t)=\mu^{-1}\partial_{t}d^{(k)}(x,t)-\sigma\Delta d^{(k)}(x,t)+cg^{(0)}(x,t)d^{(k)}(x,t)+\hat{R}^{(k)}(x,t)$ .

Note that $l(x,t)=0$ on $\{d^{(0)}=0\}$ by (2.28).

This system has a smooth solution $d^{(k)},$ $g^{(k)}$ : First note that by using (2.29) the equa-

tion (2.28) can be re-written as a linear parabolic PDE for $d^{(k)}$ on the smooth manifold

100



$\{d^{(0)}=0\}$ . This PDE on the manifold has a unique, smooth solution. By the method of

characteristics (2.29) can be solved to define $d^{(k)}$ in the entire neighborhood $U_{\delta}$ . It remains
to solve for $g^{(k)}$ . Obviously $g^{(k)}$ is defined uniquely away from the interface, it remains to
show that it is sufficiently smooth everywhere. This follows from the following lemma,
whlch is cited as Corollary 6.5 in see [D02]:

Lemma 2.1. If $f\in C^{k}(R^{n}),$ $d(x)$ the distance to a smooth interface, and $f(x)arrow 0$ as
$d(x)arrow 0$ , then the equation $hd=f$ has a solution $h\in C^{k-2}$ .

Idea of Proof: Use Taylor-expansion of $f$ around a point on the interface, and switch
to tangential and normal coordinates at that point. The hypotheses of the lemma implies
that one can factor out $d$ in the Taylor series, and $h$ is $C^{k-2}$ up to the boundary.

Thus $d^{(k)},$ $g^{(k)},$ $Q^{(k+1)}$ exist and satisfy the same properties that were assumed of $d^{(k-1)},$ $g^{(k-1)}$ ,
$Q^{(k)}$ , and we can conclude by induction.
2.4. Construction of the approximate solution. As $q(z)arrow\pm 1$ exponentially fast as
$zarrow\pm\infty$ , and the $Q^{k}$ and their derivatives converge exponentially fast to zero as $|z|arrow\infty$ ,
it is sufficient to choose the constant functions $u_{o}=+1$ and $u_{i}=-1$ as outer expansions.
Let $\delta$ be a small constant such that the distance function from $\partial\Omega(t)$ is smooth for all
$(x, t)$ such that dist $(x, \partial\Omega(t))<\delta,$ $0\leq t\leq T$. Moreover let $\zeta$ : $Rarrow[0,1]$ be a smooth

cut-off function such that $\zeta(.r)=0$ for $r<1,$ $\zeta(r)=1$ for $r>2$ . The function $d^{(0)}$ is again
the signed distanoe from the limit interface $\partial\Omega(t)$ . Let

$u^{k(M)}(x, t)$ $:=(1-\zeta(\delta^{-1}d^{(0)})-\zeta(-\delta^{-1}d^{(0)}))u_{i}^{M,\epsilon}(x, t)+\zeta(\delta^{-1}d^{(0)}))-\zeta(-\delta^{-1}d^{(0)}))$ .
This satisfies the boundary conditions. (The assumption that the limit evolution does
not encounter a singularity implies that the free boundary $\partial\Omega(t)$ does not touch $\partial\Omega$).

Moreover, because of the exponential convergence of the $Q^{(k)}$ and their derivatives, the

residual of $u^{k(M)}$ differs at most by one order from the residual of $u_{i}^{M,\epsilon}$ .

3. PROOF OF THEOREMS 1.2-1.4
Let $R^{\epsilon}$ $:=\overline{u}^{(k)}-u$ , where $u$ is a solution of (1.7) and $\overline{u}^{(k)}$ is the approximate solution.

The aim is to show that there exists a function $C(T)$ which is independent of $\epsilon$ such that
$\Vert R^{\epsilon}(T\cdot)||\leq C(T)\Vert R^{\epsilon}(0)\Vert+C_{\epsilon}$

where $C_{\epsilon}arrow 0$ as $\epsilonarrow 0$ for any $T<\hat{T}$ and the norm can be $L^{p}$ or $L^{\infty}$ , etc. This will
prove Theorem 1.2.
Note: $R(0)$ can be assumed small if we restrict to “nice” initial conditions (developed
interfaces in the language of [ABC94]). Hence $\Vert R^{\epsilon}(T)\Vertarrow 0$ as $\epsilonarrow 0$ . We will from
now on make the simplifying assumption that $R^{\epsilon}(\cdot, 0)=0$ , the extension to the case of
$\Vert R^{e}(\cdot, 0)\Vert_{p}$ sufficiently small is straightforward.

From now on we drop the superscript $k$ and simply write $\overline{u}$ for the approximate solution
and $u$ for the actual solution.
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Lemma 3.1. Let $R^{\epsilon}$ $:=\overline{u}^{(k)}-u$ as above, then

$\partial_{t}R^{\epsilon}=A^{\epsilon}(\mathcal{A}^{\epsilon}(\overline{u})-\mathcal{A}^{\epsilon}(u))+r(k, \epsilon)=\mathcal{L}_{\varpi}^{\epsilon}R^{\epsilon}+\hat{\mathcal{N}}_{\epsilon}(R^{\epsilon})+r(k, \epsilon)$ (3.31)
$w\dot{h}ere\mathcal{L}_{\overline{u}}$ is as in (1.16),

$N_{\epsilon}(R^{\epsilon})=(-\epsilon^{2}\Delta+I)\mathcal{N}_{\epsilon}$,

$\mathcal{N}_{\epsilon}=\frac{1}{\epsilon^{2}}\int_{0}^{1}f(\overline{u}+sR^{\epsilon})ds(R^{\epsilon})^{2}$

is the linearization error, and $r(k, \epsilon)$ is the residual of the approximate solution given in
Theorem 1.1.

Proof. A direct consequence of Theorem 1.1 and the Taylor expansion of the nonlinearity
$f$ around $\overline{u}$ . $\square$

Remark. We linearize around $\overline{u}$ , not about $q$ . The spectral properties should be the same
for the linearization around $q$ , as both operators are very close. But the new operator
may have small eigenvalues of wrong sign. $C$hen’s theorems in [$C$he94] cover the case of
linearization around a sufficiently small perturbation of $q$ and apply in our case.

For the sake of simplicity, we drop the $\epsilon$ and write $R$ instead of $R^{\epsilon}$ .

Erom the bounds on the approximate solution we get

Theorem 3.1. Let $p\in[2,3]$ , there $e$ cists a positive constant $C_{p}$ depending only on $p$ ,
$\Vert f\Vert_{C^{2}([-3C_{0},3G_{0}])}$ and $C_{0}$ . such that the quantity $\mathcal{N}.satisfies$

%(u, $R$) $\leq C_{p}|R|^{p},$ $\forall u\in[-C_{0}, C_{0}],$ $R\in R$ .

Proof. We refer to [ABC94] for the proof. $\square$

Testing (3.31) with $R$ in appropriate, $1.e$ . (
$,$

$\rangle_{A}\cdot$ scalar product (or equivalently testing
with $\Psi=A^{-1}R$ in the $L^{2}$ scalar product,) we obtain

$\frac{1}{2}\partial_{t}||R(t)||_{A^{e}}^{2}\leq\epsilon^{-1}\langle\epsilon\Delta R+\epsilon^{-1}f’(q)R, R\rangle_{L^{2}}+\langle \mathcal{N}_{\epsilon}(R), R\rangle_{L^{2}}+\langle r(k, \epsilon), R\rangle_{A^{*}}$ (3.32)

$=(I)+(II)+(III)$ .
By Lemma 3.1 we obtain

$(II)\leq C_{p}||R||_{p}^{p}$ .

Moreover by the H\"older inequality and $||A^{-1}R||_{p}\leq C||R||_{p}$ we immediately get

Lemma 3.2 (Estimate on the remainder).
$\langle r(k, \epsilon), u\rangle\leq\Vert r(k, \epsilon)\Vert_{L^{p*}}\Vert u^{\epsilon}\Vert_{L^{p}}$ ,

where $p^{*}$ is the $e\varphi onent$ which is dual to $p$ .
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Hence,

$\frac{1}{2}\partial_{t}\Vert R(t)\Vert_{A^{e}}^{2}\leq\int-|\nabla R|^{2}+\epsilon^{-2}\int f’(q)(R)^{2}+\Vert R\Vert_{p}(\epsilon^{-2}\Vert R\Vert_{p}^{p-1}+\Vert r(k, \epsilon)\Vert_{L^{p}}\cdot).(3.33)$

Now note that Theorem 1.4 implies

$- \int|\nabla R|^{2}+\epsilon^{-2}\int f’(q)R^{2}\leq\lambda_{0}||R(t)\Vert_{A^{e}}^{2}$ .

Therefore we can apply Gronwall’s inequality, which yields

$\sup_{t\leq T}\Vert R(t)\Vert_{A^{c}}^{2}\leq C(T)\Vert R\Vert_{L^{p}([0,t]x\Omega)}(\epsilon^{-2}\Vert R\Vert_{L^{p}([0,t]\cross\Omega)}^{p-1}+\Vert r(k, \epsilon)\Vert_{L^{p}([0,t]x\Omega)})$ . (3.34)

We need an estimate for $\Vert\nabla R\Vert_{2}$ . In order to simplify notation, set
$||\cdot||_{L^{p}(\Omega)}=\Vert\cdot\Vert_{p}$ , $||\cdot||_{L^{p}([0,t]\cross\Omega)}=||\cdot||_{p,t}$ .

Since

$- \epsilon^{-2}\int_{0}^{t}\int_{\Omega}f’(\overline{u})R^{2}\leq\epsilon^{-2}\Vert R\Vert_{p,t}^{2}|\{f’(\overline{u})<0\}|^{1-\frac{2}{p}}\max_{\epsilon\leq C_{0}}|f^{j}(s)|\leq C\epsilon^{-\frac{2}{p}}||R\Vert_{p,t}^{2}$, (3.35)

where $|A|$ denotes the Lebesgue measure of the set $A$ . Integrating (3.33) over $(0, t),$ $t\in$

$(0, T]$ , yields

$\Vert\nabla R\Vert_{2,t}^{2}\leq C\epsilon^{-2}\Vert R\Vert_{p,t}[\epsilon^{-\frac{2}{p}}\Vert R\Vert_{p,t}+\epsilon^{2}\Vert r(k, \epsilon)\Vert_{p*,t}+\Vert R\Vert_{p,t}^{p-1}]$ . (3.36)

Sinoe we use Dirichlet boundary conditions and $p= \frac{2(N+4)}{N+2}$ the Sobolev Imbedding the-

orem implies that:

$\Vert R\Vert_{p}^{p}\leq C_{p}\Vert R\Vert_{2^{+l}}^{\tau_{\Vert\nabla R\Vert_{2^{+}}^{N\Pi}}^{82N}}$ .
Also, note that

$\Vert R||_{2}^{2}$ $=$ $- \int_{\Omega}R(\epsilon^{2}\Delta-I)(A^{-1}R)=\int_{\Omega}\epsilon^{2}\nabla R\nabla(A^{-1}R)+\int R(A^{-1}R)$

$\leq$ $(\Vert(\epsilon\nabla R)||_{2}+\Vert R\Vert_{A}\cdot)||R||_{A*}$ . (3.37)

The strategy is to derive $hom$ the Sobolev Imbedding theorem and by using (3.36) and
(3.34) a recursive inequality for $\Vert R\Vert_{p,t}$ . We estimate

$||R\Vert_{p,t}^{p}$ $\leq$ $C_{p} \int_{0}^{t}\Vert R\Vert_{2}^{\pi_{+7}^{8}}\Vert\nabla R\Vert_{2^{+7}}^{r^{2N}}$

(3.38)

$\leq$ $C \int_{0}^{t}N^{4}\urcorner$
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Now note that $N\geq 2$ , i.e. $4/(N+2)\leq 1$ . Hence we have that for any positive numbers
$a,$

$b$

$(a+b)^{m_{+2}^{4}}\leq a^{\tau_{+\overline{2}}^{4}}+b^{\pi^{4}\mp 2}$ ,
therefore

$\int_{0}^{t}\Vert R\Vert_{p}^{p}\leq C\int_{0}^{t}\Vert R_{\epsilon}\Vert_{A^{e}}^{\tau_{+\overline{2}}^{8}}\Vert\nabla R\Vert_{2}^{k_{+}^{N}}+\int_{0}^{t}\epsilon^{\pi_{+B}^{4}}\Vert R\Vert_{A*}^{\tau_{+F^{2N4}}^{4}}\Vert\nabla R||_{2^{+2}}\neq$ .

By the Holder inequality in space and by taking the supremum in time over $||R(\cdot, s)\Vert_{A}$.
we obtain (for a different constant $C$)

$\int_{0}^{t_{2N}}\Vert R\Vert^{\frac{8}{A^{\epsilon}N+2}}\Vert\nabla R\Vert_{2}^{T+5}\leq C(\sup_{[0,t]}\Vert R(\cdot, s)\Vert_{A*}^{2})^{\nabla^{4}T}+(\Vert\nabla R\Vert_{2,t}^{2})^{\tau_{+5}^{N}}$

and

$\int_{0}^{t}\epsilon^{\tau_{+I}^{4}}\Vert R\Vert_{A^{c}}^{r_{+7}^{4}}\Vert\nabla R\Vert^{\frac{2N+4}{2N+2}}\leq C\epsilon+(\sup_{[0,t]}\Vert R(\cdot, s)\Vert_{A}^{2}.)^{fi_{+}}\Vert\nabla R\Vert_{2,t}^{2}$ .

Note that this term is of the same structure as the corresponding term in [AB$C94$] and
can be estimated in a similar way. We abbreviate

$a=\Vert R\Vert_{p,t}$ and $r=\Vert r(k, \epsilon)\Vert_{p,t}$ .

Then (3.34) and (3.36) yield

$a^{p}$ $\leq$
$C(a(\epsilon^{-2}a^{p-1}+r))^{k_{+}}(\epsilon^{-2}a[\epsilon^{-2}pa+\epsilon^{2}r+a^{p-1}])^{\Gamma+7}N$

(3.39)
$+C\epsilon+(a(\epsilon^{-2}a^{p-1}+r))^{N^{2}\pi}+(\epsilon^{-2}a[\epsilon^{-\frac{2}{p}}a+\epsilon^{2}r+a^{p-1}])$ .

Define
$T^{\epsilon}$ $:= \sup\{t\in(0,T], \Vert R\Vert_{L^{p}([0,t]x\Omega)}\leq\epsilon^{k}\}$ ,

l.e. for $t\leq T^{\epsilon}$ we know that $a\leq\epsilon^{k}$ . Now choose $\epsilon$ so small that $\epsilon^{k(p-1)}\leq\epsilon^{k}$ . (Note
$p>2.)$ Moreover we may (by taking sufficiently many terms in the construction of the
approximate solution) assume that $r\leq\epsilon^{k}$ . (This is not optimal.) Then we obtain from
(3.39)

$a^{p}\leq C(\epsilon^{-2}a^{p})$
謝

$(\epsilon^{-2-\frac{2}{p}}$ a2)1+C\epsilon 痛 $(\epsilon^{-2}a^{p})$
商

$(\epsilon^{-2-\frac{2}{p}}a^{2})$ .

As $p=2(N+4)/(N+2)$ , we conclude that there exists a small number $\rho>0$ and some
$l>0$ , both depending only on $p$ and $N$, such that

$a^{p}\leq C\epsilon^{-l}a^{\rho}a^{p}$ .
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If $k$ is chosen sufficiently large, then this implies that at $T^{\epsilon}$ still $a^{p}<\epsilon^{kp}$ , contradicting
the definition of $T^{\epsilon}$ . Therefore, $T^{\epsilon}$ must be the maximal time interval on which we can
construct the approximate solution with $r$ as required, thus proving the theorem.

We now provide a statement for a better regularity.

Theorem 3.2. Let the assumptions of Theorem 1.2 hold. Let $m>0$ be any fixed integer
and assume that

$\Vert\overline{u}(t, x)\Vert_{c^{4m+5,m+}5_{([0,t]x\Omega)}}+\Vert u(t, x)\Vert_{c^{4m+3,m+}3_{([0,t]x\Omega)}}\leq\epsilon^{-(4m+6)}$

$forallsmallpositive\epsilon.$ Then for $anyO<t\leq T$

$\Vert\overline{u}(t, x)-u(t, x)\Vert_{C^{4m,m}([0,t]x\Omega)}\leq C\Vert\overline{u}(0, x)-u(0, x)\Vert_{c^{4m-2,m-\int_{([0,t]x\Omega)}}}$

for all sufficiently small positive $\epsilon$ .
Proof. We refer to [ABC94] for the proof. 口

It remains to show the spectral estimate which was crucial in the preceding computa-
tions.

Let $W$ be the double well potential such that $W’(u)=-f(u)$ , where $f$ as in (1.7).

Theorem 3.3. There exists a positive constant $C_{AC}$ such that for every $\epsilon\in(0,1$ ] and
every $\psi\in H^{1}(\Omega)$

$\int_{\Omega}\epsilon|\nabla\psi|^{2}+\frac{1}{\epsilon}W’’(q)\psi^{2}\geq-C_{AC}\epsilon\int_{\Omega}\psi^{2}$.

Proof. We refer to [Che94], pg. 1382-1383. $\square$

The linear stability Theorem 1.4 is a direct consequenoe of the following theorem:
Theorem 3.4. There exist $\lambda_{0}>0$ and $\epsilon_{0}>0$ such that for every $\epsilon\in(0, \epsilon_{0}$] and $\psi\in$

$H_{0}^{1}(\Omega)$

$\epsilon^{2}\Delta w-w=\psi\psi^{\inf_{\in H^{1}(\Omega)}}\frac{\int\epsilon|\nabla\psi|^{2}+\epsilon^{-1}W’’(q)\psi^{2}dx}{\int\epsilon^{2}|\nabla w|^{2}+w^{2}dx}\geq-\epsilon\lambda_{0}$. (3.40)

Proof. First note that there is nothing to prove if

$\int\epsilon|\nabla\psi|^{2}+\epsilon^{-1}W’’(q)\psi^{2}dx>0$ ,

because in such a case the left hand side of the inequality (3.40) is positive, while the
right hand side is negative. Therefore assume without loss of generality

$\int\epsilon|\nabla\psi|^{2}+\epsilon^{-1}W’’(q)\psi^{2}dx\leq 0$ ,
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which implies

$\int\epsilon^{2}|\nabla\psi|^{2}\leq||(W’’(q))_{-}\Vert_{\infty}\int\psi^{2}$ . (3.41)

Set
$\epsilon^{2}\Delta w-w=\psi$

then
$\psi^{2}=-w\psi+\epsilon^{2}\Delta w\psi$

and

$\int\psi w=-\int\epsilon|\nabla w|^{2}-w^{2}dx$ .

Moreover,

$\int\psi\Delta w=-\int\nabla\psi\nabla w\leq\delta\int|\nabla\psi|^{2}+\frac{1}{\delta}\int|\nabla w|^{2}$ .

Then

$\int\psi^{2}dx$ $\leq$

Using the previous estimate together with (3.41) we obtain for $\delta<\Vert(W’’(q))_{-}\Vert_{\infty}^{-1}$

$\int\psi^{2}\leq\frac{1+\delta^{-1}}{1-\delta\Vert(W(q))_{-}\Vert_{\infty}}\int(\epsilon^{2}|\nabla w|^{2}+w^{2})$ . (3.42)

By theorem 3.3, see [Che94], and (3.42) we get

$\int\int\epsilon|\nabla\psi|^{2}+\frac{1}{\epsilon}W’’(q)\psi^{2}\geq-C_{AC}\frac{1+\delta^{-1}}{1-\delta\Vert(W’(q))_{-}\Vert_{\infty}}\epsilon(\int\epsilon^{2}|\nabla w|^{2}+w^{2})$ . (3.43)

Thus the proof is complete. 口
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