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1. INTRODUCTION

Following A. Turing’s celebrated idea of diffusion-driven instability [10], A.
Gierer and H. Meinhardt [2] proposed a mathematical model for pattern formations
of spatial tissue structures of hydra in morphogenesis, a biological phenomenon dis-
covered by A. Rembley in 1744 [9]. It is a system of reaction-diffusion equations
of the form

(11) $\{\begin{array}{ll}u_{t}=d_{1}\triangle u-u+\frac{u^{p}}{v^{q}}+r\sigma in \Omega x[0, T),\tau v_{t}=d_{2}\triangle v-v+\frac{u}{v} in \Omega x[0, T),\tau_{\nu}\partial u \text{一} T\nu\partial v=0 on \partial\Omega x[0, T)\end{array}$

where $\triangle$ is the Laplace operator, $\Omega$ is a bounded smooth domain in $\mathbb{R}^{\mathfrak{n}},$ $n\geq 1$

and $\nu$ is the unit outer normal to $\partial\Omega$ . Here $u,$ $v$ represent respectively the concen-
trations of two substances, activator and inhibitor, with diffusion rates $d_{1},d_{2}$ , and
are therefore always assumed to be positive. The souroe term $\sigma$ is a nonnegative
constant representing the production of the activator, $\tau>0$ is the response rate of
$v$ to the change of $u$ , and the exponents $p,q,r,$ $s$ are nonnegative numbers satisfying
the condition

(12) $0< \frac{p-1}{r}<\frac{q}{s+1}$

We remark that the response rate $\tau$ was introduced mathematically and is an
important parameter on the stability of the system.

In this expository paper, we will explain our methods and results in [4] where
various existence and nonexistence results on nontrivial steady states of (1.1) were
obtained using newly established a priori estimates. For earlier results on this
system, we refer the readers to $[1][3][5][6][7][8]$ and the references therein.

2. NONEXISTENCE OF NONTRIVIAL SOLUTIONS

For any $\sigma\geq 0$ , the corresponding stationary equation

(2.1) $\{\begin{array}{ll}d_{1}\triangle u-u+\frac{u^{p}}{v_{r}^{q}}+\sigma=0 in \Omega,d_{2}\triangle v-v+L_{-}v\cdot=0 in \Omega,T\nu\partial u \text{一} \tau_{\nu}\partial v=0 on \partial\Omega\end{array}$

has a unique constant solution $(u^{*},v^{*})$ such that

(22) $\{\begin{array}{l}-u^{*}+(u^{*})^{p-\dotplus}+\sigma=0rv^{*}=(u^{*})^{-\pm\underline{1}}r\end{array}$
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When $\sigma=0$ , we have $(u^{*},v^{*})\equiv(1,1)$ .
One of the main theorems in [4] is the following nonexistence result

Theorem 2.1. Assume max $\{q, r\}<s+1$ . There exists a constant $k.>0$ such
that whenever $\Delta d_{1}d\leq k$ , we have $(u,v)\equiv(u^{*},v^{*})$ .
Remark 2.2. The constants $k$ can be calculated explicitly. For example, when
$\sigma=0$ and $(p,q, r, s)=(2,4,2,4)$ , the “common source“ case, we have $k=1$ .

Theorem 2.1 is new even when $n=1$ and it indicates that the ratio of two diffu-
sion rates alone can prevent the existence of nontrivial patterns while all previously
known nonexistence results for this system require that at least one of the diffusion
rates $d_{1},d_{2}$ be suitably large.

Theorem 2.1 is a consequence of the following optimal bounds:

Lemma 2.3. (i). If $q<s+1$ , then there extsts $k_{1}>0$ depending on $p,q,r,$ $s,\sigma$ ,
such that whenever $\Delta dd_{1}\leq k_{1}$ , we have $u\leq u^{*},v\leq v^{*}$ .
(ii). If $r<s+1$ , then there enists $k_{2}>0$ depending on $p,$ $q,r,$ $s,$ $\sigma_{f}$ such that
whenever $\neq_{1}^{d}\leq k_{2}$ , we have $u\geq u^{*},$ $v\geq v^{*}$ .

The main idea in proving Lemma 2.3 is to use quantities of the form $\overline{v}ur$ to
bound both $u$ and $v$ . Here $\lambda>0$ has to be chosen carefully. To get a feeling of the
technique we used, we sketch here the proof of the first part when $\sigma=0$ :

Step 1: Let $0< \lambda<\frac{\epsilon+1}{r}$ Then $\overline{v}^{T}u$ controls both $u$ and $v$ , more precisely,

$\inf_{\Omega}\frac{u}{v^{\lambda}}\leq(\inf_{\Omega}u)^{1-\urcorner^{r}r^{\lambda}}\leq(\inf_{\Omega}v)^{\underline{\pm}\underline{\iota}_{-\lambda}}r\leq(\sup_{\Omega}v)^{\lrcorner_{--\lambda}}\leq(\sup_{\Omega}u)^{1--}\mp r^{\lambda}r\leq\sup_{\Omega}\frac{u}{v^{\lambda}}$.

Step 2: Let $0<\lambda\leq 1$ . Then at any point $x^{*}\in$ snb where $\overline{v}^{T}u$ aChieves its
maximum, we have

(23) $1- \frac{\lambda d_{1}}{d_{2}}\leq\frac{u^{p-1}}{v^{q}}-\frac{\lambda d_{1}}{d_{2}}\frac{u^{r}}{v^{e+1}}$

Step 3: Let $\lambda<\frac{+1-q}{r-(p-1)}$ and

(24) $\frac{d_{2}}{d_{1}}=\frac{\lambda(s+1-\lambda r)}{q-\lambda(p-1)}$ .

Then (2.3) $implies_{\overline{v}}^{u}r(x^{*})\leq 1$ which follows from Young’s inequality. $Hence_{\overline{v}^{T}}^{u}\leq 1$

in $\Omega$ and step 1 implies $u\leq 1$ and $v\leq 1$ in $\Omega$ .
Step 4: The number $k_{1}$ is chosen so that whenever $\Delta dd_{1}<k_{1}$ , one can find $\lambda$

satisfies (2.4) and $0< \lambda<\min\{1,$ $\frac{+1}{r},i\frac{+1-q}{-(p-1)}\}$ . The case when $Add_{1}=k_{1}$ can be
proved by a limiting process.

On the other hand, standard energy estimate could also yield nonexistence results
if we have certain uniform a priori estimates. Actually, if we have positive lower
and upper a priori bounds for solutions to (2.1) which are uniform, then we have
energy estimate

$d_{1}||\nabla u||_{L^{2}(\Omega)}^{2}\leq C||\nabla u||_{L^{2}(\Omega)}^{2}$

where $C$ is a constant depending on the uniform bounds of $u,v$ . Hence, large $d_{1}$

implies nonexistence of nontrivial steady states. For example, the following two
theorems were proved in [4]:
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$Theorem2.4.Assume\sigma>c>0,suchthatwheneverd_{1}\geq c,(1.hasnonon\dot{n}vialsteadystates0and^{E}\frac{-1}{1^{r})}<\min\{1,\frac{2}{tn}\}.Thentheree\dot{m}sts$
constant

, Theorem 2.5. Assume $\sigma=0,$ $n=2$ and $g_{\frac{-1}{r}}<1$ . Then for any $d’>0$ , there
exists constant $c>0$ , such that whenever $d_{2}\geq d^{*}$ , and $d_{1}\geq c,$ $(1.1)$ has no
nontrivial steady states.

3. EXISTENCE OF NONTRIVIAL SOLUTIONS

Nontrivial solutions do exist under certain situations when $d_{1}$ is small.
We consider the linearization of (2.1) around $(u^{*},v^{*})$ ,

(3.1) $\{\begin{array}{ll}d_{1}\triangle h+h(u^{*},v)h+f_{v}(u^{*}, v)k=0 in \Omega,d_{2}\triangle k+g_{u}(u^{*},v^{*})h+g_{v}(u^{*},v’)k=0 in \Omega,\tau_{\nu}\tau_{\nu}\partial h\partial k on \partial\Omega\end{array}$

where
$f(u,v)=-u+ \frac{u^{p}}{v^{q}}+\sigma,g(u,v)=-v+\frac{u^{r}}{v^{l}}$ .

Let $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ be the eigenvalues $of-\triangle$ under Neumann boundary
conditions in $\Omega$ . We also use $m_{i}$ to denote the multiplicity of eigenvalue $\lambda_{i},$ $i=$

$0,1,2,$ $\cdots$ . For simplicity, we use $f_{u}$ to denote $f_{u}(u^{*}, v^{*})$ , the same applies to $f_{v}$ ,
$g_{u}$ and $g_{v}$ . The linear system (3.1) will possess a nontrivial solution if and only if
the matrix

$(\begin{array}{ll}f_{u}-d_{1}\lambda_{i} f_{v}g_{u} g_{v}-d_{2}\lambda_{i}\end{array})=(r(u^{*})^{*}-1$
$-q(u)^{p-\iota_{L++}}-s-1-d_{2}\lambda_{i}1r)$

is singular for some $i$ . Hence, given $d_{2}>0$ , for each $i\geq 1$ , the linear system (3.1)

will possess a nontrivial solution if and only if

$d_{1}=d_{1i} \equiv\frac{1}{\lambda_{i}}[p(u^{*})^{p-1-\star^{r}\tau}-1-\frac{qr(u^{l})^{p-1-\star^{r}}}{s+1+d_{2}\lambda_{i}}]$ .

We also define for any $d>0$ ,

$A_{d}= \{i\geq 1:d<d_{1i}\},N_{d}=\sum_{i\in A_{d}}m_{i}$
.

Now we can state the existence result in [4].

Theorem 3.1. Assume that $\sigma>0$ or
$\sigma=0$ and $n=2$ .

Assume in addition that $\epsilon_{\frac{-1}{r}}<1$ . If $d_{1}\neq d_{1i},$ $i=1,2,3,$ $\cdots$ , and $N_{d_{1}}$ is odd, then
there $e$ vists at least one nontrivial solution to (2.1).

Remark 3.2. When $\sigma=0$ , condition $n=2$ can be replaced by the following
complicated but more general assumption: $r<\frac{n}{n-2}$ and there exists $\delta\in(0,1$] such
that

$0< \frac{1-\delta}{r}+\frac{\delta}{p}<1$ ,

and
$\frac{\frac{(1-\delta)e}{r}+_{p}^{\delta}A}{\frac{r-1+\delta}{r}-\frac{\delta}{p}}<\frac{n}{n-2}$ or $\frac{L^{1-}\Delta^{\delta\underline{\epsilon}}+^{\delta}rp\Delta}{\frac{r-1+\delta}{r}-\frac{\delta}{p}}\leq s+1$.
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Theorem 3.1 is proved using Leray-Schauder topological degree theory. Let $X=$
$C^{0}$ (fi) $\cross C^{0}(\overline{\Omega})$ be the Banach space with norm

$||(u, v)||_{X}= \max\{||u||_{L\infty(\Omega)},$ $||v||_{L\infty(\Omega)}\}$

and $X^{+}$ be the positive cone in $X$ , i.e.,
$X^{+}=$ { $(u,v)\in X$ : $u>0,v>0$ in $\prod$ }.

We define solution operators $S=(I-d_{2}\triangle)^{-1}$ and $R=(\varpi I-d_{1}\triangle)^{-1}$ under
Neumann boundary conditions. Here $\varpi>0$ is a large constant to be determined
later. Let

$T(u,v)=(R(f(u,v)+\varpi u),$ $S(g(u,v)+v))$ .
Then $T$ is an operator defined on $X^{+}$ and it is easy to check that $(u,v)$ is a positive
solution to (2.1) if and only if it is a fixed point of $T$ in $x+$ , i.e.,

$T(u,v)=(u,v)$ .
Lemma 3.3. If $d_{1}\neq d_{1:},$ $i=1,2,3,$ $\cdots$ , then for every sufficiently small neighbor-
hood $V$ of $(u,v^{*}),$ $T$ has no fxed point on $\partial V$ and

deg $(I-T, V, (0,0))=(-1)^{N_{\delta_{1}}}$

provided that $\varpi$ is sufficiently large.

Lemma 3.3 is proved by counting the number of negative eigenvalues of $I-L$
where $L$ is the Fr\’echet derivative of $T$ at $(u^{*},v^{*})$ .

Next, we consider a one-parameter funily of elliptic systems

(3.2) $\{\begin{array}{ll}d_{1}\triangle u-u+\tau(\frac{u^{p}}{v^{q}}+\sigma)+(1-\tau)\rho=0 in \Omega,d_{2}\triangle v-v+\tau\frac{u}{v}+(1-\chi_{\tau}).\rho=0 in \Omega,\frac{\partial u}{\partial\nu}=\frac{\theta v}{\partial\nu}=0 on \partial\Omega\end{array}$

with paraeneter $\tau\in[0,1]$ . (We have abused the notation here since the parameter
$\tau$ has nothing to do with the response rate in (1.1).) In (3.2), $\rho$ is a given positive
constant and

$\chi_{\tau}=\{2\tau 1$ $ifif$ $\mathcal{T}\in \mathcal{T}\in[_{\frac{o_{1}}{2}},\frac{1}{2,1}]’$.
When $\tau$ changes from $0$ to 1, (3.2) serves as a deformation from a trivial system
which has a unique solution $(u,v)\equiv(\rho,\rho)$ to (2.1).

Lemma 3.4. Under the assumptions of Theorem S. 1, positive solutions to (3.2)

satisfies a priori bound
(3.3) $0<\alpha\leq u,v\leq\beta$

for some positive constants $\alpha,\beta$ independent of $\tau$ .
Once we have a priori bounds uniform in $\tau$ , we can use deformation argument

and conclude

Lemma 3.5. There eansts $\eta>0$ such that $T$ has no fixed point on $\partial\Lambda_{\eta}$ and

deg $(I-T, \Lambda_{\eta}, (0,0))=1$ .
Here

$\Lambda_{\eta}=\{(u,v)\in X$ : $\eta<u,v<\frac{1}{\eta}$ in $\overline{\Omega}\}$ .
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From the properties of topological degree, we have
$deg.(I-T, \Lambda_{\eta}\backslash \overline{V}, (0,0))=1-(-1)^{N_{d_{1}}}=2\neq 0$ ,

hence $T$ has at least one fixed point in $\Lambda_{\eta}\backslash \overline{V}$ , which is a nontrivial solution to (2.1).
Hence Theorem 3.1 is proved.
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