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EXISTENCE AND NONEXISTENCE OF NONTRIVIAL STEADY
STATES OF AN ACTIVATOR-INHIBITOR SYSTEM

HUIQIANG JIANG AND WEI-MING NI

1. INTRODUCTION

Following A. Turing’s celebrated idea of diffusion-driven instability [10], A.
Gierer and H. Meinhardt [2] proposed a mathematical model for pattern formations
of spatial tissue structures of hydra in morphogenesis, a biological phenomenon dis-
covered by A. Trembley in 1744 [9]. It is a system of reaction-diffusion equations

of the form
w=dlu-u+¥ +o in Qx[0,T),
(1.1) Tve = dog Av — v + :,‘—: in Qx[0,T),
%:%:0 on 90N x|[0,T)

where A is the Laplace operator, {2 is a bounded smooth domain in R*, n > 1
and v is the unit outer normal to 8. Here u,v represent respectively the concen-
trations of two substances, activator and inhibitor, with diffusion rates d;,ds, and
are therefore always assumed to be positive. The source term o is a nonnegative
constant representing the production of the activator, 7 > 0 is the response rate of
v to the change of u, and the exponents p, q,, s are nonnegative numbers satisfying
the condition

p—1 g
(1.2) 0< - <s+1'
We remark that the response rate 7 was introduced mathematically and is an
important parameter on the stability of the system.

In this expository paper, we will explain our methods and results in [4] where
various existence and nonexistence results on nontrivial steady states of (1.1) were
obtained using newly established a priori estimates. For earlier results on this
system, we refer the readers to [1][3][5][6](7][8] and the references therein.

2. NONEXISTENCE OF NONTRIVIAL SOLUTIONS

For any o > 0, the corresponding stationary equation

dll_\.u—u+:,‘—2+a=0 in
(2.1) doDv —v + 35; =0 in Q,
%% = %;’j— =0 on A0
has a unique constant solution (u*,v*) such that
{ ~u* + (u*)?TH 40 =0,

(22) vt = (u*)"':;t-i .
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When o = 0, we have (u*,v*) = (1,1).
" One of the main theorems in [4] is the following nonexistence result

Theorem 2.1. Assume max{g,7} < s+ 1. There ezists a constant k > 0 such
that whenever %} < k, we have (u,v) = (u*,v*).

Remark 2.2. The constants k can be calculated explicitly. For erample, when
o =0 and (p,q,7,8) = (2,4,2,4), the "common source” case, we have k = 1.

Theorem 2.1 is new even when n = 1 and it indicates that the ratio of two diffu-
sion rates alone can prevent the existence of nontrivial patterns while all previously
known nonexistence results for this system require that at least one of the diffusion
rates d;,d, be suitably large.

Theorem 2.1 is a consequence of the following optimal bounds:

Lemma 2.3. (i) Ifq < 8 + 1, then there erists k; > 0 depending on p,q,r,s,0,
such that whenever —2 < ky, we have u < u*,v < v*.

(). Ifr < s+1, then there exists k; > 0 depending on p,q,r,s,0, such that
whenever 31 < ko, we have u > u*,v > v*

The main idea in proving Lemma, 2.3 is to use quantities of the form <% to
bound both u and v. Here A > 0 has to be chosen carefully. To get a feeling of the
technique we used, we sketch here the proof of the first part when o = 0:

Step 1: Let 0 < A < -ﬂ Then % controls both u and v, more precisely,

144

r 4+ iy 1— A
u 1'-m A rl—A ” J:FI u
inf — < (inf u) < (inf v) < [ supwv < |supu < sup —.

Q

Step 2: Let 0 < A < 1. Then at any point z* € Q where % achieves its
maximum, we have

Ady < up~1 Ad; u”

(2.3) l- S~
Step 3: Let A < ;21=%s and
(2.4) _d_g__)\(s+1—/\r)

d g-A(-1) _
Then (2.3) implies % (z*) < 1 which follows from Young’s inequality. Hence Jx <1
in Q and step 1 impliesu <1land v < 1in .
Step 4: The number k; is chosen so that whenever 3 d < ki, one can find A

satisfies (2.4) and 0 < A < min {1, =, r—‘_ji%:%} The case when 9 = k; can be
proved by a l1m1tmg process.

On the other hand, standard energy estimate could also yield nonexistence results
if we have certain uniform a priori estimates. Actually, if we have positive lower
and upper a priori bounds for solutions to (2.1) which are uniform, then we have
energy estimate

2
4 d1 || Vullp2qy < C ||-Vul|iz(n)
where C is a constant depending on the uniform bounds of u,v. Hence, large d;

implies nonexistence of nontrivial steady states. For example, the followmg two
theorems ‘were proved in [4]:



STATIONARY SOLUTIONS
Theorem 2.4. Assume o > 0 and B2 < min {1,2}. Then there exists constant
¢ > 0, such that whenever dy > c, (1.1) has no nontrivial steady states.

. Theorem 2.5. Assume 0 =0, n = 2 and E# < 1. Then for any d* > 0, there
exists constant ¢ > 0, such that whenever d; > d*, and d; > c, (1.1) has no
nontrivial steady states.

3. EXISTENCE OF NONTRIVIAL SOLUTIONS

Nontrivial solutions do exist under certain situations when d; is small.
We consider the linearization of (2.1) around (u*,v*),

( AR+ fu (s v*)h+ f, (u*,v*)k=0 in 9,
(3.1) do Ok + gy (U, v*)h+ gy (u*,v*) k=0 in
oh =gk =0 on 99

where

uP u"
fu,v) =—u+ o +0,9(u,v) =-v+ port
Let 0= Ao < A\; < A2 < --- be the eigenvalues of —A under Neumann boundary
conditions in Q. We also use m; to denote the multiplicity of eigenvalue A;, 1 =
0,1,2,--. For simplicity, we use f, to denote f. (u*,v*), the same applies to f,,
gu and g,. The linear system (3.1) will possess a nontrivial solution if and only if
the matrix

( fu—di; Jo ) _ p(u*)"‘l"i% —1—di)i —g (u—)P—“.%E
u  Go o r ) —s—1—da);

is singular for some i. Hence, given d2 > 0, for each i > 1, the linear system (3.1)
will possess a nontrivial solution if and only if
ry o 5)

— =.l. "‘p—l—ﬁl&_
dy=dis = [p("‘) - ST an

We also define for any d > 0,
Ag={i>1:d<diu},Na= > ma
i€Aq
Now we can state the existence result in [4].
Theorem 3.1. Assume that 0 > 0 or
o=0andn=2.

Assume in addition that 1’:—1 <1 Ifd; # dii,1=1,2,3,---, and Ng, i3 odd, then
there ezists at least one nontrivial solution to (2.1).

Remark 3.2. When ¢ = 0, condition n = 2 can be replaced by the following
complicated but more general assumption: v < ;%5 and there exists 6 € (0,1] such
that

and

145



HUIQIANG JIANG AND WEI-MING NI

Theorem 3.1 is proved using Leray-Schauder topological degree theory. Let X =
C° () x C° () be the Banach space with norm

(s )l xc = ma {lull o s 1ollom ) }
and Xt be the positive cone in X, i.e.,
Xt={(u,v) €X:u>0,v>0inQ}.
We define solution operators S = (I — dzA)—l and R = (wl - dlA)_1 under

Neumann boundary conditions. Here @ > 0 is a large constant to be determined
later. Let

T (u,v) = (R(f (u,v) + wu), S (g (u,v) +v)).
Then T is an operator defined on X+ and it is easy to check that (u,v) is a positive
solution to (2.1) if and only if it is a fixed point of T in X, i.e.,

T (u,v) = (u,v).
Lemma 3.8. Ifd; # dii, 1=1,2,3,---, then for every sufficiently small neighbor-
hood V of (u*,v*), T has no fized point on 8V and
deg (I - T,V,(0,0)) = (1)
provided that @ is sufficiently large.

Lemma, 3.3 is proved by counting the number of negative eigenvalues of I — L
where L is the Fréchet derivative of T at (u*,v*).
Next, we consider a one-parameter family of elliptic systems

{ dlAu—u+*rG;§+a)+(1—T)p=0 in Q,

(3.2) cngv —v+7H+(1-xr)p=0 in Q,

55:%:’;:0 on 9890

with parameter 7 € [0,1]. (We have abused the notation here since the parameter
7 has nothing to do with the response rate in (1.1).) In (3.2), p is a given positive

constant and
_fo2r if re(0,3],
=11 i reld,d).
When 7 changes from 0 to 1, (3.2) serves as a deformation from a trivial system

which has a unique solution (u,v) = (p, p) to (2.1).

Lemma 3.4. Under the assumptions of Theorem 3.1, positive solutions to (3.2)
satisfies a priors bound

(3.3) 0<a<uv<p
for some positive constants a, f independent of 7.

Once we have a priori bounds uniform in 7, we can use deformation argument
and conclude °

Lemma 3.5. There ezists n > 0 such that T has no fized point on OA, and
deg (I - T,A,,(0,0)) =1
Here
A, = {(u,v)EX:n<u,v< ;17- inﬁ}.
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From the properties of topological degree, we have

hence T has at least one fixed point in A,\V, which is a nontrivial solution to (2.1).
Hence Theorem 3.1 is proved.
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