
A remark on the mean field equation for
equilibrium vortices with arbitrary sign

Tonia Ricciardi
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”

Universit\‘a di Napoli Federico II

Via Cintia, 80126 Napoli, Italy

tonia.ricciardi@unina.it

Abstract
We consider the problem:

$- \Delta u=\lambda(\frac{e^{u}}{\int_{\Omega}e^{u}dx}-\frac{e^{-u}}{\int_{\Omega}e^{-u}dx})$ in $\Omega$ , $u=0$ on $\partial\Omega$

where $\Omega$ is a bounded domain in $\mathbb{R}^{2}$ and $\lambda>0$ . We show that
uniqueness of the trivial solution $u\equiv 0$ may not be expected when
$\lambda>j_{0}^{2}\pi\approx 5.76\pi$ , where $j_{0}\approx 2.40$ denotes the first zero of the Bessel
function of the first kind of order zero. This result is related to recent
studies by Sawada, Suzuki and Takahashi.

In the recent article [5], Sawada, Suzuki and Takahashi considered the fol-
lowing problem:

(1) $- \Delta u=\lambda(\frac{e^{u}}{\int_{\Omega}e^{u}dx}-\frac{e^{-u}}{\int_{\Omega}e^{-u}dx})$ in $\Omega$ , $u=0$ on $\partial\Omega$ ,

where $\Omega$ is a bounded open subset of $\mathbb{R}^{2}$ and $\lambda>0\cdot is$ a constant. Equation (1)
was derived by Joyce and Montgomery [2] and Pointin and Lundgren [4]
in the context of the statistical mechanics description of two-dimensional
turbulence.

We note that (1) always admits the trivial solution $u=0$ . Thus, unique-
ness of the trivial solution for (1) is a natural question. In this direction, the
following results were obtained in [5]:
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Theorem 1 ([5]). $If\Omega$ is simply connected and $0<\lambda\leq 4\pi$ , then (1) does
not admit any nontrivial solution.

On the other hand, the following uniform estimate holds:

Theorem 2 ([5]). For every $\epsilon>0$ there exists $C>0$ such that any solution
to (1) wnth $0<\lambda\leq 8\pi-\epsilon$ satisfies:

$\Vert u\Vert_{\infty}\leq C$.

It is clear that the value $8\pi$ is related to the blow-up of solutions. For
example, Bartolucci and Pistoia [1] recently constructed a family of blow-up
solutions $u_{\rho}$ to the problem

$-\Delta u=\rho(e^{u}-e^{-u})$ in $\Omega$ , $u=0$ on $\partial\Omega$ ,

such that $\rho\int_{\Omega}e^{u_{\rho}}dxarrow 8\pi,$ $\rho\int_{\Omega}e^{-u_{\rho}}dxarrow 8\pi$ as $\rhoarrow 0$ , thus providing
evidence that blow-up solutions to (1) should exist near $\lambda=8\pi$ . We also
recall that in view of the well-known uniqueness result of Suzuki [7], the
related problem

(2) $- \Delta u=\lambda\frac{e^{u}}{\int_{\Omega}e^{u}dx}$ in $\Omega$ , $u=0$ on $\partial\Omega$

admits a unique solution when $\lambda\in(0,8\pi$] and $\Omega$ is simply connected. Thus,
the following question is natural:

Question 1. What happens for $\lambda\in(4\pi, 8\pi$] ?

It is shown in [5] that in general uniqueness may not be expected in the
whole interval $(0,8\pi)$ , unlike what happens for problem (2). Indeed, when $\Omega$

is the unit disk, a branch of nontrivial solutions bifurcates at

$\lambda^{*}=\frac{j_{1}^{2}\pi}{2}\approx 7.34\pi<8\pi$ .

Here, $j_{1}\approx 3.83$ denotes the first positive zero of $J_{1}$ , the Bessel function of the
first kind of order one. Thus, as a first step towards answering Question 1,
we may ask:

Question 2. Is $u\equiv 0$ the unique solution for problem (1) when $\lambda\in(0, \lambda^{*}$ ]
and $\Omega$ is simply co.nnected?

160



In what follows, we will show that the answer to Question 2 is negative.
Indeed, we will show that if $\Omega$ consists of two equal disjoint disks joined by
a “thin corridor” $K_{\epsilon}$ , such that $|K_{\epsilon}|=0(1)$ , then bifurcation of a branch
of nontrivial solutions occurs at $\lambda_{\epsilon}=j_{0}^{2}\pi+o(1)<j_{1}^{2}\pi/2$ . Here, $j_{0}\approx 2.40$

denotes the first zero of $J_{0}$ , the Bessel function of the first kind of order zero,
and 0(1) is a quantity which vanishes as $\epsilonarrow 0$ . We set

$\lambda^{**}=j_{0}^{2}\pi\approx 5.76\pi<\lambda^{*}=\frac{j_{1}^{2}\pi}{2}\approx 7.34\pi$ .

We have the following.

Theorem 3. For every $\epsilon>0$ let $\Omega_{\epsilon}=B_{1}\cup B_{2}\cup K_{\epsilon}$ , where $B_{1}=B(p_{1}, \sqrt{2}/2)_{J}$

$B_{2}=B(p_{2}, \sqrt{2}/2)$ are $di’s_{J}oint$ disks centered at $p_{1}=(-1,0),$ $p_{2}=(1,0)$ and
$K_{\epsilon}=[-1,1]\cross[-\epsilon,\epsilon]$ . Then, problem (1) urith $\Omega=\Omega_{\epsilon}$ admits a branch of
nontrivial solutions bijfurcating from $\lambda_{\epsilon}=\lambda^{**}+0(1)$ .

The proof of Theorem 3 relies on the analysis of the linearization of (1)
at $u=0$ , which is given by:

(3) $- \Delta\phi=\mu(\phi-\frac{1}{|\Omega|}\int_{\Omega}\phi dx)$ in $\Omega$ , $\phi=0$ on $\partial\Omega$ ,

with $\mu=2\lambda/|\Omega|$ . In fact, problem (3) may also be viewed as the linearization
about $u\equiv 0$ of the more general problem
(4)

-Au $= \lambda_{1}(\frac{e^{u}}{\int_{\Omega}e^{u}dx}.-\frac{1}{|\Omega|})-\lambda_{2}(\frac{e^{-u}}{\int_{\Omega}e^{-u}dx}-\frac{1}{|\Omega|})$ in $\Omega$ , $u=0$ on $\partial\Omega_{:}$

In this case $\mu=(\lambda_{1}+\lambda_{2})/|\Omega|$ . Let $H_{c}^{1}(\Omega)\equiv H_{0}^{1}(\Omega)\oplus \mathbb{R}$ denote the set
of functions in $H^{1}(\Omega)$ which are constant on $\partial\Omega$ (in the sense of $H_{0}^{1}(\Omega)$).
Setting $\psi=\phi-|\Omega|^{-1}\int_{\Omega}\phi dx$ , one may check that the first eigenvalue for (3)
is given by the minimization problem:

(5) $\mu_{1}(\Omega)=\inf\{\frac{\Vert\nabla\psi||_{2,\Omega}^{2}}{\Vert\psi\Vert_{2,\Omega}^{2}}$ : $\psi\in H_{c}^{1}(\Omega)\backslash \{0\},$ $\int_{\Omega}\psi dx=0\}$ .

See, e.g., $[5, 7]$ . We shall use the following result, which was proved by
Lucia [3] by symmetrization techniques.

Theorem 4 ([3]). The following estimate holds:

$\mu_{1}(\Omega).\geq\frac{2j_{0}^{2}\pi}{|\Omega|}$ .
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Equality holds if and only if $\Omega$ is the disjoint union of two equal disks. More-
over, if $\Omega=B_{1}\cup B_{2}$ with $B_{1}=B(p_{1}, \sqrt{2}/2),$ $B_{2}=B(p_{2}, \sqrt{2}/2)$ Utth

$p_{1)}p_{2}\in \mathbb{R}^{2}$ such that $B_{1}\cap B_{2}=\emptyset_{f}$ then up to a constant factor the first
eigenfunction is given by

$\psi_{1}(x)=\{\begin{array}{ll}J_{0}(\sqrt{2}j_{0}|x-p_{1}|), if x\in B_{1}-J_{0}(\sqrt{2}j_{0}|x-p_{2}|), if x\in B_{2}\end{array}$

We note that Theorem 4 was used in [3] in the somewhat different context
of proving the existence of mountain pass solutions to problem (4) with
$\lambda_{2}=0$ . With this motivation, the relevant consequence of Theorem 4 is that
$\mu_{1}(\Omega)|\Omega|\geq 2j_{0}^{2}\pi>8\pi$ , for any bounded open set $\Omega$ . Hence, the method of
Struwe and Tarantello [6] may be applied. On the other hand, the relevant
consequence of Theorem 4 in our case is that for $\Omega=B_{1}\cup B_{2}$ , we have
$\mu_{1}(\Omega)|\Omega|/2=j_{0}^{2}\pi<j_{1}^{2}\pi/2$. Hence, in this case, a branch of nonzero solutions
bifurcates from $\lambda^{**}=j_{0}^{2}\pi$ . This fact proves that uniqueness of the zero
solution to problem (1) may not be expected for $\lambda>\lambda^{**}$ , if we allow $\Omega$ to
be disconnected. So, in order to complete the proof of Theorem 3 we are left
to show that even if we require $\Omega$ to be simply connected, uniqueness of the
zero solution may not be expected for $\lambda>\lambda^{**}$ .

Proof of Theorem 3 completed. Let $\overline{\psi}\in H_{c}^{1}(\Omega_{\epsilon})$ be the function defined by:

$\overline{\psi}(x)=\{\begin{array}{ll}\psi_{1}(x), if \cdot x\in B_{1}\cup B_{2}0, otherwise\end{array}$

Then, in view of Theorem 4 and the fact $|\Omega_{e}|=\pi+0(1)$ , we have

$\mu_{1}(\Omega_{\epsilon})\geq\frac{2j_{0}^{2}\pi}{|\Omega_{\epsilon}|}=\frac{2j_{0}^{2}\pi}{\pi+o(1)}$ .

On the other hand, using $\overline{\psi}$ as a test function in (5), we have

$\mu_{1}(\Omega_{\epsilon})\leq\frac{\Vert\nabla\overline{\psi}||_{2,\Omega_{e}}^{2}}{||\overline{\psi}\Vert_{2_{1}\Omega_{e}}^{2}}=\frac{\Vert\nabla\psi_{1}||_{2,B_{1}\cup B_{2}}^{2}}{\Vert\psi_{1}\Vert_{2,B_{1}\cup B_{2}}^{2}}=2j_{0}^{2}$ .

Hence, we conclude that $\mu_{1}(\Omega_{\epsilon})arrow 2j_{0}^{2}$ as $\epsilonarrow 0$ . 口
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