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Abstract
We study a degenerate parabolic equation derived from the kinetic

theory using R\’enyi-Tsallis’ entropy. If the exponent is critical, we have
the formation of collapse for the blowup solution in finite time. This
result is regarded as a higher-dimensional version of our previous work
on the non-stationary Smoluchowski-Poisson equation associated with
the Boltzmann entropy in two-space dimensions, and actually, we use
the mass quantization of the blowup family of stationary solutions in
the proof.

1 Introduction
The purpose of the present paper is to show the formation of collapse for the
blowup in finite time solution to a degenerate parabolic equation with the
space dimension greater than 2. This equation describes the motion of the
mean field of many self-interacting particles, and is derived from the kinetic
theory [2].

In fact, this theory induces the parabolic-elliptic system

$\mu_{t}=\nabla[D_{*}\cdot(\nabla p+\mu\nabla\varphi)]$

$\Delta\varphi=\mu$ in $\Omega\cross(0,T)$ (1)
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as the hydrodynamical limit of self-gravitating particles. Here, $\mu=\mu(x, t)\geq$

$0$ is the function describing particle density at $(x,t)\in\Omega\cross(0, T),$ $\Omega\subset R^{n}$

a domain, $\varphi=\varphi(x, t)$ is the Newton potential generated by $\mu$ , and $p\geq 0$ is
the pressure determined by the density-pressure relation

$p=p(\mu, \theta)$ . (2)

If $\Omega$ has the boundary $\partial\Omega$ , the null-flux boundary condition

$(\nabla p+\mu\nabla\varphi)\cdot\nu=0$

is imposed with $\nu$ denoting the outer unit normal vector so that the total
mass

$\lambda=\int_{\Omega}\mu(x\cdot, t)dx$

is conserved during the evolution.
In more details, if $0\leq f=f(x, v, t)$ is the density of particles at $(x, t)\in$

$\Omega\cross(0, T)$ moving at the velocity $v$ , then it satisfies the kinetic equation

$f_{t}+v\cdot\nabla_{x}f-\nabla\varphi\cdot\nabla_{v}f=-\nabla_{v}\cdot j$

with the general dissipation flux $term-\nabla_{v}\cdot j$ . This flux term is determined
by the maximum entropy production principle, that is, $f$ maximize the local
entropy $S= \int_{R^{\mathfrak{n}}}s(f(x, v, t))dv$ under the constraint

$\mu(x, t)=\int_{R^{n}}f(x, v, t)dv$ , $p(x,t)= \frac{1}{n}\int_{R^{n}}|v|^{2}f(x, v,t)dv$ .

Averaging $f$ over the velocities $v\in R^{n}$ , and then the passage to the limit
of large friction or large times leads to (1) in the $(x, t)$ space, see [2]. We
have, thus, several mean field equations according to the entropy function
$s(f)$ subject to the law of partition of particles into mezoscopic states; e.g.,
the entropies of Boltzmann, Fermi-Dirac, Bose-Einstein, and so forth.

System (1) with (2) is still under-determined, and there are two main
theories to prescribe the temperature $\theta$ . First, the cannonical statistics takes
iso-thermal setting, and hence the temperature $\theta>0$ is a constant. Second,
$\theta=\theta(t)>0$ is the function of $t$ in the micro-cannonical statistics, where

$E= \frac{n}{2}\int_{\Omega}pdx+\frac{1}{2}\int_{\Omega}\mu\varphi dx$
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is the prescribed total energy independent of $t$ .
If R\’enyi-Tsallis’ entropy

$S= \frac{-1}{q-1}\int_{R^{n}}(f^{q}-f)dv$

is adopted, then (2) becomes
$p=\kappa\theta^{1-}*\mathfrak{n}\mu^{1+\gamma}$ ,

where $\kappa>0$ is a constant and $\frac{1}{\gamma}=\frac{1}{q-1}+\frac{n}{2}$ , see $[3, 1]$ . By normalizing
constants and assuming $\Omega=R^{n}$ , then we can reduce (1) to the degenerate
parabolic equation

$u_{t}= \frac{m-1}{m}\Delta u^{m}-\nabla\cdot(u\nabla\Gamma*u),$ $u\geq 0$ in $R^{n}\cross(0, T)$ (3)

in the iso-thermal setting, where the new unknown $u$ is a positive constant
times $\mu,$ $\frac{1}{m-1}=\frac{1}{q-1}+\frac{n}{2}$ , and

$\Gamma(x)=\frac{1}{\omega_{n-1}(n-2)|x|^{n-2}}$

with $\omega_{n-1}$ denoting the area of the boundary of the unit ball in $R^{n}$ .
When $n=3$ and $q= \frac{5}{3}$ the case $m=2- \frac{2}{n}=\frac{4}{3}$ actually arises to (3).

Equation (3) of this exponent $m$ is, mathematically, a higher-dimensional
version of the Smoluchowski-Poisson equation associated with the Boltzmann
entropy in two-space dimension. This two-dimensional equation is given by

$u_{t}=\Delta u-\nabla\cdot(u\nabla\Gamma*u),$ $u\geq 0$ in $R^{2}\cross(0, T)$ (4)

defined for $\Gamma(x)=\frac{1}{2\pi}\log_{\ulcorner x|}^{1}$ , and thus, is a relative to the simplified system
of chemotaxis,

$u_{t}=\nabla\cdot\cdot(\nabla u-u\nabla v)$ , $- \Delta v=u-\frac{1}{|\Omega|}\int_{\Omega}$ udx in $\Omega\cross(0,T)$

$\frac{\partial u}{\partial\nu}-u\frac{\partial v}{\partial\nu}=\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0,T),$ $(5)$

associated with the total mass conservation $\Vert u(t)\Vert_{1}=\Vert u_{0}\Vert_{1}$ and the decrease
of the free energy,

$\mathcal{F}(u)=\int_{\Omega}u(\log u-1)dx-\frac{1}{2}\int\int_{\Omega x\Omega}G(x,x’)u\otimes udxdx’$ ,
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where $\Omega\subset R^{2}$ is a bounded domain with smooth boundary, $\nu$ the outer
unit normal vector, $u\otimes u=u(x, t)u(x’, t)$ , and $G=G(x, x’)$ is the Green’s
function associated with

$- \Delta v=u-\frac{1}{|\Omega|}\int_{\Omega}$ udx in $\Omega\cross(0, T)$ , $\frac{\partial v}{\partial\nu}=0$ on $\partial\Omega\cross(0,T)$ .

We have the formation of collapse for the blowup solution in finite time to
(5), i.e.,

$u(x, t)dx arrow\sum_{x_{0}\in S}m_{*}(x_{0})\delta_{x_{0}}(dx)+f(x)dx$
(6)

as $t\uparrow T$ in $\mathcal{M}(\overline{\Omega})$ , where $T<+\infty$ is the blowup time,

$S=$ { $x_{0}\in\overline{\Omega}|$ there exists $x_{k}arrow x_{0},$ $t_{k}\uparrow T$ such that $u(x_{k},$ $t_{k})arrow+\infty$}

denotes the blowup set,

$m(x_{0})=\{\begin{array}{ll}8\pi (x_{0}\in\Omega)4\pi (x_{0}\in\partial\Omega)\end{array}$

is the quantized mass, and $0\leq f=f(x)\in L^{1}(\Omega)\cap C(\overline{\Omega}\backslash S)$ .
Similarly to (5), there is a collapse formation with quantized mass of

the blowup solution in finite time to (3), provided that $u_{0}=u|_{t=0}\in X=$

$L^{1}(R^{2}, (1+|x|^{2})dx)\cap L^{\infty}(R^{2})\cap H^{1}(R^{2})$ . In fact, (3) is well-posed in this func-
tion space $X$ locally in time, and it follows that $\lim\sup_{t\uparrow T}\int_{R^{2}}|x|^{2}u(x,t)dx<$

$+\infty$ . This guarantees the boundedness of the blowup set in $R^{2}$ , and then
we obtain an analogous result of (6), see later arguments of this paper. We
study the question whether or not this is also the case of (3) with $m=2- \frac{2}{n}$ ,
$n\geq 3$ .

The solution to (3) which we handle with is the weak solution obtained
similarly to [7, 9, 8]. First, given the initial value

$0\leq u_{0}\in L^{1}(R^{n})\cap L^{\infty}(R^{n})$ with $u_{0}^{m}\in H^{1}(R^{n})$ , (7)

we take the approximate solution $u_{\epsilon}=u_{\epsilon}(x, t)$ satisfying

$u_{\epsilon t}= \frac{m-.1}{m}\Delta(u_{\epsilon}+\epsilon)^{m}-\nabla\cdot(u_{\epsilon}\nabla\Gamma*u_{\epsilon})$ in $R^{n}\cross(0,T)$

$u|_{t=0}=u$Oe in $R^{n}$
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for $0<\epsilon\ll 1$ , where

$0\leq u_{0\epsilon}\in L^{1}\cap W^{2,p}(R^{n})$ for any $p \in[\frac{n}{n-1}, n+3]$

$\Vert u_{0\epsilon}\Vert_{p}\leq\Vert u_{0}\Vert_{p}$ , for any $p\in[1, \infty]$

$\Vert\nabla u_{0\epsilon}^{m}\Vert_{2}\leq\Vert u_{0}^{m}\Vert_{2}$

$u_{0\epsilon}arrow u_{0}$ strongly in $L^{p}(R^{n})$ as $\epsilon\downarrow 0$ for some $p \in[\frac{n}{n-1}, \infty$).

The construction of this approximate solution assures its several uniform
estimates with respect to $0<\epsilon\ll 1locally$ in time, and then, passing to a
subsequence, we obtain their convergence to $u=u(x, t)$ satisfying

$u\in L^{\infty}([0, T];L^{1}(R^{n}))\cap L_{loc}^{\infty}([0, T);L^{\infty}(R^{n}))$

$\nabla u^{m}\in L^{\infty}([0, T];L^{2}(R^{n}))$

$\Gamma*u\in L_{loc}^{\infty}([0, T);H^{1}(R^{n}))$

and
$\int_{0}^{T}\int_{R^{n}}(\nabla u^{m}\cdot\nabla\xi-u\nabla\Gamma*u\cdot\nabla\xi-u\xi_{t})dxdt=\int_{R^{n}}u_{0}\xi dx$

for $0<T\ll 1$ , where $\xi\in H^{1}(0,T;L^{2}(R^{n}))\cap L^{2}(0, T;H^{1}(R^{n}))$ is the test
function such that $\xi(\cdot.’ t)=0$ for $0<T-t\ll 1$ .

Remark 1 The potential $\Gamma(x)$ used $in/7,$ $g8$] decays exponentially at
$\infty$ , and is different from ours. In our case, however, the Calder\’on-Zygmund
estimate is applicable and it holds that $\Gamma*u\in L_{loc}^{\infty}([0, T);W^{2,p}(R^{n}))$ for any
$1<p<\infty$ by $u\in L^{\infty}([0, T];L^{1}(R^{n}))\cap L_{loc}^{\infty}([0, T);L^{\infty}(R^{n}))$ .

Henceforth, $u=u(x,t)$ and $T=T_{\max}\in(0, +\infty$] denote this weak so-
lution and its existence time, respectively. The first theorem shows that
there is a threshold of 11 $u_{0}\Vert_{1}$ for the blowup of the solution in finite time,
and this value $\lambda_{*}$ is associated with the Sobolev constant $S=S(n)$ , that is,
$\lambda_{*}=(\frac{2}{mS})^{n/2}$ and

$S= \inf\{\Vert\nabla\xi\Vert_{2}^{2}|\xi\in C_{0}^{\infty}(R^{n}), ||\xi\Vert_{\frac{2n}{n-2}}=1\}$. (8)

An analogous fact is shown by $[9, 8]$ for the equation which they studied, see
the above Remark 1, while a different argument using the Trudinger-Moser
inequality will be provided here.
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Theorem 1 If $u_{0}=u_{0}(x)$ is the initial value satisfying (7) and 11 $u_{0}\Vert_{1}<$

$\lambda_{*}$ , then $T=+\infty$ holds in (3) for $m=2- \frac{2}{n}$ . There is, on the other hand,
$u_{0}=u_{0}(x)$ with (7) such that 11 $u_{0}\Vert_{1}>\lambda_{*}$ and $T<+\infty$ .
The blowup solution constructed in the above theorem is constructed for the
case of

$\int_{R^{n}}|x|^{2}u_{0}(x)dx<+\infty$ . (9)

Actually, formation of collapse of the blowup solution to (3) is associated
with this class.

This paper is composed of four sections. In the next section, we describe
the scaling property to (3) and explain why the exponent $m= \cdot 2-\frac{2}{n}$ and
the value $\lambda_{*}$ are selected for the $L^{1}$-threshold of the blowup in finite time to
arise, and then prove Theorem 1. In section 3 we show that the formation
of collapse arises when the free energy does not decay so fast. Section 4
deals with the related questions on the blowup rate, finiteness of the isolated
blowup points, mass quantization, and so forth.

2 Preliminaries
For the moment, we take a formal argument concerning the scaling prop-
erty of (3). The first observation is that it is a model $B$ equation, see [12],
associated with the free energy

$\mathcal{F}(u)=\int_{R^{n}}\frac{u^{m}}{m}dx-\frac{1}{2}\langle\Gamma*u, u\rangle$ .

In fact, we have

$\delta \mathcal{F}(u)[v]=\frac{d}{ds}\mathcal{F}(u+sv)|_{s=0}=\langle v, u^{m-1}-\Gamma*u\rangle$ ,

where $\langle, \rangle$ denotes the $L^{2}$-inner product, and identifyiing $\mathcal{F}(u)$ with $u^{m-1}-$

$\Gamma*u$ , we can write (3) as

$u_{t}= \nabla\cdot\{\frac{m-1}{m}\nabla u^{m}-u\nabla\Gamma*u\}=\nabla\cdot u\nabla\delta \mathcal{F}(u)$ in $R^{n}\cross(0,.T)$ . (10)

From this form of (10), it is easy to infer, at least formally, the total mass
conservation

$\Vert u(t)\Vert_{1}=\Vert u_{0}\Vert_{1}=\lambda$ (11)
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and the decrease of the free energy

$\frac{d}{dt}\mathcal{F}(u)$ $=$ $- \int_{R^{n}}u|\nabla\delta \mathcal{F}(u)|^{2}dx$

$- \int_{R^{n}}u|\nabla(u^{m-1}-\Gamma*u)|^{2}dx\leq 0$ . (12)

In fact, justifying (11) for the weak solution is rather easy. As for (12),
on the other hand, we write, again formally, its right-hand side as

$- \int_{R^{n}}|\frac{m-1}{m-1/2}\nabla u^{m-1/2}-u^{1/2}\nabla\Gamma*u|^{2}dx$ ,

noting that $u^{1/2}\nabla\Gamma*u\in L_{loc}^{\infty}([0,T);L^{2}(R^{n}))$ holds for the weak solution $u=$

$u(x, t)$ . Then, the above described construction of approximate solutions and
the process of passing to the limit guarantee $u^{m-1/2}\in L_{loc}^{2}([0, T);H^{1}(R^{n}))$ ,
and furthermore, equality (12) is justified as

$\frac{d}{dt}\mathcal{F}(u)=-\int_{R^{n}}|\frac{m-1}{m-1/2}\nabla u^{m-1/2}-u^{1/2}\nabla\Gamma*u|^{2}dx\leq 0$ (13)

for a.e. $t$ .
We go back to the formal argument again. Regarding (11)-(12), we for-

mulate the stationary state by

$u^{m-1}-\Gamma*u=constant$ in $\{u>0\}$ , $\int_{R^{\mathfrak{n}}}$ $udx=\lambda$ . (14)

If the above constant is denoted by $c$ , then $v=\Gamma*u+c$ satisfies

$-\Delta v=v_{+}^{q}$ in $R^{n}$ , $\int_{R^{n}}v_{+}^{q}dx=\lambda$ , (15)

where $m=1+ \cdot\frac{1}{q}$ . (This constant may depend on the connected compent of
$\{u>0\}$ at this moment, which eventually becomes unique by the following
result.) Problem (15) is invariant under the scaling transformation

$v(x)\mapsto v_{\mu}(x)=\mu^{\gamma}v(\mu x)$ (16)

if and only if $\gamma=n-2$ and $q= \frac{1}{m-1}=\frac{n}{n-2}$ i.e., $m=2- \frac{2}{n}$ , where $\mu>0$

is a constant. If this is the case, conversely, problem (16) admits a family of
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solutions, each of which is necessarily radially symmetric and has compact
support, see [15]. Then, we define the normalized solution $v_{*}=v_{*}(x)$ to (15)
and the quantized mass $\lambda_{*}>0$ by

$-\Delta v_{*}=v_{*+}^{q},$ $v_{*}\leq.v_{*}(O)=0$ in $R^{n}$ and $\lambda_{*}=\int_{R^{n}}v_{*+}^{q}.dx$ ,

respectively.
This profile of mass quantization of the stationary state on the whole

space $R^{n}$ is the origin of the quantized blowup mechanism for the family of
solutions to

$-\Delta v=v_{+}^{q}$ in $\Omega$ , $v=constant$ on $\partial\Omega$ , $\int_{\Omega}v_{+}^{q}dx=\lambda$

with $q= \frac{n}{n-2}$ where $\Omega\subset R^{n}$ is a bounded domain, $n\geq 3$ . An analogous
result to $n=2$ arises to

$-\Delta v=e^{v}$ in $\Omega$ , $v=constant$ , on $\partial\Omega$ , $\int_{\Omega}e^{v}dx=\lambda$ . (17)

The free boundary problem (17) is, actually, regarded as a stationary state
of (5), and its quantized blowup mechanism induces (6) similarly, see [13]
and the references therein.

Remark 2 The non-stationary problem (3) for $m=2- \frac{2}{n}$ has also the
scaling property; if $u=u(x, t)$ is a solution, then $u_{\mu}(x, t)=\mu^{n}u(\mu x, \mu^{n}t)$

satisfies
$u_{\mu t}= \frac{m-1}{m}\Delta u_{\mu}^{m}-\nabla\cdot(u_{\mu}\nabla\Gamma*u_{\mu})$ , $u_{\mu}\geq 0$ in $R^{n}\cross(0,T_{\mu})$

$\int_{R^{n}}u_{\mu}dx=\int_{R^{n}}$ udx for $t\in[0,T_{\mu}$),

where $\mu>0$ is a constant and $T_{\mu}=\mu^{-n}T$ . This scaling is of course compat-
ible to (16) for the stationary solution.

Lemma 1 It holds that

$j_{*}=. \inf\{\mathcal{F}(u)|0\leq u\in L^{m}(R^{n}), \int_{R^{\mathfrak{n}}}u=\lambda_{*}\}=0$

if $m=2- \frac{2}{n}$ .
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Proof: Higher-dimensional Trudinger-Moser inequality is given by

$j_{R}= \inf${ $\mathcal{F}(u)$ I $u\geq 0$ , supp $u\subset B_{R},$ $\int_{R^{n}}u=\lambda_{*}$ } $>-\infty$ , (18)

in the dual form, see $[16, 15]$ , where $B_{R}=B(0, R)$ . Here, it follows that

$\mathcal{F}(u_{\mu})=\mu^{n-2}\mathcal{F}(u)$

for $u_{\mu}(x)=$. $\mu^{n}u(\mu x)by’m=2-\frac{2}{n}$ . Since supp $u_{\mu}\subset B_{\mu^{-1}R}$ if and only if
supp $u\subset B_{R}$ , therefore, we obtain

$j_{\mu^{-1}R}=\mu^{n-2}j_{R}\geq j_{R}$

for $\mu>1$ . This implies $j_{R}\geq 0$ and hence

$j_{*}\geq 0$

because $R>0$ is arbitrary. We have

$j_{*}=\mu^{n-2}j_{*}$

again by the above scaling. This implies $j_{*}=0$ . $\blacksquare$

Lemma 2 It holds that

$\lambda_{*}=(\frac{2}{mS})^{n/2}$ (19)

Proof: Using Sobolev’s constant (8), we obtain

$0\leq\langle\Gamma*u, u\rangle=\Vert\nabla\Gamma*u\Vert_{2}^{2}\leq S\Vert u\Vert_{\frac{22n}{n+2}}\leq S\Vert u||_{1}^{2\theta}||u||_{m}^{2(1-\theta)}$

for $\frac{\theta}{1}+\frac{1-\theta}{m}=\frac{n+2}{2n}$ Since $m=2- \frac{2}{n}$ , it follows that $2(1-\theta)=m$ , and this
implies the relation

$\mathcal{F}(u)\geq(\frac{1}{m}-\frac{S}{2}\lambda_{*)}^{2\theta}\Vert u\Vert_{m}^{m}$

for $0\leq u\in L^{m}(R^{n})$ with $\int_{R^{n}}u=\lambda_{*}$ . Regarding the Talenti family [14], we
see that the above estimate is optimal, and therefore, it holds that

$\frac{1}{m}-\frac{S}{2}\lambda_{*}^{2-m}=0$ ,

by Lemma 1. This means (19). 1
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Lemma 3 If $\lambda<\lambda_{*f}$ then we have

$\Vert u(t)\Vert_{m}+\langle\Gamma*u(t), u(t)\rangle\leq C_{1}$ (20)

with a constant $C_{1}>0$ independent of $t\in[0, T$).

Proof.$\cdot$ We have $\Vert v\Vert_{1}=\lambda_{*}$ for $v= \frac{\lambda_{*}}{\lambda}u$ , and this implies

$\mathcal{F}(u_{0})$ $\geq$ $\mathcal{F}(u)=\int_{R^{n}}\frac{u^{m}}{m}dx-\frac{1}{2}\langle\Gamma*u, u\rangle$

$( \frac{\lambda}{\lambda_{*}})^{m}\int_{R^{n}}\frac{v^{m}}{m}dx-\frac{1}{2}(\frac{\lambda}{\lambda_{*}})^{2}\langle\Gamma*v, v\rangle$

$\geq$ $\{\begin{array}{l}\frac{1}{2}\{(\frac{\lambda}{\lambda})^{m}-(\frac{\lambda}{\lambda_{*}})^{2}\}\langle\Gamma*v, v\rangle\{(\frac{\lambda}{\lambda_{*}})^{m}-(\frac{\lambda}{\lambda_{*}})^{2}\}\int_{R^{\mathfrak{n}}}\frac{v^{m}}{m}dx\end{array}$

by Lemma 3. Then, (20) follows from $0<\lambda<\lambda_{*}$ and $0<m<2$ . $\iota$

Lemma 4 If the initial value $u_{0}$ satisfies $\mathcal{F}(u_{0})<0$ and (9), then $T<$
$+\infty$ arises.

Proof.$\cdot$ Using the approximate solution, we can show that

$t \in[0,T)rightarrow\int_{R^{n}}\varphi(x)u(x,t)dx$

is locally absolutely continuous for $\varphi\in C_{0}^{\infty}(R^{n})$ , and it holds that

$\frac{d}{dt}\int_{R^{n}}\varphi udx=\frac{m-1}{m}\int_{R^{\mathfrak{n}}}u^{m}\triangle\varphi dx+\frac{1}{2}\int\int_{R^{n}xR^{\mathfrak{n}}}\rho_{\varphi}u\otimes udxdx’$

for a.e. $t$ , where $u\otimes u=u(x, t)u(x’,t)$ and

$\rho_{\varphi}=\rho_{\varphi}(x, x’)=(\nabla\varphi(x)-\nabla\varphi(x^{j}))\cdot\nabla\Gamma(x-x’)$ .

Here, the inequality

$|\rho_{\varphi}(x, x’)|\leq(n-2)\Vert\nabla\varphi\Vert_{\infty}\Gamma(x-x’)$

is made use of for this purpose.
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Under the assumption of (9), taking $\varphi=|x|^{2}$ is justified again, see [7].
Since

$\Delta\varphi=2n$ , $p_{\varphi}(x, x’)=-2(n-2)\mathcal{F}(u)$ (21)

holds for this $\varphi=|x|^{2}$ , we can show that the function

$t \in[0,T)\mapsto\int_{R^{n}}|x|^{2}u(x,t)dx\in[0, +\infty)$

is locally absolutely continuous, and satisfies

$\frac{d}{dt}\int_{R^{n}}|x|^{2}udx$ $=$ $\frac{m-1}{m}$ . $2n \int_{R^{n}}u^{m}dx-(n-2)\langle\Gamma*u,u\rangle$

$=2(n-2)\mathcal{F}(u)$ (22)

for a.e. $t$ . Since $\mathcal{F}(u(t))\leq \mathcal{F}(u_{0})$ , it follows that

$\int_{R^{n}}|x|^{2}u(x, t)dx<0$ for $t\gg 1$

if both $\mathcal{F}(u_{0})<0$ and $T=+\infty$ occur, a contradiction. Thus, $\mathcal{F}(u_{0})<0$

implies $T<+\infty$ . $\blacksquare$

Proof of Theorem 1: We can apply Moser’s iteration scheme for the weak
solution to (3) with $m=2- \frac{2}{n}$ , see [8]. Thus, if there are $p>1$ and $C_{2}>0$

such that $\sup_{t\in[0,T)}\Vert u(t)\Vert_{p}\leq C_{2}$ , then it holds that $\sup_{t\in[0,T)}\Vert u(t)\Vert_{\infty}\leq C_{3}$

with a constant $C_{3}>0$ independent of $T$ . This implies $T=+\infty$ , see [9].
The first part of Theorem 1 is thus a consequenoe of Lemma 3.

Wang-Ye’s Trudinger-Moser inequality (18), on the other hand, is sharp,
and it holds that

$\inf${ $\mathcal{F}(u)|u\geq 0$ , supp $u\subset B_{R},$ $\int_{R^{n}}u=\lambda$ } $=-\infty$

for any $R>0$ and $\lambda>\lambda_{*}$ . Each $\lambda>\lambda_{*}$ , in particular, admits an admissible
initial value $u_{0}=u_{0}(x)$ with compact support such that 1I $u_{0}\Vert_{1}=\lambda$ and
$\mathcal{F}(u_{0})<0$ . For this $u_{0}$ , it follows that $T<+\infty$ from Lemma 4, and the
proof is complete. $\iota$

Remark 3 The first difference between (3) with $m=2- \frac{2}{n},$ $n\geq 3$ , and
(4) with $n=2$ is the linearity of the $diffi\iota sion$, while the recursive property
(21) is the second difference. In fact, we have

$( \nabla\varphi(x)-\nabla\varphi(x^{j}))\cdot\nabla\Gamma(x-x’)=-\frac{1}{\pi}$
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for $\varphi(x)=|x|^{2}$ and $\Gamma(x)=\frac{1}{2\pi}$ log $\frac{1}{|x|}$

3 Collapse Formation
In the following theorem,

$S=$ { $x_{0}\in R^{n}|$ there exists $x_{k}arrow x_{0},$ $t_{k}\uparrow T$ such that $u(x_{k},$ $t_{k})arrow+\infty$ }

denotes the blowup set. Here, we emphasize that $T<+\infty$ implies

$\lim_{t\uparrow T}\sup\Vert u(t)\Vert_{\infty}=+\infty$ ,

see [7, 9, 8], while $\Vert u(t)\Vert_{L\infty(|x|>R)}$ is bounded for $R\gg 1$ as we shall show below
and therefore, the blowup set is always non-void in the case of $T<+\infty$ .

To see this, first, $\epsilon$-regularity is obtained by localized Moser’s iteration
scheme, i.e., localization of Lemma 1, see [8].

Lemma 5 We have $\epsilon_{0}>0$ and $C_{7}>0$ independent of $x_{0}\in R^{n}$ such
that

$\lim_{t\uparrow T}\sup\int_{B(x_{0},R)}u(x,t)dx<\epsilon_{0}$

implies
$11 m\sup_{t\uparrow T}1Iu(t)\Vert_{L(B(x_{0},R/2))}\infty\leq C_{7}$

for $0<R\ll 1$ .
Next, we have

$\int_{R^{n}}|x|^{2}u(x,t)dx\leq 2(n-2)T\mathcal{F}(u_{0})+\int_{R^{n}}|x|^{2}u_{0}dx\equiv C_{4}(T, u_{0})$

by (22), and hence

$\sup_{t\in[0,T)}\int_{|x|>R}u(x,t)dx\leq\frac{1}{R^{2}}C_{4}(T, u_{0})$ . (23)

This implies

$\lim_{t\uparrow T}\sup\Vert u(t)\Vert_{L^{\infty}(|x|>R)}\leq C_{5}$ for $R\gg 1$ (24)
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by Lemma 5 with a constant $C_{5}>0$ independent of $t\in[0, T$). Then, it
follows that $S\subset\overline{B(0,R)}$ .

Here, we shall show the formation of collapse to (3), prescribing the be-
havior of the free energy.

Theorem 2 Given the initial value $u0=u_{0}(x)$ satisfying (7) and (9),
assume $T<+\infty$ for the weak solution $u=u(x, t)$ to (3) with $m=2- \frac{2}{n}$ ,
$n\geq 3$ and also

$\int_{0}^{T}(T-t)^{-\gamma}\mathcal{F}(u(t))dx>-\infty$ (25)

for some $\gamma>0$ . Then the blowup set $S$ of this $u=u(\cdot, t)$ is finite and it
$hold_{8}$ that

$u(x, t)dx arrow\sum_{xo\in S}m(x_{0})\delta_{x_{0}}(dx)+f(x)dx$
(26)

in $\mathcal{M}(R^{n})=C’(R^{n}\cup\{\infty\})$ as $t\uparrow T$ , where $R^{n}\cup\{\infty\}$ is the one-point
compactification of $R^{n},$ $m(x_{0})>0$ , and

$0\leq f=f(x)\in L^{1}(R^{n};(1+|x|^{2})dx))\cap L_{loc}^{\infty}((R^{n}\cup\{\infty\})\backslash S)$ . (27)

Remark 4 Inequality (25) may be replaced by

$\int_{0}^{T}a(t)\mathcal{F}(u(t))dt>-\infty$ ,

where $a=a(t)>0$ is a measumble function in $[0, T$) satisfying

$\int_{0}^{T}\frac{ds}{\int_{\epsilon}^{T}a(t)dt}<+\infty$ .

Remark 5 We have always $\int_{0}^{T}\mathcal{F}(u(t))dt>-\infty$ and

$\mathcal{F}(u(t))\geq-C_{6}(T-t)^{-1}$ (28)

with a constant $C_{6}>0$ independent of $t\in[0, T$).
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Proof.$\cdot$ The above relations are obvious if

$\lim_{t\uparrow T}\mathcal{F}(u(t))>-\infty$ . (29)

In the other case,
$\lim_{t\uparrow T}\mathcal{F}(u(t))=-\infty$ , (30)

we have $\mathcal{F}(u(t_{0}))<0$ for some $t_{0}\in[0, T$). We may assume $t_{0}=0$ without
loss of generality.

First, (22) implies

$\frac{dH}{dt}<0$ for $H(t)= \int_{R^{n}}|x|^{2}u(x, t)dx$ (31)

and therefore, there is $H(T)= \lim_{t\uparrow T}H(t)\geq 0$ . Thus, we obtain

$/0\tau_{\mathcal{F}(u(t))dt}=H(T)-H(0)>-\infty$ .

Next, equality (22) reads;

$2(n-2)\mathcal{F}(u)$ $=$ $\frac{d}{dt}\int_{R^{n}}|x|^{2}udx=-\int_{R^{n}}u\nabla(u^{m-1}-\Gamma*u)\cdot\nabla|x|^{2}$

$-2 \int_{R^{n}}u\nabla(u^{m-1}-\Gamma*u)\cdot xdx$ ,

formally again, and then it holds that

$| \frac{d}{dt}\int_{R^{n}}|x|^{2}udx|^{2}$ $\leq$ $4 \int_{R^{n}}u|\nabla(u^{m-1}-\Gamma*u)|^{2}dx\int_{R^{n}}|x|^{2}$ udx

$-4 \frac{d}{dt}\mathcal{F}(u)\cdot\int_{R^{n}}|x|^{2}udx$ .

The above inequality is againjustified through the approximate solution, and
we obtain

$( \frac{dg}{dt})^{2}\leq-\frac{d}{dt}\mathcal{F}(u)=-\frac{1}{2(n-2)}\frac{d^{2}}{dt^{2}}g^{2}$

for $g=g(t)>0$ defined by

$g(t)= \{\int_{R^{n}}|x|^{2}u(x, t)dx\}^{1/2}$ ,
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or equivalently,
$gg”+(n-1)(g’)^{2}\leq 0$

for a.e. $t$ . This inequality is written as

$\frac{d^{2}}{dt^{2}}$ logg $= \frac{gg’’-(g’)^{2}}{g^{2}}\leq-n(\frac{g’}{g})^{2}=-n(\frac{d}{dt}$ log $g)^{2}$ ,

or
$- \frac{d}{dt}h\leq-nh^{2}$

for $h=- \frac{d}{dt}$ log $g>0$ , recall (31). Thus, we obtain

$\frac{d}{dt}h^{-1}\leq-n<0$ ,

and there exists $h(T)= \lim_{t\uparrow T}h(t)\in(O, +\infty$] satisfying

$h^{-1}(T)-h^{-1}(t)\leq-n(T-t)$

for $t\in[0,T$).
Neglecting this term, we obtain

$h^{-1}(t)\geq n(T-t)$ for $t\in[0,T$),

and then it holds that

$h(t) \leq\frac{1}{n(T-t)}=-\frac{1}{n}\frac{d}{dt}\log\{T-t\}$

or
$\frac{d}{dt}$ log $t\frac{H(t)}{(T-t)^{2/n}}\}\geq 0$ (32)

for a.e. $t$ . Then (28) follows from (22). 1

We shall follow the argument developed for Smoluchowski-Poisvon equa-
tion (4) in two-space dimension $[5, 10]$ to prove Theorem 2. The key lemma
is the following.

Lemma 6 If (25) holds with $T<+\infty$ , then

$\lim_{t\uparrow T}\int_{R^{n}}\varphi(x)u(x,t)dx$ (33)

enists for any $\varphi\in C_{0}^{1}(R^{n})$ .
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Proof.$\cdot$ The formal calculation

$| \frac{d}{dt}\int_{R^{n}}\varphi udx|2 =| \int_{R^{n}}u\nabla(u^{m-1}-\Gamma*u)\cdot\nabla\varphi dx|^{2}$

$\leq$ $\int_{R^{n}}u|\nabla(u^{m-1}-\Gamma*u)|^{2}dx\cdot\int_{R^{n}}u|\nabla\varphi|^{2}dx$

$\leq$ $- \Vert\nabla\varphi\Vert_{\infty}^{2}\lambda\frac{d}{dt}\mathcal{F}(u)$ , (34)

is justified by taking the approximate solution, i.e.,

$(A’)^{2} \leq-\frac{||\nabla\varphi\Vert_{\infty}^{2}\lambda}{2(n-2)}H’’$ (35)

for a.e. $t$ for $A(t)= \int_{R^{n}}\varphi udx$ . In the case of (29), we obtain

$\int_{0}^{T}|\frac{d}{dt}\int_{R^{n}}\varphi udx|dt\leq T^{1/2}\{\int_{0}^{T}|\frac{d}{dt}\int_{R^{n}}\varphi udx|^{2}dt\}^{1/2}<+\infty$

and then the existence of (33).
Thus, we may assume $\mathcal{F}(u_{0})<0$ without loss of generality, and then it

holds that

$\int_{0}^{T}(l^{T}a(t)dt)A’(s)^{2}ds$ $=$ $\int_{0}^{T}a(t)dt\int_{0}^{t}A’(s)^{2}ds$

$\leq$ $-C_{7} \int_{0}^{T}a(t)H’(t)dt<+\infty$

by (25), where for $a(t)=(T-t)^{-\gamma}$ and $C_{7}=\star^{||\nabla\varphi|^{2}\lambda}2(n-2$ We obtain

$|A(t_{2})-A(t_{1})|^{2}$

$=\leq$ $\int^{|\int_{0^{\frac{A’(s)ds1ds}{\int_{8}^{T}a(t)dt}}}t_{1,T}t_{2}^{2}}$

. $\int_{t_{1}}^{t_{2}}(\int_{\epsilon}^{T}a(t)dt)A’(s)^{2}ds$

for $0\leq t_{1}\leq t_{2}<T$ , and hence the existence of (33). 1
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Remark 6 We have the scaling invartant inequality

$\sup_{t’\in[t,\theta t+(1-\theta)T]}A(t’)\leq A(t)$

$+\{(1-\theta)$ log $\frac{1}{\theta}\cdot\frac{(H(t)-H(T))||\nabla\varphi\Vert_{\infty}^{2}\lambda}{n(n-2)}\}^{1/2}$ (36)

in the case of $\mathcal{F}(u_{0})<0$ , where $0<\theta<1$ .

Proof: Inequality (35) implies

$\int^{t’}(t’-s)A’(s)^{2}ds\leq\frac{||\nabla\varphi\Vert_{\infty}^{2}\lambda}{2(n-2)}\{H(t)-H(t’)\}$

for $0\leq t\leq t’<T$ . Then, it holds that

$|A( \theta t+(1-\theta)t’)-A(t)|^{2}=|\int^{\theta t+(1-\theta t’}A’(s)ds|^{2}$

$\leq(1-\theta)\cdot\int_{t}^{\theta t+(1-\theta)t’}(t’-s)^{-1}ds\cdot\int_{t}^{t’}(t’-s)A’(s)^{2}ds$

$\leq(1-\theta)\log\frac{1}{\theta}\cdot\frac{\Vert\nabla\varphi\Vert_{\infty}^{2}\lambda}{n(n-2)}\cdot(H(t)-H(T))$ .

Varying $t’\in[t, T$), we get (36). 1

Remark 7 Inequality (36) combined with the $argument/6J$ will be appli-
cable to the study of the blowup in infinite time. Namely, we expect that

$\lim_{t\uparrow+}\inf_{\infty}\Vert u(t)\Vert_{L}\infty(B(x_{0},R/2))<+\infty$

holds if $T=+\infty$ and $\lim\inf_{t\uparrow+\infty}\Vert u(t)\Vert_{L^{1}(B(x_{0},R))}<\epsilon_{0}$ .

Remark 8 By Remark 5, we have

$0 \leq-H’(t)\leq\frac{2}{n}(T-t)^{-1}H(0)$

in the case of $\mathcal{F}(u_{0})<0$ . If the above inequality is improved slightly, $i.e.$ ,

$0\leq-H’(t)\leq K(T-t)^{-1+\gamma}$ (37)
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with $K>0$ and $0<\gamma<1$ , the assumption on the free energy of Theorem 2
is valid. This implies also

$0\leq H(T)-H(t)\leq C_{9}(T-t)^{\alpha}$ . (38)

Here, we note that if (38) holds, then there is $\epsilon_{1}$ independent of $x_{0}\in S$ ,
$0<R\ll 1$ , and $t\in[0, T$) such that

$\lim_{t\uparrow T}\inf\int_{R^{\mathfrak{n}}}\varphi_{x_{0},R}(x)u(x, t)\geq\epsilon_{1}$ (39)

and therefore, the finiteness of $S$ .

Proof: Inequality (37) implies with $C_{9}>0$ and $0<\alpha<1$ . Applying
(36) for $\theta=1/2$ , we obtain $C_{10}>0$ such that

$t’ \in[t|\frac{t+Tp}{2}]suA(t’)\leq A(t)+C_{10}(T-t)^{\alpha}$
.

Now, we define $t_{k}\uparrow T$ and $a_{k}$ by

$T-t_{k+1}= \frac{1}{2}(T-t_{k})$ and $a_{k}= \sup_{t\in[t_{k},t_{k+1}]}A(t’)$
,

to obtain
$a_{k+1}<a_{k}+C_{10}(T-t_{1})^{k\alpha/2}$

for $k=1,2,$ $\ldots$ . Then, we obtain $a_{k}<\epsilon_{0}$ for $k=1,2,$ $\cdots$ by assuming
$a_{1}<\epsilon_{1}$ for some $0<\epsilon_{1}\ll 1$ . This is a contradiction, and we obtain (39). $\blacksquare$

Proof of Theorem 2: Given $x_{0}\in S$ , we take $\varphi=\varphi_{x_{0},R}\in C_{0}^{\infty}(R^{n})$

satisfying $0\leq\varphi\leq 1,$ $\varphi=1$ in $B(x_{0}, R)$ , and $\varphi=0$ on $R^{n}\backslash B(x_{0},2R)$ . First,
$S$ is a bounded set in $R^{n}$ by (24). Next, Lemma 5 guarantees

$\lim_{t\uparrow T}\sup\int_{R^{n}}\varphi_{x_{0},R}(x)u(x, t)dx\geq\epsilon_{0}$ (40)

for each $x_{0}\in S$ , where $0<R\ll 1$ . Then, relation (40) is improved by

$\lim_{t\uparrow T}\inf\int_{R^{n}}\varphi_{xo,R}(x)u(x, t)dx\geq\epsilon_{0}$

181



by Lemma 6. Then, the finiteness of $S$ follows from (11).
We have the convergence of $u(x, t)dxarrow\mu(dx, T)$ in $\mathcal{M}(R^{n})$ as $t\uparrow T$ by

(11), (23), and the existence of (33) for $\varphi\in C_{0}^{1}(R^{n})$ . There arises that

supp $\mu_{s}(dx,T)=S$

and (27) if $\mu(dx, T)=\mu_{s}(dx, T)+f(x)dx$ denotes the Radon-Nikodym-
Lebesgue decomposition. Then, we obtain

$\mu_{\epsilon}(dx, T)=\sum_{x_{0}\in S}m(x_{0})\delta_{xo}(dx)$

with $m(x_{0})\geq\epsilon_{0}$ and the proof is complete. 1

4 Further Discussions
This section is concerned with the mass quantization, $m(x_{0})=\lambda_{*}$ in (26).
First, we shall show the estimate of collapse mass from below. A blowup
point $x_{0}$ is called isolated if $S\cap B(x_{0}, R)=\{x_{0}\}$ and non-degenerate if

$\lim_{t\uparrow}\inf\inf_{x\in B(x_{0},R)}u(x,t)>0$ ,

where $0<R\ll.1$ .

Theorem 3 If $T<+\infty$ occurs to (3) and $x_{0}\in S$ is a non-degenemte
isolated blowup point, then it holds that

$\lim_{t\uparrow T}\sup \mathcal{F}(\varphi^{1/m}u(t))<+\infty$ , (41)

where $\varphi=\varphi_{x_{0},R}$ with $0<R\ll 1$ .

Proof: Given such $x_{0}\in S$ , we apply the local elliptic-parabolic regularity.
We may assume

$\sup_{t\in[0,T)}\Vert u(t)\Vert_{L(B(x_{0},2R)\backslash B(xo,R/4))}\infty<+\infty$
(42)

and
$\sup_{t\in[0,T)}\Vert\Gamma*u(t)\Vert_{W^{2,p}(B(x_{0},R)\backslash B(x_{0},R/2))}<+\infty$

(43)
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for $0<R\ll 1$ . Taking $\varphi=\varphi_{x0,R}$ , now we define the local free energy by

$\mathcal{F}_{\varphi}(t)=\int_{R^{n}}\frac{u^{m}}{m}\varphi-\frac{1}{2}\varphi u\Gamma*\varphi udx\geq \mathcal{F}(\varphi^{1/m}u)$ .

Using $\hat{\varphi}=\varphi_{x_{0},R/2}$ , thus we obtain

$\frac{d}{dt}\mathcal{F}_{\varphi}(t)$ $=$ $\int_{R^{\mathfrak{n}}}(u^{m-1}-\Gamma*\varphi u)\varphi u_{t}dx$

$- \int_{R^{n}}u\nabla\varphi(u^{m-1}-\Gamma*\varphi u)\cdot\nabla(u^{m-1}-\Gamma*u)dx$

$- \int_{R^{n}}u\varphi\nabla(u^{m-1}-\Gamma*\varphi u)\cdot\nabla(u^{m-1}-\Gamma*u)dx+O(1)$

$- \int_{R^{\mathfrak{n}}}u\hat{\varphi}\nabla(u^{m-1}-\Gamma*\varphi u)\cdot\nabla(u^{m-1}-\Gamma*u)dx+O(1)$

because $\Gamma*u(\cdot, t)$ is bounded in $W_{loc}^{1,q}(R^{n})$ for $1 \leq q<\frac{n}{n-1}$ Here, equality
(11) implies

$| \int_{R^{\mathfrak{n}}}u\hat{\varphi}\nabla\Gamma*(1-\varphi)u\cdot\nabla(u^{m-1}-\Gamma*\varphi u)dx|$

$\leq C_{11}\lambda\int_{R^{n}}u\hat{\varphi}|\nabla(u^{m-1}-\Gamma*\varphi u)|dx$

and hence

$\frac{d}{dt}\mathcal{F}_{\varphi}(t)\leq-\int_{R^{n}}u\hat{\varphi}|\nabla(u^{m-1}-\Gamma*\varphi u)|^{2}dx$

$+C_{11} \lambda\int_{R^{n}}u\hat{\varphi}|\nabla(u^{m-1}-\Gamma*\varphi u)|dx+O(1)$

$\leq-\frac{1}{2}\int_{R^{n}}u\hat{\varphi}|\nabla(u^{m-1}-\Gamma*\varphi u)|^{2}dx+O(1)$ .

Thus, we obtain $\mathcal{F}(\varphi^{1/m}u(t))\leq C_{12}$ with a constant $C_{12}$ independent of
$t\in[0,T)$ as is desired. The proof is complete. $\blacksquare$

Remark 9 If $x_{0}\in S$ is isolated and non-degenerate, we have $0<R\ll 1$

and $0\leq f=f(x)\in L^{1}(B(x_{0},2R))\cap C(B(x_{0},2R)\backslash \{x_{0}\})$ such that any $t_{k}\uparrow T$

admits $\{t_{k}’\}\subset\{t_{k}\}$ and $m(x_{0})\geq 0$ satishing

$u(x,t_{k}’)dxarrow m(x_{0})\delta_{xo}(dx)+f(x)dx$ .
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If $m(x_{0})<\lambda_{*}$ is the case, we obtain $\Vert u(t_{k}’)\Vert_{L^{m}(B(x0,R)}\leq C_{12}’$ , which, however,
does not imply $\lim\inf_{t\uparrow T}\Vert u(t)\Vert_{L(B(x_{0},R/2))}\infty<+\infty$ . If (26) holds, then we can
follow the argument $of/5J$. Thus, we obtain $m(x_{0})\geq\lambda_{*}by$ the above theorem.

We proceed to the blowup rate, regarding the scaling described in Remark
2. In fact, the backward self-similar transformation is defined by

$v(y, s)=(T-t)u(x,t)$ , $y=(x-x_{0})/(T-t)^{1/n},$ $s=-\log(T-t)$ (44)

from this property of scaling, where $x_{0}\in S$ . Then, we say that the blowup
point $x_{0}$ is type I if

$\lim_{t\uparrow T}\sup(T-t)\Vert u(t)\Vert_{L^{\infty}(B(x_{0},b(T-t)^{1/n}))}<+\infty$

for each $b>0$ , and type II for the other case. The next theorem shows that
any blowup point is type II if the free energy is bounded. A similar fact
is shown to the semilinear parabolic equation with critical Sobolev growth,
see [11]. We mention also that the Herrero-Vel\’azquez solution [4] for the
two-dimensional Smoluchowski-Poisson equation (4) has the same profile,
boundedness of the free energy and type II blowup rate.

Theorem 4 If (29) holds, then each $x_{0}\in S$ is type $\Pi$. We have, more
precisely,

$\lim_{t\uparrow T}(T-t)\Vert u(t)\Vert_{L^{\infty}(B(x_{0},b(T-t)^{1/n})}=+\infty$ (45)

for any $b>0$ .

Proof: By the proof of Lemma 6, it holds that

$\int_{0}^{T}|\frac{d}{dt}\int_{\Omega}\varphi udx|dx\leq C_{13}\lambda\Vert\nabla\varphi\Vert_{\infty}$ (46)

in the case of (29). Putting $\varphi=\varphi_{xo,R}$ , therefore, we obtain

$\int_{0}^{T}|\frac{d}{dt}\int_{R^{n}}\varphi udx|dt\leq C_{14}\lambda^{1/2}R^{-1}$

with $C_{14}>0$ independent of $0<R\ll 1$ . This implies

$|\langle\varphi_{x_{0},R}, u(t)\rangle-\langle\varphi_{x_{0},R}, u(t’)\rangle|\leq C_{14}\lambda^{1/2}R^{-1}(t’-t)$
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for $0\leq t\leq t’<T$ , and hence

$|\langle\varphi_{x_{0},R}, u(t)\rangle-\langle\varphi_{x_{0},R}, \mu(dx, T)\rangle|\leq C_{14}\lambda^{1/2}R^{-1}(T-t)$ (47)

for
$\mu(dx, T)=\sum_{xo\in S}m(x_{0})\delta_{xo}(dx)+f(x)dx$

by (26). Given $b>0$ , we can take $R=b(T-t)$ for $0<T-t\ll 1$ in (47),
and then it follows that

$\lim_{t\uparrow T}\sup|\langle\varphi_{x_{0},b(T-t)}, u(t)\rangle-m(x_{0})|\leq C_{14}\lambda^{1/2}b^{-1}$ .

Since $b>0$ is arbitrary, this implies

$\lim_{b\uparrow+\infty}\lim_{t\uparrow T}\sup|\int_{B(x0,b(T-t))}u(x,t)dx-m(x_{0})|=0$ , (48)

again for any $b>0$ . Under the transformation (44), inequality (48) reads;

$b \lim\lim_{s\uparrow+}\sup_{\infty}p|\int_{B(0,be^{-\frac{n-1}{n}\delta})}v(s, y)dy-m(x_{0})|=0$ . (49)

We have
$\int_{R^{n}}v(y, s)dy=\lambda$ for $s>$ -log $T$ , (50)

and therefore, any $t_{k}\uparrow T$ admits $\{s_{k}’\}\subset\{s_{k}\}$ for $s_{k}=-\log(T-t_{k})$ , such
that

$v(y, s_{k}’)dy$ $arrow$ $\zeta(dy)$ in $\mathcal{M}_{0}(R^{n})=C_{0}’(R^{n})$ , (51)

and this $\zeta(dy)$ satisfies
$\zeta(dy)\geq m(x_{0})\delta_{0}(dy)$ (52)

by (49), where $C_{0}(R^{n})=\{\varphi\in C(R^{n}\cup\{\infty\})|\varphi(\infty)=0\}$ . Relations
(51)-(52) imply

$\lim_{k\infty}\Vert v(s_{k}’)\Vert_{L^{\infty}(B(0,b))}=+\infty$

for any $b>0$ , and hence (45). The proof is complete. 1
$\sim$
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We finally examine the posslbillty of mass quantization, $m(x_{0})\leq\lambda_{*}$ for
the isolated $x_{0}\in S$ . In fact, using the backward self-slmilar transformation
(44), we obtain

$v_{t}= \frac{m-1}{m}\Delta v^{m}-\nabla\cdot(v\nabla\Gamma*v+\frac{|y|^{2}}{2n})$

$v\geq 0$ in $R^{n}\cross(-\log T, +\infty)$ , (53)

and then it holds that the decrease of the free energy and its recursive relation
between the second moment. They are, formally, given by

$\frac{d}{ds}\hat{\mathcal{F}}(v)=-\int_{R^{n}}v|\nabla(v^{m-1}-\Gamma*v-\frac{|y|^{2}}{2n})|^{2}dy\leq 0$ .

$\frac{d}{ds}\int_{R^{n}}|y|^{2}vdy=2(n-2)\hat{\mathcal{F}}(v)+\int_{R^{n}}|y|^{2}vdy$ , (54)

where
$\hat{\mathcal{F}}(v)=\{\int_{R^{\mathfrak{n}}}(\frac{v^{m}}{m}-\frac{|y|^{2}}{2n}v)dy-\frac{1}{2}\langle\Gamma*v, v\rangle\}$ .

Equation (53) is actually written as
$v_{t}=\nabla\cdot v\nabla\delta\hat{\mathcal{F}}(v)$ in $R^{n}\cross$ (-log $T,$ $+\infty$ )

and hence the first equality of (54) reads;

$\frac{d}{ds}\hat{\mathcal{F}}(v)=-\int_{R^{n}}v|\nabla\delta\hat{\mathcal{F}}(v)|^{2}dy$ .

Relation (54) now implies

$\frac{d}{ds}\int_{R^{n}}|y|^{2}vdy\leq 2(n-2)\hat{\mathcal{F}}(v_{0})+\int_{R^{n}}|y|^{2}vdy$

and therefore, the assumption

$2(n-2) \hat{\mathcal{F}}(v_{0})+\int_{R^{\mathfrak{n}}}|y|^{2}v_{0}dy<0$

induces the contradiction, $\int_{R^{n}}|y|^{2}vdy<0$ for $s\gg 1$ . Thus, it holds that

$2(n-2) \hat{\mathcal{F}}(v_{0})+\int_{R^{n}}|y|^{2}v_{0}dy\geq 0$,
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which must be translated in $s$ :

$2(n-2) \hat{\mathcal{F}}(v)+\int_{R^{n}}|y|^{2}vdy\geq 0$ for any $s>$ -logT. (55)

Thus, we obtain some unusual relation (51)-(52) with $m(x_{0})>\lambda_{*}$ and (55),
which may suggest the possibility of $m(x_{0})=\lambda_{*}$ for all $x_{0}\in S$ in the case of
(29). The other interesting question is the construction of this type solution
with radially symmetry, provided with a sharp blowup profile.
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