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Abstract
This paper indicates one possible direction of studying choreography. Here, we

focus on one in the parallelogram four-body problem, the so-called Super Eight
Solution. It is remarkable that another choreography appears after introducing
relative position vectors, which forms Super Eight again. In addition, a projection
of the “relative Super Eight” becomes more similar to an ellipse than its original
Super Eight. Unfortunately, no proofs of the existence of the Super Eight $axe$

included in this article.

1 Background
The Figure Eight Solution in the three-body problem with equal masses was numerically
discovered by C. Moore in 1993[6] (see Fig. 1 (left)). In 2000, A. Chenciner and R.
Montgomery proved its existence by using the direct method in the variational problem[l].
After the existence proof of the Figure Eight, choreography or choreographic solution was
introduced as a new class of periodic solutions of the N-body problem in which all particles
chase each other with tracing the same path. A simple choreography is a periodic solution
in which all particles chase each other along a single orbit. A multiple choreography is a
periodic solution in which all particles chase each other along plural orbits, each of which
is occupied with plural particles.

Figure 1: The Figure Eight in the three-body problem (left) and the Super-Eight in the
four-body problem (right)

There are known a lot of solutions in the N-body problem [8]. For $N\geq 3$ , only
Euler’s collinear solution $(N=3)$ , Lagrange’s equilateral solution $(N=3)$ , and Moul-
ton’s collinear solution $(N\geq 3)$ had been rigorously guaranteed to exist before the work

数理解析研究所講究録
第 1591巻 2008年 148-158 148



by Chenciner and Montgomery. At the present, many choreographies in the N-body
problem were discovered by numerical computations while few choreographies were given
their existence proofs. It is remarkable that computer-assisted proofs of non-symmetric
choreographies were given by Tomasz Kapela and Carles Sim\’o in 2007[5].

The Super Eight solution (see Fig. 1 (right), [7]) is the first choreography in the four-
body problem. It was numerically discovered by J. Gerver in 1999, just after the first
announcement of the success in the existence proof of the Figure Eight. The existence
proof of the Super Eight solution was exhibited by T. Kapela and P. Zgliczy\’{n}ski in 2003[4],
whose method is a computer-assisted proof. However, there is no rigorous proof of the
existence.

In section 2, we give a formulation of the parallelogram four-body problem and show
the way to prove the existence of a solution in the N-body problem via a variational
method. In section 3, we give some numerical data about the Super-Eight. In section 4, a
new set of variables is introduced, which describes the parallelogram four-body problem
much simpler. Finally in section 5, a perspective of a rigorous proof of the existence of
the Super-Eight is given.

2 The Parallelogram Four-Body Problem

2.1 Formulation
The Lagrangian of the N-Body Problem: $\mathcal{L}:\mathbb{R}^{dN}\backslash \Delta x\mathbb{R}^{dN}arrow \mathbb{R}(d=1,2,3)$ is defined by
$\mathcal{L}(q,\dot{q})=\mathcal{T}(\dot{q})+\mathcal{U}(q)$ , where $\Delta=$ { $q\in \mathbb{R}^{dN}|q_{i}=q_{j}$ , for some $i\neq j$ } is called collision
set. $\mathcal{T}$ : $\mathbb{R}^{dN}arrow \mathbb{R}$ and $\mathcal{U}$ : $\mathbb{R}^{dN}\backslash \Deltaarrow \mathbb{R}$ are called kinetic energy and force function,
respectively. They are defined as follows.

$\mathcal{T}(\dot{q})=\frac{1}{2}\sum_{1=1}^{N}m_{i}\Vert\dot{q}_{i}\Vert^{2}$,
$\mathcal{U}(q)=\sum_{i\triangleleft}\frac{m_{i}m_{j}}{\Vert q_{i}-q_{j}\Vert}$ ,

where we assume the gravitational constant $G=1$ . The Newtonian equation of motion is

$M \frac{d^{2}q}{dt^{2}}=\frac{\partial \mathcal{U}}{\partial q}$ , (1)

where $M=diag(m_{1}, \cdots m_{N})$ is a diagonal matrix, and $m_{i}\in \mathbb{R}^{+}$ is mass of ith particle.
The equation of motion (1) is not defined at a collision $(q\in\Delta)$ . However, the solutions
can be smoothly extended beyond a collision if the collision is binary one.

On the other hand, the Lagrangian equation of motion is

$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial\dot{q}}=\frac{\partial \mathcal{L}}{\partial q}$, (2)

which is equivalent to the equation (1). This is derived from the principle of the least
action that the solutions of an equation of motion (2) Ininimizes the following action
functional.

$\mathcal{A}(q,\dot{q})=\int_{0}^{T}\mathcal{L}(q,\dot{q})dt$ , (3)
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where $T$ is certain positive number. Oppositely, if a minimizer $q_{0}$ of $\mathcal{A}(q,\dot{q})$ is collisionless,
$i.e.,$ $q_{0}$ : $[0,T]arrow \mathbb{R}^{dN}\backslash \triangle,\cdot$ then the pass $q_{0}$ is a solution of the equation (2). The direct
method in the variational problem seeks a minimizer of the action functional $\mathcal{A}(q,\dot{q})$

without solving the differential equation (2). Here is a restriction in applying a variational
method to find a solution of the differential equation (2).

The parallelogram four-body problem is a planar subproblem of four-body problem
$(d=2, i.e., q_{1}\in \mathbb{R}^{2})$ , in which particles with equal masses (here to be unity) always
occupy vertices of a parallelogram. If a set of initial conditions is given as

$q_{3}(0)=-q_{1}(0)$ , $q_{4}(0)=-q_{2}(0)$ , $\dot{q}_{3}(0)=-\dot{q}_{1}(0)$ , $\dot{q}_{4}(0)=-\dot{q}_{1}(0)$ ,

then the motion keeps always a parallelogram configuration (Fig. 2):

$q_{3}(t)\equiv-q_{1}(t),$ $q_{4}(t)\equiv-q_{2}(t)$ . (4)

Therefore, the Lagrangian $\mathcal{L}(q,\dot{q})$ can be written down as follows.

$\mathcal{L}(q,\dot{q})=\Vert\dot{q}_{1}\Vert^{2}+||\dot{q}_{2}\Vert^{2}+\frac{1}{2||q_{1}\Vert}+\frac{1}{2\Vert q_{2}\Vert}+\frac{2}{\Vert q_{1}+q_{2}\Vert}+\frac{2}{\Vert q_{1}-q_{2}\Vert}$ (5)

Figure 2: Configuration of the parallelogram four-body problem

2.2 A proof strategy via the variational method

Since $\mathcal{T}\geq 0$ and $\mathcal{U}>0$ , there are extremely many local minimizers of $\mathcal{A}$ . Therefore, first,
it is necessary to restrict the path-space $H^{1}([0, T], \mathbb{R}^{dN})$ by using some symmetries. The
Super Eight has eight symmetries as will be seen later. Second, it is necessary to estimate
the action functional $\mathcal{A}$ on suitable paths in order to show

$\inf$($A_{all}$ colliaion $path\epsilon)>\mathcal{A}_{non}$ -colliaion test path,

where any path belongs to the path-space $H^{1}([0,T],\mathbb{R}^{dN})$ . Main difficulty is to obtain
good estimates.
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3 Description of the Super Eight
One simple choreography and many double choreographies are known in the parallelogram
four-body problem. The Super-Eight is the known simple choreography. Since the system
is scalable, one can take initial conditions such that the period $T$ becomes $2\pi$ . Then, we
have the initial conditions $(q_{1}, q_{2},\dot{q}_{1},\dot{q}_{2})$ as follows.

$(\begin{array}{l}q_{1}q_{2}\dot{q}_{l}\dot{q}_{2}\end{array})=(\begin{array}{ll}1.382857 00 0.1570300 0584873l87935 0\end{array})$ (6)

The values of the Hamiltonian $\mathcal{H}\equiv \mathcal{T}-\mathcal{U}$ and the angular momentum $L \equiv\sum q_{i}x\dot{q}_{i}$ are
constant along any solution. In the case of the Super Eight, the values take

$\mathcal{H}\approx-2.57354955$ , $L\approx 1.029691538$ .
The value of the action functional for the Super Eight is

$\mathcal{A}\approx 48.5475515$ . (7)

On the other hand, the values of the potential $\mathcal{U}$ and the moment of inertia $\mathcal{I}\equiv\sum q_{1}^{2}$

are not constant along the Super Eight. Time variations in $\mathcal{U}$ and $\mathcal{I}$ are both periodic
with their period $\pi/2$ (see Fig. 3). The mean values and maximum ranges of variations

Figure 3: Variation in $\mathcal{U}$ (upper) and in $\mathcal{I}$ (lower) along the Super-Eight

in $\mathcal{U}$ and $\mathcal{I}$ are as follows.

$\overline{\mathcal{U}}\approx 5.14677$ , $\Delta \mathcal{U}\approx 1.61674$ , $\overline{\mathcal{I}}\approx 3.91874$, $\Delta \mathcal{I}\approx 8.99215\cross 10^{-2}$ .

These values were calculated by the trapezoidal formula.
Particles in the Super Eight repeat three different type of coriIigurations along the

solution. At the initial condition 6, the particles form a rhomboid (Fig. 4 (left)). The
next configuration is collinear before the particles form a rectangle (Fig. 4 (right)). The
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Figure 4: Motion of the Super-Eight
$...arrow Rhomboidalarrow Collineararrow Rectangulararrow Collineararrow\cdots$

next configuration is collinear again before another rhomboid which are equivalent to the
initial configuration except for the permutation of particles. After four times of these
changes of the form, they return to the initial positions. Therefore, the position vectors
satisfy the following condition.

$q_{i+i}(t+ \frac{T}{4})=q_{i}(t)$ . (8)

Since two configurations: rhomboid and rectangle are symmetry with respect to collinear
configuration, the Super Eight has eight symmetries.

4 Change of Variables

4.1 Polar transformation
We introduce a transformation $(q_{1}, q_{2})arrow(r, \varphi, \theta_{1}, \theta_{2})$ defined by

$q_{1}=$ ($r$ cos $\varphi$ cos $\theta_{1},$ $r$ cos $\varphi$ sin $\theta_{1}$ ), $q_{2}=$ ($r$ sin $\varphi$ cos $\theta_{2},r$ sin $\varphi$ vin $\theta_{2}$), (9)

with $r>0,$ $\varphi\in(0,\pi/2)$ and $\theta_{i}\in(0,2\pi)$ . This leads a point-transformation of the
Lagrangian $\mathcal{L}$ . The Lagrangian involves $\theta_{i}$ in the form of $\theta_{1}-\theta_{2}$ only. If we introduce
additional $tr\bm{t}sformatio\dot{n}:2\theta=\theta_{1}-\theta_{2},2\psi=\theta_{1}+\theta_{2}$, then we can eliminate the variable
$\psi$ from the equation of motion. The resulting Lagrangian $\mathcal{L}(r, \varphi, \theta,\dot{r},\dot{\varphi}, \theta)$ is

$\mathcal{L}$

(10)

where $c$ is a value of the angular momentum $L$ which satisfies

$c= \frac{\partial \mathcal{L}}{\partial\dot{\psi}}=2r^{2}(\dot{\psi}+\dot{\theta}\cos 2\varphi)=L$ . (11)

Here, we give a meaning of the new variables $r,$
$\theta$ and $\varphi$ (see Table 1). The size of the

system $r$ satisfies $\mathcal{I}=2r^{2}$ while $\theta$ and $\varphi$ indicate the shape formed by the particles.
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Table 1: Configurations corresponding to the values of $(\theta, \varphi)$

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\theta=0,$$\pi/2q_{1}\Vert q_{2}Co11inear(\theta, \varphi)q_{1},q_{2}Configuration$

$\theta=\pi/4$ $q_{1}\perp q_{2}$ Rhomboidal
$\varphi=\pi/4$ $\Vert q_{1}\Vert=\Vert q_{2}\Vert$ Rectangular
$\varphi=0$ $q_{2}=0$ Binary collision of $m_{2}$ and $m_{4}$

$\varphi=\pi/2$ $q_{1}=0$ Binary collision of $m_{1}$ and $m_{3}$

$(\theta, \varphi)=(0, \pi/4)$ $q_{1}=q_{2}$ Simultaneous binary collisions
$(\theta, \varphi)=(\pi/2, \pi/4)$ $q_{1}=-q_{2}$ Simultaneous binary collisions

Variations of $r,$
$\theta$ and $\varphi$ are plotted in Fig. 5 (left). A phase point on the $(\theta, \varphi)$ plane

draws an oval (Fig. 5 (right)). As well as $\mathcal{I}r$ changes periodically with its period $\pi/2$ .
These variables $\theta$ and $\varphi$ oscillate with their period $\pi$ . Therefore, a phase point on the
$(\theta, \varphi)$ plane revolves the oval twice during the period $2\pi$ . This oval has two symmetries
with respect to the horizontal and the vertical axes because the Super Eight has eight
symmetries along its motion as mentioned above.

Figure 5: Additional descriptions of the Super Eight
Variations in $r(t),$ $\theta(t)$ and $\varphi(t)$ (left) and the orbit on the $(\theta, \varphi)$ plane (right)

4.2 Approximation of $r(t),$ $\theta(t)$ and $\varphi(t)$

From the facts mentioned in the previous subsection, we can assume the following Fourier
expansions of $r(t),$ $\theta(t)$ and $\varphi(t)$ .

$r(t) \sim\sum_{k=0}a_{k}$ cos $4kt$ , (12)

$\theta(t)\sim\frac{\pi}{4}+\sum_{k=1}b_{k}\sin 2kt$ , $\varphi(t)\sim\frac{\pi}{4}+\sum_{k=1}c_{k}\cos 2kt$ . (13)
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The corresponding Fourier spectra are shown in Table 2. Collecting three terms with
larger amplitude, the maximum differences between the raw data and the approximations
are obtained as follows.

$|a_{0}+a_{1}\cos 4t+a_{4}\cos 16t+a_{5}\cos 20t-r(t)|$ $\leq$ 0.008622584 (14)

$|. \frac{\pi}{4}+b_{1}sin.2t+b_{8}\sin 6t+b_{5}\sin 10t-\theta(t)|$ $\leq$ 0.068110115 (15)

$| \frac{\pi}{4}+c_{1}$ cos $2t+c_{3}\cos 6t+c_{5}$ cos $10t-\varphi(t)|$ $\leq$ 0.009116417 (16)

$\frac{\frac{Tab1e2:FourierSpectrafortheSuperEight}{ka_{k}b_{k}c_{k}}}{01.403205921\pi/4\pi/4}$

$1$ $-0.005838473$ -1.283479123 0.613771791
2 $-0.000826698$ -0.000013778 0.001680927
3 $-0.001086241$ -0.220851381 0.037820524
4 $-0.001428413$ -0.000016983 0.001678808
50.001536807 -0.083451852 0.015908543

Suppose that, instead of the series (12),

$r\sim r_{0}-\Delta r$ cos $4t$ , (17)

where $r_{0}=(r_{\max}+r_{\min})/2=1.399775$ and $\Delta r=r_{\max}-r_{\min}=0.00803$ . Then, we have
the following estimate instead of the inequality (14).

$|r_{0}-\Delta r\cos 4t-r(t)|\leq 0.005124335$ , (18)

whose convergence is faster than that of the cosine series of $r(t)(12)$ . Figure 6 shows
variation in $r(t)$ and $r_{0}\cdot-\Delta$ cos4t and the schematic view of the path in the $(\theta,\varphi)$ plane.
Therefore, the $\theta-\varphi$ path should have two symmetries with respect to $\theta=\pi/4$ and $\varphi=\pi/4$ ,
and two restriction to avoid to reach the collision set $\Delta$ which is expressed as two bold
lines and two dots in Figure 6 (right).

The advantage in the transformation (9) is that shape of the $\theta-\varphi$ path is simple while
the disadvantage are that expression of the potential is complicated, therefore, that the
estimate of the action functional becomes hard.

4.3 Another Transformation and Relative Super Eight

Let $Q_{1}=(q_{1}+q_{2})/2$ and $Q_{2}=(q_{1}-q_{2})/2$ , then the potential and the kinetic energy
become simpler as follows.

$\mathcal{U}(q, Q)=\sum_{i=1}^{2}[\frac{1}{2||q_{1}\Vert}+\frac{1}{\Vert Q_{1}\Vert}]$ , $\mathcal{T}(\dot{q},\dot{Q})=\sum_{\dot{\iota}=1}^{2}[\frac{1}{2}\dot{q}_{i}^{2}+i$$2]$ .
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Figure 6: Variation in $r(t)$ and its approximation (right) and the approximation of the
path in the $(\theta, \varphi)$ plane (left). Two bold lines and two dots show collisions (see Table 1).

Therefore, the Lagrangian becomes simpler.

$\mathcal{L}(q, Q,\dot{q},\dot{Q})=\sum_{i=1}^{2}[\frac{1}{2}(\dot{q}_{1}^{2}+\frac{1}{\Vert q_{i}\Vert})+(\dot{Q}_{i}^{2}+\frac{1}{\Vert Q_{i}\Vert})]$ (19)

Using this new Lagrangian, the problem becomes minimization of the action functional

$\mathcal{A}(q, Q,\dot{q},\dot{Q})=\int_{0}^{T}\mathcal{L}(q, Q,\dot{q},\dot{Q})dt$ (20)

under the restriction of $Q_{1}=(q_{1}+q_{2})/2\cdot and$ $Q_{2}=(q_{1}-q_{2})/2$ , or $q_{1}=Q_{1}+Q_{2}$ and
$q_{2}=Q_{1}-Q_{2}$ .

Let us introduoe $Q_{3}=(q_{3}+q_{4})/2$ and $Q_{4}=(q_{\theta}-q_{4})/2$ . Since $q$ keeps parallelogram
$(q_{1}+q_{3}=q_{2}+q_{4}=0)$ , we have $Q_{1}+Q_{3}=Q_{2}+Q_{4}=0,$ $i.e.,$ $Q$ keeps another parallelogram
again. The correspondence of configurations of $q$ and $Q$ is summarized in Table 3.

In addition, it is remarkable that relative positions $Q_{l}$ and $Q_{2}$ draw Super Eight again
(see Fig. 7 (left)). The new “particles” chase each other on the same path, which form a
choreography. I would like to call it relative choreography only in this article. Note that
this terminology is meant differently from the one used in [2], etc. We can execute the
polar transformation from $Q$ to $(R, \Theta, \Phi)$ by the same procedure as expression (9). From
the relation between $q$ and $Q$ , we have $R=\Vert Q\Vert=\Vert q\Vert/\sqrt{2}=r/\sqrt{2}$ . The transformed
path in the $(\Theta,\Phi)$ plane forms oval again, which is closer to an ellipse. At the first glance,
I guess this oval is similar to an ellipse with its ratio of two axes being 2. After scaling
it by a factor 0.9, we have a superposition of the oval and the ellipse (see Fig. 7 (right)).
The differenoe between the oval and the ellipse is very small. It is good to use these
variables $Q,$ $\Theta$ and $\Phi$ .

If we extend tfe system described with $q$ to the other one described with $(q, Q)$ , we
obtain the solution of a double choreography (see Fig. 8 (left)).
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$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} qConfigurationofqQConfigurationofQTable3:CorrespondenceofconfigurationsofqandQ$

$q_{1}$ II $q_{2}$ Collinear $Q_{1}\Vert Q_{2}$ Collinear
$q_{1}\perp q_{2}$ Rhomboidal $\Vert Q_{1}\Vert=\Vert Q_{2}\Vert$ Rectangular

Il $q_{1}\Vert=||q_{2}\Vert$ Rectangular $Q_{1}\perp Q_{2}$ Rhomboidal
$q_{1}=q_{3}=0$ Binary collision $Q_{1}=Q_{4},$ $Q_{2}=Q_{3}$ Simultaneous B.C.
$q_{2}=q_{4}=0$ Binary collision $Q_{1}=Q_{2},$ $Q_{3}=Q_{4}$ Simultaneous B.C.
$q_{1}=q_{2},$ $q_{3}=q_{4}$ Simultaneous B.C. $Q_{2}=Q_{4}=0$ Binary collision
$q_{1}=q_{4},$ $q_{2}=q_{3}$ Simultaneous B.C. $Q_{1}=Q_{3}=0$ Binary collision

Figure 7: Another choreography (left) and the superposition of the new oval with an
ellipse: $(\Theta-\pi/4)^{2}+(2\Phi-\pi/2)^{2}=0.9^{2}$ (right)

4.4 Approximation of $\Theta(t)$ and $\Phi(t)$

We can assume the following Fourier expansions of $\Theta(t)$ and $\Phi(t)$ with their coefficients
summarized in Table 4. The expression of $R(t)$ is omitted because $R(t)=r(t)/\sqrt{2}$ .

$\Theta(t)\sim\frac{\pi}{4}+\sum_{k=1}d_{k}\cos 2.kt$
, $\Phi(t)\sim\frac{\pi}{4}+\sum_{k=1}e_{k}$ sin2$kt$ . (21)

Table 4: Fourier Spectra for the relative choreography

$\frac{kd_{k}e_{k}}{1-0.8668036340.470667924}$

2 $-0.000128659$ -0.000009556
3 -0.010538565 0.029637011
4 $-0.000130458$ -0.000015164
5 -0.013824220 0.011852837

Collecting three terms with larger amplitude, the maximum differences between the‘
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Figure 8: Double choreography induced from the Super-Eight

raw data and the approximations are obtained as follows.

$| \frac{\pi}{4}+d_{1}\cos 2t+d_{3}\cos 6t+d_{5}\cos 10t-\Theta(t)|$ $\leq$ 0.007301567 (22)

$| \frac{\pi}{4}+e_{1}\sin 2t+e_{3}\sin 6t+e_{5}$ sin $10t-\Phi(t)|$ $\leq$ 0.007313565 (23)

The approximation (21) becomes better than (13), especially in $\theta$ and $\Theta$ . These approx-
imated paths of the Super-Eight will be appropriate candidates to give better estimates
of the action functional $\mathcal{A}$ .

5 Towards a rigorous proof for the Super Eight

As we mentioned in the subsection 2.2, we need to have the lowest estimate of $\mathcal{A}_{cdlision}$

whose paths are taken in the same path space as that of the test path. One choice of
the path space is a set of smooth curves connecting two linear segments $\sigma_{1}$ and $\sigma_{2}$ in the
$(\Theta, \Phi)$ plane with $\Theta\geq\pi/4$ and $\Phi\geq\pi/4$ :

$\sigma_{1}\equiv\{(\Theta,\Phi)|\Theta=\frac{\pi}{4}, \frac{\pi}{4}<\Phi<\frac{\pi}{2}\},$ $\sigma_{2}\equiv\{(\Theta, \Phi)|\Phi=\frac{\pi}{4}, \frac{\pi}{2}<\Theta<\frac{3\pi}{4}\}$ .

At the both ends, the curves must be perpendicular to $\sigma_{1}$ and $\sigma_{2}$ . A path in this space
is one eighth of the whole path of the Super Eight. So, the action hictional is an
integral on the interval $0\leq t\leq T/8=\pi/4$ . $\mathcal{A}_{collision}$ will be estimated in this path
space whose path has at least one collision at an arbitrary instance between two ends.
Since the longer path gives a larger value of the action functional, the collisional path
should be shorter, therefore, should have only one collision, which is one from two choices:
single or simultaneous binary collision. This means that estimate of $\mathcal{A}_{\epsilon 1ngle}$ coilision and
$\mathcal{A}_{\epsilon|multaneou\epsilon\infty llisim}$ are required.
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