A positive solution of a nonlinear scalar field equation
 早稲田大学理工学研究科 平田 润（Jun Hirata）

0．Introduction

This is a joint work with Kazunaga Tanaka．In this note we consider the following nonlinear Schrödinger equation：

$$
\text { (NLS) }\left\{\begin{array}{c}
-\Delta u+V(x) u=f(u) \quad \text { in } \mathbf{R}^{N}, \\
u \in H^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

Here $N \geq 3, V(x) \in C\left(\mathbf{R}^{N}, \mathbf{R}\right)$ and $f(u) \in C(\mathbf{R}, \mathbf{R})$ ．Our main purpose is to show the existence of a positive solution of（NLS）with the nonlinearity

$$
f(u)=|u|^{p-1} u-|u|^{q-1} u, \quad 1<p<q .
$$

When $V(x) \equiv V_{\infty}$ is a constant，Berestycki－Lions［BL］obtain almost necessary and sufficient condition for the existence of a positive solution of（NLS）．However，when $V(x)$ depends on x ，this existence problem becomes delicate．For example，let us consider

$$
-\Delta u+\left(1+\varepsilon \arctan x_{1}\right) u=|u|^{p-1} u
$$

where $1<p<\frac{N+2}{N-2}$ ．If $\varepsilon=0$ ，this equation has a positive solution．However，for any $\varepsilon>0$ ，this equation has only trivial solution．This example shows the existence of nontrivial solutions depends on $V(x)$ in a very delicate way．This difficulty comes from the lack of the Palais－Smale condition．

To overcome this difficulty，we usually assume $V(x) \rightarrow V_{\infty}>0$ as $|x| \rightarrow \infty$ and $V(x) \leq V_{\infty}$ for all $x \in \mathbf{R}^{N}$ ．Rabinowitz［ \mathbf{R} ］also assumes that $f(u)$ satisfies the global Ambrosetti－Rabinowitz condition and the monotonicity of $\frac{f(u)}{u}$ and he shows the existence of a positive solution of（NLS）．Jeanjean－Tanaka［JT2］extends his result and they show that if $V(x) \rightarrow V_{\infty}$ suitably fast，（NLS）has a positive solution under the condition only $\frac{f(u)}{u} \rightarrow \infty$ ．However，when $f(u) \rightarrow-\infty$ as $u \rightarrow \infty$ ，the existence of problem seems not well－studied．

Our first result is the following：
Theorem 1．We assume that $N \geq 3$ and $V(x)$ satisfies $\inf _{x \in \mathbf{R}^{N}} V(x)>0$ and
（v1） $\lim _{|x| \rightarrow \infty} V(x)=V_{\infty}$ and

$$
\begin{equation*}
0<V_{\infty}<2(q-p)\left(\frac{1}{(p+1)(q-1)}\right)^{\frac{q-1}{q-p}}(p-1)^{\frac{p-1}{q-p}}(q+1)^{\frac{p-1}{q-p}} \tag{0.1}
\end{equation*}
$$

（v2）$x \cdot \nabla V(x) \in L^{1}\left(\mathbf{R}^{N}\right)$ ．
（v3）$V(x) \leq V_{\infty} \quad$ for all $x \in \mathbf{R}^{N}$ ．

Then,

$$
\text { (*) }\left\{\begin{array}{l}
-\Delta u+V(x) u=|u|^{p-1} u-|u|^{q-1} u \quad \text { in } \mathbf{R}^{N}, \\
u \in H^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

has a positive solution.
As another approach to show the existence of a positive solution of (NLS), we use the symmetry of $V(x)$. Indeed, Hirata [H2] assumes that $V(x)$ is invariant under a finite group action, for example, $V(-x)=V(x)$ for all $x \in \mathbf{R}^{N}$. He also assume $V(x)$ converges to $V_{\infty}>0$ suitably fast and $\frac{f(u)}{u} \gg 1$ as $u \rightarrow \infty$. Under above conditions, he shows the existence of a positive solution of (NLS) even without condition like (v3). (See also Adachi [A], Hirata [H1]). Our second result is in spirit of [A,H1,H2].
Theorem 2. We assume that $N \geq 3$ and $V(x)$ satisfies $\inf _{x \in \mathbf{R}^{N}} V(x)>0$, (v1)-(v2) and
(v4) $V(-x)=V(x) \quad$ for all $x \in \mathbf{R}^{N}$,
(v5) there exist $\alpha>2$ and $C>0$ such that

$$
V_{\infty}-V(x) \geq-C e^{-\alpha|x|} \quad \text { for all } x \in \mathbf{R}^{N}
$$

Then, (*) has an even positive solution.
Remark. (i) Theorem 2 does not need a condition like (v3). Thus we can apply Theorem 2 even if $V(x)>V_{\infty}$.
(ii) Conditions (v2) and (v5) mean $V(x) \rightarrow V_{\infty}$ suitably fast. In particular, (v2) and (v5) hold if $V(x)-V_{\infty}$ has compact support.
We also remark that if $V(x)$ is radially symmetric, Bartsch-Willem [BWi] show that the functional corresponding to (NLS) satisfies the Palais-Smale condition in radially symmetric functions space. In particular, Kikuchi $[\mathbf{K}]$ shows that (*) has a positive solution if $V(|x|)=V(x)$ for all $x \in \mathbf{R}^{N}$ and $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$. See also Bartsch-Wang [BWa] and Hirata [H2] for study of (NLS) under more wide classes of symmetries.

In sections 1-2, we give outline of proofs of Theorems 1 and 2. In section 3, we deal with more general nonlinear scalar field equations.

1. Outline of the proof of Theorem 1

In this section, we find the nontrivial critical point of the following functional which corresponds to (*):

$$
I(u):=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x-\int_{\mathbf{R}^{N}}\left(\frac{1}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1}\right) d x
$$

We remark that $I(u)$ has the mountain pass structure. However, since $I(u)$ does not satisfy the Palais-Smale condition, we cannot apply the mountain pass theorem to $I(u)$ directly. To overcome this difficulty, fist we use so-called the monotonicity method which originated by Struwe [\mathbf{S}] (see also Jeanjean [J] and Rabier [Ra]) to find bounded Palais-Smale sequences.

1.1. Monotonicity method

For $\lambda \in\left[0, \frac{1}{2}\right]$, we consider the following perturbed equation:

$$
(*)_{\lambda}\left\{\begin{array}{l}
-\Delta u+V(x) u=(1+\lambda)|u|^{p-1} u-|u|^{q-1} u \quad \text { in } \mathbf{R}^{N} \\
\quad u \in H^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

The corresponding functional is

$$
I_{\lambda}(u):=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla u|^{2}+V(x) u^{2} d x-\int_{\mathbf{R}^{N}}\left(\frac{1+\lambda}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1}\right) d x
$$

Since $I_{\lambda}(u)$ has a mountain pass structure, there is a function $v_{\lambda} \in H^{1}\left(\mathbf{R}^{N}\right)$ such that $I\left(v_{\lambda}\right)<0$. We define the mountain pass level b_{λ} for

$$
\begin{gathered}
b_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t)) \\
\Gamma=\left\{\gamma \in C\left([0,1], H^{1}\left(\mathbf{R}^{N}\right)\right) \mid \gamma(0)=0, \gamma(1)=v_{\lambda}\right\}
\end{gathered}
$$

Using ideas in Struwe [\mathbf{S}], Jeanjean [J], and Rabier [Ra], we have
Lemma 1.1. (c.f. [S,J,Ra]) For almost every $\lambda \in\left[0, \frac{1}{2}\right], I_{\lambda}(u)$ has a bounded PalaisSmale sequence.

We remark that since $I_{\lambda}(u)$ has a mountain pass structure, we can see that $I_{\lambda}(u)$ has a Palais-Smale sequence by Ekeland's principle. However, since the nonlinearities $|u|^{p-1} u-|u|^{q-1} u$ does not satisfy the global Ambrosetti-Rabinowitz condition, that PalaisSmale sequence may not be bounded. On the other hand, Lemma 1.1 says that there is a sequence $\left(\lambda_{j}\right)_{j=1}^{\infty} \subset\left[0, \frac{1}{2}\right], \lambda_{j} \searrow 0$ such that $I_{\lambda_{j}}(u)$ has a bounded Palais-Smale sequence $\left(u_{n}^{\lambda_{j}}\right)_{n=1}^{\infty} \subset H^{1}\left(\mathbf{R}^{N}\right)$. Taking a subsequence if necessary, we may assume that $u_{n}^{\lambda_{j}}$ converges to a weak limit u_{j}. Next, we show that u_{j} is a nontrivial critical point of $I_{\lambda_{j}}(u)$.

1.2 Weak convergence of $I_{\lambda}(u)$

To show that u_{j} is a nontrivial critical point of $I_{\lambda_{j}}(u)$, the following limit equation and corresponding functional play important roles:

$$
\begin{gathered}
(* *)_{\lambda}\left\{\begin{array}{c}
-\Delta u+V_{\infty} u=(1+\lambda)|u|^{p-1} u-|u|^{q-1} u \quad \text { in } \mathbf{R}^{N}, \\
u \in H^{1}\left(\mathbf{R}^{N}\right),
\end{array}\right. \\
I_{\lambda}^{\infty}(u):=\frac{1}{2} \int_{\mathbf{R}^{N}}|\nabla u|^{2}+V_{\infty} u^{2} d x-\int_{\mathbf{R}^{N}}\left(\frac{1+\lambda}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1}\right) d x .
\end{gathered}
$$

Since (0.1) holds, $(* *)_{\lambda}$ has a ground-state solution ω (see Berestycki-Lions [BL]). Moreover, since $V(x) \leq V_{\infty}$ and $V(x) \not \equiv V_{\infty}$, we have $b_{\lambda_{j}}<I^{\infty}(\omega)$. Thus, by usual concentration compactness argument, we can see that u_{j} is a nontrivial critical point of $I_{\lambda_{j}}(u)$ with
$I_{\lambda_{j}}\left(u_{j}\right) \leq b_{\lambda_{j}}$. In next section, we show that $\left(u_{j}\right)_{j=1}^{\infty} \subset H^{1}\left(\mathbf{R}^{N}\right)$ is a bounded Palais-Smale sequence for the functional corresponding to the original problem (*).

1.3 A priori estimate

In this section we show that (u_{j}) is a bounded Palais-Smale sequence. A similar result is shown in Jeanjean-Tanaka [JT2] for an equation (NLS) with a property $\frac{f(u)}{u} \rightarrow \infty$. For our problem, we argue as follows:

Since u_{j} is a critical point of $I_{\lambda_{j}}(u)$, we have the Pohozaev's identity:

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|\nabla u_{j}\right|^{2} d x=N I_{\lambda_{j}}\left(u_{j}\right)+\frac{1}{2} \int_{\mathbf{R}^{N}} x \cdot \nabla V(x) u_{j}^{2} d x \tag{1.1}
\end{equation*}
$$

On the other hand, by maximum principle, it is not difficult to find that $\left(u_{j}\right)$ is bounded in $L^{\infty}\left(\mathbf{R}^{N}\right)$. Thus, the boundedness of $\left\|\nabla u_{j}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}$ follows from (v2) and (1.1). Since $\left\|\nabla u_{j}\right\|_{L^{2}\left(\mathbf{R}^{N}\right)}$ is bounded, we can see that $\left(u_{j}\right)$ is a bounded Palais-Smale sequence of $I(u)$ by a similar way to [JT2].

1.4 Conclusion

Since (u_{j}) is bounded Palais-Smale sequence, we use concentration compactness argument again and we get a weak limit u_{0} of $\left(u_{j}\right)$ is a nontrivial critical point of $I(u)$. Thus, we have Theorem 1.

2. Outline of the proof of Theorem 2.

In this section, we give an outline of the proof of Theorem 2 . We define the space of even functions

$$
E:=\left\{u(x) \in H^{1}\left(\mathbf{R}^{N}\right) \mid u(-x)=u(x) \text { for all } x \in \mathbf{R}^{N}\right\}
$$

and we consider the functional $I(u)$ corresponding to $(*)$ in E . We remark that $I(u)$ has a mountain pass structure. The following Lemma 2.1 is the key of this proof.
Lemma 2.1. We assume (v1), (v4) and (v5). Let $v_{0} \in E$ such that $I\left(v_{0}\right)<0$ and we define the mountain pass level $b_{E}=b_{E}\left(v_{0}\right)$ by

$$
\begin{gathered}
b_{E}=\inf _{\gamma \in \Gamma_{E}} \max _{t \in[0,1]} I(\gamma(t)) \\
\Gamma_{E}=\left\{\gamma(t) \in C([0,1], E) \mid \gamma(0)=0, \gamma(1)=v_{0}\right\}
\end{gathered}
$$

Then, we have

$$
b_{E}<2 I^{\infty}(\omega)
$$

Here $I^{\infty}(u)$ is the functional corresponding to the limit equation

$$
(* *)\left\{\begin{array}{l}
-\Delta u+V_{\infty} u=|u|^{p-1} u-|u|^{\mid q-1} u \quad \text { in } \mathbf{R}^{N}, \\
u \in H^{1}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

and $\omega(x)$ is its ground-state solution.
For a proof of Lemma 2.1, we need

$$
\begin{equation*}
I(\omega(x-s)+\omega(x+s))<2 I^{\infty}(\omega) \quad \text { for } s \in \mathbf{R}^{N},|s| \gg 1 \tag{2.1}
\end{equation*}
$$

We remark that this type estimates are so-called interaction estimates which are studied by many authors in various situation (see Taubes [$\mathbf{T}]$, Bahri-Li $[\mathbf{B a L i}], \ldots$). We aslo remark that (2.1) follows from the fact that $\omega(x)$ has an exponential decay and $V(x)$ satisfies (v5). To estimate b_{E}, we use the following sample path:

$$
\gamma(t)=\left\{\begin{array}{cl}
\omega\left(\frac{x}{t}-s\right)+\omega\left(\frac{x}{t}+s\right) & \text { if } t \neq 0 \\
0 & \text { if } t=0
\end{array}\right.
$$

where $s \in \mathbf{R}^{N}$ and $|s| \gg 1$. We remark that the path $t \mapsto \omega\left(\frac{\tau}{t}\right)$ is used in Jeanjean-Tanaka [JT1] to show that for the autonomous equation (**), the mountain pass solution is the ground state solution. Indeed, they show that $\omega\left(\frac{x}{t}\right) \rightarrow 0$ as $t \rightarrow 0, I^{\infty}\left(\omega\left(\frac{x}{t}\right)\right)<I^{\infty}(\omega(x))$ for all $t \neq 1$, and $I^{\infty}\left(\omega\left(\frac{x}{t}\right)\right) \rightarrow-\infty$ as $t \rightarrow \infty$. Our path $\gamma(t)$ is the even symmetry version of their path. From (2.1), we have

$$
\begin{gathered}
\gamma(0)=0, \quad I(\gamma(t)) \rightarrow-\infty \text { as } t \rightarrow \infty, \\
\max _{t \in[0, \infty)} I(\gamma(t))<2 I^{\infty}(\omega) .
\end{gathered}
$$

This implies Lemma 2.1.
Now, we prove Theorem 2. We consider the perturbed equation ($*)_{\lambda}$ and the corresponding functional $I_{\lambda}(u)$. By Lemma 2.1 and continuity of $\lambda \mapsto I_{\lambda}(u)$, there exists $v_{0} \in E$ and $\lambda_{0} \in\left(0, \frac{1}{2}\right]$ such that

$$
\begin{gathered}
I_{\lambda}\left(v_{0}\right)<0 \quad \text { for all } \lambda \in\left[0, \lambda_{0}\right] \\
b_{\lambda}=\inf _{\gamma \in \Gamma_{E}} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))<2 I^{\infty}(\omega) \quad \text { for all } \lambda \in\left[0, \lambda_{0}\right] .
\end{gathered}
$$

Arguing as in section 1.1, we have a sequence $\left(\lambda_{j}\right)_{j=1}^{\infty} \subset\left[0, \lambda_{0}\right], \lambda_{j} \rightarrow 0$ such that $I_{\lambda_{j}}(u)$ has a bounded Palais-Smale sequence $\left(u_{n}^{\lambda_{j}}\right)_{n=1}^{\infty} \subset E$ at mountain pass level $b_{\lambda_{j}}$. The following Lemma 2.2 ensures that the weak limit u_{j} of $\left(u_{n}^{\lambda_{j}}\right)$ is a nontirivial critical point of $I_{\lambda_{j}}(u)$.
Lemma 2.2. We assume (v1) and (v4). Let $\lambda \in\left[0, \frac{1}{2}\right]$ and $\left(u_{n}\right) \subset E$ be a bounded PalaisSmale sequence of $I_{\lambda}(u)$ at level c. Moreover if $c<2 I^{\infty}(\omega)$, then a weak limit $u_{0} \in E$ of $\left(u_{n}\right)$ is a critical point of $I_{\lambda}(u)$ with $I_{\lambda}\left(u_{0}\right) \leq c$.

We remark that Lemma 2.2 follows from the concentration compactness argument under symmentry assumption (see $[\mathbf{A}, \mathrm{H} 1, \mathrm{H} 2]$). By Lemmas 2.1 and 2.2, we have that $u_{j} \in E$ is a nontrivial critical point of $I_{\lambda_{j}}(u)$. Thus, in a similar way to sections 1.3 and
1.4, we have that $\left(u_{j}\right)$ is a bounded Palais-Smale sequence of $I(u)$ and it converges weakly to a nontrivial solution u_{0} for (*). Thus, we have Theorem 2.

3. Nonlinear scalar field equations

With the same idea to deal with Theorem 1, we can study more general equations. Here we give just a result for x-dependent nonlinear scalar field equations, which can be regarded as an x-dependent version of results of [BGK,BL]. More precisely we study the following nonlinear elliptic equation:

$$
\text { (\#) }\left\{\begin{array}{c}
-\Delta u=g(x, u) \quad \text { in } \mathbf{R}^{N}, \\
u \in H^{1}\left(\mathbf{R}^{N}\right) .
\end{array}\right.
$$

Here $N \geq 2$ and $g(x, \xi) \in C\left(\mathbf{R}^{N} \times \mathbf{R}, \mathbf{R}\right)$. We remark that when $g(x, \xi)=-V(x) \xi+f(\xi)$ with $V(x) \in C\left(\mathbf{R}^{N}, \mathbf{R}\right)$ and $f(\xi) \in C(\mathbf{R}, \mathbf{R}),(\sharp)$ is a nonlinear Schrödinger equation (NLS). To state our main result, we set $G(x, \xi)=\int_{0}^{\xi} g(x, \tau) d \tau$ and assume
(g0) $G(x, \xi): \mathbf{R}^{\boldsymbol{N}} \times \mathbf{R} \rightarrow \mathbf{R}$ is of class $C^{\mathbf{1}}$.
(g1) When $N \geq 3$,

$$
\limsup _{\xi \rightarrow \infty} \frac{g(x, \xi)}{\xi^{\frac{N+2}{N-2}}}=0 \quad \text { uniformly in } x \in \mathbf{R}^{N} .
$$

When $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$$
g(x, \xi) \leq C_{\alpha} e^{\alpha \xi^{2}} \quad \text { for all } x \in \mathbf{R}^{N} \text { and } \xi \in \mathbf{R}
$$

(g2) $g(x, 0) \equiv 0$ for all $x \in \mathbf{R}^{N}$ and there exists $m>0$ such that

$$
-\infty<\liminf _{\xi \rightarrow 0} \frac{g(x, \xi)}{\xi} \leq \limsup _{\xi \rightarrow 0} \frac{g(x, \xi)}{\xi} \leq-m<0
$$

uniformly in $x \in \mathbf{R}^{N}$.
(g3) There exists a function $g_{\infty}(\xi) \in C(\mathbf{R}, \mathbf{R})$ such that

$$
\lim _{|x| \rightarrow \infty} g(x, \xi)=g_{\infty}(\xi) \quad \text { uniformly on } \xi \text { bounded. }
$$

(g4) There exists $\zeta_{0}>0$ such that $G_{\infty}\left(\zeta_{0}\right)>0$, where $G_{\infty}(\xi)$ is defined by

$$
G_{\infty}(\xi)=\int_{0}^{\xi} g_{\infty}(\tau) d \tau
$$

(g5) $G(x, \xi) \geq G_{\infty}(\xi)$ for all $x \in \mathbf{R}^{N}$ and $\xi \in \mathbf{R}$.
(g6) There exists a continuous function $\nu:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\left|\int_{\mathbf{R}^{N}} x \cdot \nabla_{x} G(x, u) d x\right| \leq \nu\left(\|u\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}\right)
$$

for $u \in H^{1}\left(\mathbf{R}^{N}\right) \cap L^{\infty}\left(\mathbf{R}^{N}\right)$.
(g7) $g(x, \xi)$ satisfies one of the following conditions:
(g7-a) There exists a uniformly continuous function $h(x): \mathbf{R}^{N} \rightarrow(0, \infty)$ such that
(i) there exist $c_{1}, c_{2}>0$ such that

$$
c_{1} \leq h(x) \leq c_{2} \quad \text { for all } x \in \mathbf{R}^{N}
$$

(ii) There exists $p \in\left(1, \frac{N+2}{N-2}\right)$ when $N \geq 3, p \in(1, \infty)$ when $N=2$ such that

$$
\lim _{\xi \rightarrow \infty} \frac{g(x, \xi)}{\xi^{p}}=h(x) \quad \text { uniformly in } x \in \mathbf{R}^{N}
$$

(g7-b) There exists $\zeta_{1}>\zeta_{0}$ such that

$$
g\left(x, \zeta_{1}\right) \leq 0 \quad \text { for all } x \in \mathbf{R}^{\boldsymbol{N}}
$$

Our main result is as follows
Theorem 3. We assume $N \geq 2$ and $g(x, \xi)$ satisfies ($g 0)-(g 7)$. Then (\#) has a positive solution.

For a proof of Theorem 3 we refer to $[\mathrm{HT}]$ and we give some remarks on conditions (g0)-(g7).
(i) When $N \geq 3$ and $g(x, \xi)$ is independent of the space variable x, that is, $g(x, \xi)=$ $g(\xi)=g_{\infty}(\xi)$, the conditions (g1), (g2), (g4) are given in [BL] for the existence of a positive solution of x-independent problem:

$$
-\Delta u=g(u) \quad \text { in } \mathbf{R}^{N}
$$

Conditions (g5), (g6) hold if $g(x, \xi)$ is independent of x and Theorem 3 can be regarded as an extension of the result of $[\mathrm{BL}]$ to x-dependent equations.
(ii) When $N=2$ and $g(x, \xi)$ is independent of x, [BGK] assumes (g1), (g2) and the following condition

$$
\lim _{\xi \rightarrow 0} \frac{g(\xi)}{\xi}=-m<0 \text { exists }
$$

which is slightly stronger than (g4). We remark that with our method we can extend the result of [BGK] slightly and we can show the existence of a positive solution for x-independent problem under conditions (g1), (g2), (g4) when $N=2$.
(iii) The condition (g7) is a condition that ensures an a priori L^{∞}-bound for positive solutions and which covers many applications; (g7-a) covers nonlinear Schrödinger equations of type

$$
-\Delta u+V(x) u= \pm u^{p}+u^{q} \quad \text { in } \mathbf{R}^{N}
$$

with $1<p<q<\frac{N+2}{N-2}(N \geq 3)$ and $1<p<q<\infty(N=2)$. (g7-b) covers

$$
-\Delta u+V(x) u=u^{p}-u^{q} \quad \text { in } \mathbf{R}^{N}
$$

with $1<p<q$. In particular, Theorem 1 is the special case of Theorem 3.

References

[A] S. Adachi, a positive solution of a nonhomogeneous elliptic equation in \mathbf{R}^{N} with G-invariant nonlinearity, CPDE (2001)
[BaLi] A. Bahri, Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in R^{N}, Rev. Mat. Iberoamericana 6 (1990), no. 1-2, 1-15
[BGK] H. Berestycki, Th. Gallouet, O. Kavian, Equations de Champs scalaires euclidiens non linéaires dans le plan, Publications du Laboratoire d'Analyse Numérique, Université de Paris VI, (1984)
[BL] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345
[BWa] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbf{R}^{N}, Comm. Partial Differential Equations 20 (1995), no. 9-10, 17251741
[BWi] T. Bartsch, M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on \mathbf{R}^{N}, Arch. Rational Mech. Anal. 124 (1993), no. 3, 261-276
[H1] J. Hirata, A positive solution of a nonlinear elliptic equation in \mathbf{R}^{N} with G-symmetry, Advances in Diff. Eq. 12 (2007), no. 2, 173-199
[H2] J. Hirata, A positive solution of a nonlinear Schrödinger equation with G-symmetry, Nonlinear Analysis, in press.
[HT] J. Hirata, K. Tanaka, in preparation.
[J] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on R^{N}, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787-809
[JT1] L. Jeanjean, K. Tanaka, A remark on least energy solutions in $\mathbf{R}^{\boldsymbol{N}}$, Proc. AMS 131, Number 8, Pages 2399-2408 (2002)
[JT2] L. Jeanjean, K. Tanaka, A positive solution for a nonlinear Schroedinger equation on \mathbf{R}^{N}, Indiana Univ. Math. J. 54 No. 2 (2005), 443-464
[K] H. Kikuchi, Existence of standing waves for the nonlinear Schrödinger equation with double power nonlinearity and harmonic potential, Advanced Studies in Pure Mathematics, Asymptotic Analysis and Singularity, to appear.
[S] M. Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, second edition, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. 20
[T] C. H. Taubes, Min-max theory for the Yang-Mills-Higgs equations, Comm. Math. Phys. 97 (1985), no. 4, 473-540
[Ra] P. J. Rabier, Bounded Palais-Smale sequences for functionals with a mountain pass geometry. Arch. Math. (Basel) 88 (2007), no. 2, 143-152
[R] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291

