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$0$ . Introduction
This is a joint work with Kazunaga Tanaka. In this note we consider the following

nonlinear Schrodinger equation:

(NLS) $\{\begin{array}{ll}-\Delta u+V(x)u=f(u) in R^{N},u\in H^{1}(R^{N}). \end{array}$

Here $N\geq 3,$ $V(x)\in C(R^{N}, R)$ and $f(u)\in C(R, R)$ . Our main purpose is to show the
existence of a positive solution of (NLS) with the nonlinearity

$f(u)=|u|^{p-1}u-|u|^{q-1}u$, $1<p<q$ .

When $V(x)\equiv V_{\infty}$ is a constant, Berestycki-Lions [BL] obtain almost necessary and
sufficient condition for the existenoe of a positive solution of (NLS). However, when $V(x)$

depends on $x$ , this existence problem becomes delicate. For example, let us consider

$-\Delta u+$ ( $1+\epsilon$ arctan $x_{1}$ ) $u=|u|^{p-1}u$ ,

$where1any\epsilon>0,$$thiseqtionhason1ytrivialsolution.Thisexampleshowstheexistenceof<p<\frac{N+2}{N2,u\overline{a}}.If\epsilon=0,thisequationhasapositivesolution.However,for$

nontrivial solutions depends on $V(x)$ in avery delicate way. This difficulty come8&om
the lack of the Palais-Smale condition.

To overcome this difficulty, we usually assume $V(x)arrow V_{\infty}>0$ as $|x|arrow\infty$ and
$V(x)\leq V_{\infty}$ for all $x\in R^{N}$ . Rabinowitz [R] also assumes that $f(u)$ satisfies the global
Ambrosetti-Rabinowitz condition and the monotonicity of $\angle L^{u}4$ and he shows the existence
of apositive solution of (NLS). Jeanjean-Tanaka [JT2] $ext^{u}ends$ his result and they show
that if $V(x)arrow V_{\infty}$ suitably fast, (NLS) has apositive solution under the condition only
$\angle L^{u}J$

$arrow\infty$ . However, when $f(u)arrow-\infty$ as $uarrow\infty$ , the existence of problem seems not
$w^{u}el1- studied$ .

Our first result $1s$ the following:
Theorem 1. We assume that $N\geq 3$ and $V(x)$ satisfies $\inf_{x\in R^{N}}V(x)>0$ and

$(vl) \lim_{|x|arrow\infty}V(x)=V_{\infty}$ and

$0<V_{\infty}<2(q-p)( \frac{1}{(p+1)(q-1)})^{q^{\frac{-1}{-p}}}(p-1)^{R}q^{\frac{-1}{-p}}(q+1)^{L_{\frac{1}{p}}^{-}}r-A$ (0.1)

$(v2)x\cdot\nabla V(x)\in L^{1}(R^{N})$ .
$(v3)V(x)\leq V_{\infty}$ for all $x\in R^{N}$ .

数理解析研究所講究録
第 1591巻 2008年 125-133 125



Then,

$(*)\{\begin{array}{ll}\text{一} \Delta u+V(x)u=|u|^{p-1}u-|u|^{q-1}u in R^{N},u\in H^{1}(R^{N}). \end{array}$

$h$as a positive solution.

As another approach to show the existence of a positive solution of (NLS), we use
the symmetry of $V(x)$ . Indeed, Hirata [H2] assumes that $V(x)$ is invariant under a finite
group action, for example, $V(-x)=V(x)$ for all $x\in R^{N}$ . He also assume $V(x)$ converges
to $V_{\infty}>0$ suitably fast and $\Delta^{u}4u\gg 1$ as $uarrow\infty$ . Under above conditions, he shows the
existence of a positive solution of (NLS) even without condition like (v3). (See also Adachi
[A], Hirata [H1]). Our second result is in spirit of [A,HI,H2].

Theorem 2. We assume that $N\geq 3$ and $V(x)$ satisfies $\inf_{x\in R^{N}}V(x)>0,$
$(vl)-(v2)$ an$d$

$(v4)V(-x)=V(x)$ for all $x\in R^{N}$ ,
$(v\delta)$ there exist $\alpha>2$ and $C>0$ such that

$V_{\infty}-V(x)\geq-Ce^{-\alpha|x|}$ for all $x\in R^{N}$

Then, $(*)h$as an even positive solution.

Remark. (i) Theorem 2 does not need a condition like (v3). Thus we can aPply Theorem
2 even if $V(x)>V_{\infty}$ .
(ii) Conditions (v2) and (v5) mean $V(x)arrow V_{\infty}$ suitably fast. In particular, (v2) and (v5)

hold if $V(x)-V_{\infty}$ has compact support.
We also remark that if $V(x)$ is radially symmetric, Bartsch-Willem [BWi] show that

the functional corresponding to (NLS) satisfies the Palais-Smale condition in radially sym-
metric functions space. In particular, Kikuchi [K] shows that $(*)$ has a positive solution if
$V(|x|)=V(x)$ for all $x\in R^{N}$ and $V(x)arrow\infty$ as $|x|arrow\infty$ . See also Bartsch-Wang [BWa]
and Hirata [H2] for study of (NLS) under more wide classes of symmetries.

In sections 1-2, we give outline of proofs of Theorems 1 and 2. In section 3, we deal
with more general nonlinear scalar field equations.

1. Outline of the proof of Theorem 1
In this section, we find the nontrivial critical point of the following functional which

corresponds to $(*)$ :

$I(u)$ $;= \frac{1}{2}\int_{R^{N}}|\nabla u|^{2}+V(x)u^{2}dx-\int_{R^{N}}(\frac{1}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1})dx$ .

We remark that $I(u)$ has the mountain pass structure. However, since $I(u)$ does not satisfy
the Palais-Smale condition, we cannot apply the mountain pass theorem to $I(u)$ directly.
To overcome this difficulty, fist we use so-called the monotonicity method which originated
by Struwe [S] (see also Jeanjean [J] and Rabier [Ra]) to find bounded Palais-Smale
sequences.
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1.1. Monotonicity method

For $\lambda\in[0, \frac{1}{2}]$ , we consider the following perturbed equation:

$(*)_{\lambda}\{\begin{array}{ll}-\Delta u+V(x)u=(1+\lambda)|u|^{p-1}u-|u|^{q-1}u in R^{N},u\in H^{1}(R^{N}). \end{array}$

The corresponding functional is

$I_{\lambda}(u)$ $:= \frac{1}{2}\int_{R^{N}}|\nabla u|^{2}+V(x)u^{2}dx-\int_{R^{N}}(\frac{1+\lambda}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1})dx$.

Since $I_{\lambda}(u)$ has a mountain pass structure, there is a function $v_{\lambda}\in H^{1}(R^{N})$ such that
$I(v_{\lambda})<0$ . We define the mountain pass level $b_{\lambda}$ for

$b_{\lambda}=$ inf max $I_{\lambda}(\gamma(t))$ ,
$\gamma\in\Gamma t\in[0,1]$

$\Gamma=\{\gamma\in C([0,1], H^{1}(R^{N}))|\gamma(0)=0,\gamma(1)=v_{\lambda}\}$ .
Using ideas in Struwe [S], Jeanjean [J], and Rabler [Ra], we have

Lemma 1.1. $(c.f. [S,J,Ra])$ For almost every $\lambda\in[0$ , } $]$ , $I_{\lambda}(u)h$as a bounded Palais-
Smale sequence.

We remark that since $I_{\lambda}(u)$ has a mountain pass structure, we can see that $I_{\lambda}(u)$

has a Palais-Smale sequence by Ekeland’s principle. However, since the nonlinearities
$|u|^{p-1}u-|u|^{q-1}u$ does not satisfy the global Ambrosetti-Rabinowitz condition, that Palais-
Smale sequence may not be bounded. On the other hand, Lemma 1.1 says that there is a
sequence $( \lambda_{j})_{j=1}^{\infty}\subset[0, \frac{1}{2}],$ $\lambda_{j}\backslash 0$ such that $I_{\lambda_{j}}(u)$ has a bounded Palais-Smale sequence
$(u_{n^{j}}^{\lambda})_{n=1}^{\infty}\subset H^{1}(R^{N})$ . Taking a subsequence if necessary, we may assume that $u_{n^{j}}^{\lambda}$ converges
to a weak limit $u_{j}$ . Next, we show that $u_{j}$ is a nontrivial critical point of $I_{\lambda_{j}}(u)$ .
1.2 Weak convergence of $I_{\lambda}(u)$

To show that $u_{j}$ is a nontrivial critical point of $I_{\lambda_{j}}(u)$ , the following limit equation
and corresponding functional play important roles:

$(**)_{\lambda}\{\begin{array}{ll}\text{一} \Delta u+V_{\infty}u=(1+\lambda)|u|^{p-1}u-|u|^{q-1}u i- i R^{N},u\in H^{1}(R^{N}), \end{array}$

$I_{\lambda}^{\infty}(u)$ $:= \frac{1}{2}\int_{R^{N}}|\nabla u|^{2}+V_{\infty}u^{2}dx-\int_{R^{N}}(\frac{1+\lambda}{p+1}|u|^{p+1}-\frac{1}{q+1}|u|^{q+1})dx$.

Since (0.1) holds, $(**)_{\lambda}$ has a ground-state solution $\omega$ (see Berestycki-Lions [BL]). More-
over, since $V(x)\leq V_{\infty}$ and $V(x)\not\equiv V_{\infty}$ , we have $b_{\lambda_{j}}<I^{\infty}(\omega)$ . Thus, by usual concentra-
tion compactness argument, we can see that $u_{j}$ is a nontrivial critical point of $I_{\lambda_{j}}(u)$ with
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$I_{\lambda_{j}}(u_{j})\leq b_{\lambda_{j}}$ . In next section, we show that $(u_{j})_{j=1}^{\infty}\subset H^{1}(R^{N})$ is a bounded Palais-Smale
sequence for the functional corresponding to the original problem $(*)$ .

1.3 A priori estimate

In this section we show that $(u_{j})$ is a bounded Palais-Smale sequence. A similar result
is shown in Jeanjean-Tanaka [JT2] for an equation (NLS) with a property $LL^{u}4uarrow\infty$ . For
our problem, we argue as follows:

Since $u_{j}$ is a critical point of $I_{\lambda_{j}}(u)$ , we have the Pohozaev’s identity:

$\int_{R^{N}}|\nabla u_{j}|^{2}dx=NI_{\lambda_{j}}(u_{j})+\frac{1}{2}\int_{R^{N}}x\cdot\nabla V(x)u_{j}^{2}dx$. (1.1)

On the other hand, by maximum principle, it is not difficult to find that $(u_{j})$ is bounded
in $L^{\infty}(R^{N})$ . Thus, the boundedness of $\Vert\nabla u_{j}||_{L^{2}(R^{N})}$ follows from (v2) and (1.1). Since
$\Vert\nabla u_{j}||_{L^{2}(R^{N})}$ is bounded, we can see that $(u_{j})$ is a bounded Palais-Smale sequence of $I(u)$

by a similar way to [JT2].

1.4 Conclusion

Since $(u_{j})$ is bounded Palais-Smale sequence, we use concentration compactness argu-
ment again and we get a weak limit $u_{0}$ of $(u_{j})$ is a nontrivial critical point of $I(u)$ . Thus,
we have Theorem 1.

2. Outline of the proof of Theorem 2.

In this section, we give an outline of the proof of Theorem 2. We define the space of
even functions

$E:=$ {$u(x)\in H^{1}(R^{N})|u(-x)=u(x)$ for all $x\in R^{N}$ }

and we consider the functional $I(u)$ corresponding to $(*)\ln$ E. We remark that $I(u)$ has a
mountain pass structure. The following Lemma 2.1 is the key of this proof.

Lemma 2.1. We assume $(vl),$ $(v4)$ and $(v5)$ . Let $v_{0}\in E$ such that $I(v_{0})<0$ and we
define th$e$ mountain pass level $b_{E}=b_{E}(v_{0})$ by

$b_{E}= \inf_{\gamma\in\epsilon}\max_{t\in[0,1]}I(\gamma(t))$ ,

$\Gamma_{E}=\{\gamma(t)\in C([0,1], E)|\gamma(0)=0,\gamma(1)=v_{0}\}$ .
Then, we have

$b_{E}<2I^{\infty}(\omega)$ .
Here $I^{\infty}(u)$ is the $fun$ctional corresponding to the limit equation

$(**)\{\begin{array}{ll}-\Delta u+V_{\infty}u=|u|^{p-1}u-|u|^{q-1}u in R^{N},u\in H^{1}(R^{N}), \end{array}$
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and $\omega(x)$ is its ground-state solution.

For a proof of Lemma 2.1, we need

$I(\omega(x-s)+\omega(x+s))<2I^{\infty}(\omega)$ for $s\in R^{N},$ $|s|\gg 1$ . (2.1)

We remark that this type estimates are so-called interaction estimates which are studied by
many authors in various situation (see Taubes [T], Bahri-Li $[BaLi],$ $\ldots$ ). We aslo remark
that (2.1) follows from the fact that $\omega(x)$ has an exponential decay and $V(x)$ satisfies (v5).
To estimate $b_{E}$ , we use the following sample path:

$\gamma(t)=\{\begin{array}{ll}\omega(\frac{x}{t}-s)+\omega(\frac{x}{t}+s) if t\neq 0,0 if t=0,\end{array}$

where $s\in R^{N}$ and $|s|\gg 1$ . We remark that the Path $t\mapsto\omega(tg)$ is used in Jeanjean-Tanaka
[JT1] to show that for the autonomous equation $(**)$ , the mountain pass solution is the
ground state solution. Indeed, they show that $\omega(\frac{x}{t})arrow 0$ as $tarrow 0,$ $I^{\infty}( \omega(\frac{x}{t}))<I^{\infty}(\omega(x))$

for all $t\neq 1$ , and $I^{\infty}( \omega(\frac{x}{t}))$ $arrow-\infty$ as $tarrow\infty$ . Our path $\gamma(t)$ is the even symmetry version
of their path. From (2.1), we have

$\gamma(0)=0$ , $I(\gamma(t))arrow-\infty$ as $tarrow\infty$ ,

$\max_{t\in[0,\infty)}I(\gamma(t))<2I^{\infty}(\omega)$ .

This implies Lemma 2.1.
Now, we prove Theorem 2. We consider the perturbed equation $(*)_{\lambda}$ and the corre-

sponding functional $I_{\lambda}(u)$ . By Lemma 2.1 and continuity of $\lambdarightarrow I_{\lambda}(u)$ , there exists $v_{0}\in E$

and $\lambda_{0}\in(0, \frac{1}{2}$ ] such that

$I_{\lambda}(v_{0})<0$ for all $\lambda\in[0, \lambda_{0}]$ ,

$b_{\lambda}= \inf_{\gamma\in E}\max_{t\in[0,1]}I_{\lambda}(\gamma(t))<2I^{\infty}(\omega)$ for all $\lambda\in[0, \lambda_{0}]$ .

Arguing as in section 1.1, we have a sequence $(\lambda_{j})_{j=1}^{\infty}\subset[0, \lambda_{0}],$ $\lambda_{j}arrow 0$ such that
$I_{\lambda_{j}}(u)$ has a bounded Palais-Smale sequence $(u_{n}^{\lambda_{j}})_{n=1}^{\infty}\subset E$ at mountain pass level $b_{\lambda_{j}}$ .
The following Lemma 2.2 ensures that the weak limit $u_{j}$ of $(u_{n}^{\lambda_{\dot{f}}})$ is a nontirivial critical
point of $I_{\lambda_{j}}(u)$ .
Lemma 2.2. We assume $(vl)$ and $(v4)$ . Let $\lambda\in[0, \frac{1}{2}]$ an$d(u_{n})\subset E$ be a bounded Palais-
Smale sequence of $I_{\lambda}(u)$ at level $c$ . Moreover if $c<2I^{\infty}(\omega)$ , then a weak limit $u_{0}\in E$ of
$(u_{n})$ is a critical point of $I_{\lambda}(u)$ with $I_{\lambda}(u_{0})\leq c$.

We remark that Lemma 2.2 follows from the concentration compactness argument
under symmentry assumption (see $[A,H1,H2]$ ). By Lemmas 2.1 and 2.2, we have that
$u_{j}\in E$ is a nontrivial critical point of $I_{\lambda_{j}}(u)$ . Thus, in a similar way to sections 1.3 and
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1.4, we have that $(u_{j})$ is a bounded Palais-Smale sequence of $I(u)$ and it converges weakly
to a nontrivial solution $u_{0}$ for $(*)$ . Thus, we have Theorem 2.

3. Nonlinear scalar field equations

With the same idea to deal with Theorem 1, we can study more general equations.
Here we give just a result for x-dependent nonlinear scalar field equations, which can be
regarded as an x-dependent version of results of [BGK,BL]. More precisely we study the
following nonlinear elliptic equation:

$(\#)\{\begin{array}{ll}-\Delta u=g(x,u) in R^{N},u\in H^{1}(R^{N}). \end{array}$

Here $N\geq 2$ and $g(x,\xi)\in C(R^{N}xR, R)$ . We remark that when $g(\prime x,\xi)=-V(x)\xi+f(\xi)$

with $V(x)\in C(R^{N},R)$ and $f(\xi)\in C(R,R),$ $(\#)$ is a nonlinear Schr\"odinger equation

(NLS). To state our main result, we set $G(x, \xi)=\int_{0}^{\xi}g(x,\tau)d\tau$ and assume
$(gO)G(x,\xi)$ : $R^{N}\cross Rarrow R$ is of class $C^{1}$ .
(g1) When $N\geq 3$ ,

$\lim_{\xiarrow}\sup_{\infty}\frac{g(x,\xi)}{\xi-2}=0$ uniformly in $x\in R^{N}$ .

When $N=2$ , for any $\alpha>0$ there exists $C_{\alpha}>0$ such that

$g(x,\xi)\leq C_{\alpha}e^{\alpha\xi^{2}}$ for all $x\in R^{N}$ and $\xi\in R$

(g2) $g(x,0)\equiv 0$ for all $x\in R^{N}$ and there exists $m>0$ such that

$- \infty<\lim_{\xiarrow}\inf_{0}\frac{g(x,\xi)}{\xi}\leq\lim_{\xiarrow}\sup_{0}\frac{g(x,\xi)}{\xi}\leq-m<0$

uniformly in $x\in R^{N}$ .
(g3) There exists a function $g_{\infty}(\xi)\in C(R,R)$ such that

$\lim_{|x|arrow\infty}g(x,\xi)=g_{\infty}(\xi)$ uniformly on $\xi$ bounded.

(g4) There exists $\zeta_{0}>0$ such that $G_{\infty}(\zeta_{0})>0$ , where $G_{\infty}(\xi)$ is defined by

$G_{\infty}( \xi)=\int_{0}^{\xi}g_{\infty}(\tau)d\tau$.

(g5) $G(x,\xi)\geq G_{\infty}(\xi)$ for all $x\in R^{N}$ and $\xi\in R$

(g6) There exists a continuous function $\nu$ : $[0, \infty$) $arrow[0, \infty$ ) such that

$| \int_{R^{N}}x\cdot\nabla_{x}G(x,u)dx|\leq\nu(||u\Vert_{L(R^{N})}\infty)$
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for $u\in H^{1}(R^{N})\cap L^{\infty}(R^{N})$ .
(g7) $g(x, \xi)$ satisfies one of the following conditions:

(g7-a) There exists a uniformly continuous function $h(x)$ : $R^{N}arrow(0, \infty)$ such that
(i) there exist $c_{1},$ $c_{2}>0$ such that

$c_{1}\leq h(x)\leq c_{2}$ for all $x\in R^{N}$

(ii) There exists $p\in(1, \Delta N\pm-2a)$ when $N\geq 3,$ $p\in(1, \infty)$ when $N=2$ such that

$\lim_{\xiarrow\infty}\frac{g(x,\xi)}{\xi^{p}}=h(x)$ uniformly in $x\in R^{N}$ .

(g7-b) There exists $\zeta_{1}>\zeta_{0}$ such that

$g(x,\zeta_{1})\leq 0$ for all $x\in R^{N}$ .

Our main result is as follows

Theorem 3. We assume $N\geq 2$ and $g(x,\xi)$ satisBes $(gO)-(g7)$ . Then $(\#)$ has a positive
solution.

For a proof of Theorem 3 we refer to [HT] and we give some remarks on conditions
$(g0)-(g7)$ .
(i) When $N\geq 3$ and $g(x,\xi)$ is independent of the space variable $x$ , that is, $g(x,\xi)=$

$g(\xi)=g_{\infty}(\xi)$ , the conditions (g1), (g2), (g4) are given in [BL] for the existence of a
positive solution of x-independent problem;

$-\Delta u=g(u)$ in $R^{N}$ .

Conditions (g5), (g6) hold if $g(x,\xi)$ is independent of $x$ and Theorem 3 can be regarded
as an extension of the result of [BL] to x-dependent equations.

(ii) When $N=2$ and $g(x,\xi)$ is independent of $x$ , [BGK] assumes (g1), (g2) and the
following condition

$\lim\underline{g(\xi)}=-m<0$ exists,
$\xiarrow 0$ $\xi$

which is slightly stronger than (g4). We remark that with our method we can extend
the result of [BGK] slightly and we can show the existence of a positive solution for
x-independent problem under conditions (g1), (g2), (g4) when $N=2$.

(iii) The condition (g7) is a condition that ensures an a priori $L^{\infty}$-bound for positive
solutions and which covers many applications; (g7-a) covers nonlinear Schr\"odinger
equations of type

$-\Delta u+V(x)u=\pm u^{p}+u^{q}$ in $R^{N}$
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with $1<p<q< \frac{N+2}{N-2}(N\geq 3)$ and $1<p<q<\infty(N=2)$ . (g7-b) covers

$-\Delta u+V(x)u=u^{p}-u^{q}$ in $R^{N}$

with $1<p<q$ . In particular, Theorem 1 is the special case of Theorem 3.
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