On Terwilliger algebras with respect to subsets in Hamming graphs and Johnson graphs

国際基督教大学 細谷 利恵（Rie Hosoya）
International Christian University

In this talk，we determine irreducible modules of the Terwilliger algebra of a Q－ polynomial distance－regular graph Γ with respect to a subset with a special condition． Here we focus on the case where Γ is the Johnson graph．We construct irreducible mod－ ules of the Terwilliger algebra of Γ from those of binary Hamming graphs．This is a joint work with Hajime Tanaka．

1 Width and dual width

Let Γ be a Q－polynomial distance－regular graph of diameter D with vertex set X ．We refer the reader to［1］，［2］for terminology and background materials on Q－polynomial distance－ regular graphs．Let C be a nonempty subset of X ．Let $\chi \in \boldsymbol{C}^{\boldsymbol{X}}$ be the characteristic vector of C ，i．e．，

$$
(\chi)_{x}= \begin{cases}1 & \text { if } x \in C \\ 0 & \text { otherwise }\end{cases}
$$

Let A_{0}, \ldots, A_{D} be distance matrices of Γ ．We write $A=A_{1}$ ．Let E_{0}, \ldots, E_{D} be primitive idempotents of Γ ．Brouwer，Godsil，Koolen and Martin［3］introduced two parameters of C ．The width w of C is defiend as

$$
w=\max \left\{i \mid \chi^{T} A_{i} \chi \neq 0\right\} .
$$

Dually，the dual width w^{*} of C is defined as

$$
w^{*}=\max \left\{i \mid \chi^{T} E_{i} \chi \neq 0\right\}
$$

We can verify that $w=\max \{\partial(x, y) \mid x, y \in C\}$ ，i．e．，the maximum distance between two vertices in C ．Obviously，$w=0$ if and only if $C=\{x\}(x \in X)$ ．The following fundamental bound holds．

Theorem 1 ［3］

$$
w+w^{*} \geq D
$$

When the above bound is attained，Brouwer et．al．showed that some good properties hold：
Theorem 2 ［3］Suppose $w+w^{*}=D$ ．Then
(i) C is completely regular.
(ii) C induces a Q-polynomial distance-regular graph whenever C is connected.

Recently, Tanaka proved the following:
Theorem 3 [8] Suppose $w+w^{*}=D$. Then
(i) C induces a Q-polynomial distance-regular graph whenever $q \neq-1$.
(ii) C is convex if and only if Γ has classical parameters.

The subsets with $w+w^{*}=D$ were classified for some Q-polynomial distance-regular graphs (see [3], [8]). Our current goal is to characterize Q-polynomial distance-regular graphs having subsets with $w+w^{*}=D$ in terms of Terwilliger algebras. We will see the definitions and basic terminology on Terwilliger algebras in the next section.

2 Terwilliger algebras and modules

Let $C \subset X$. Let $\Gamma_{i}(C)=\{x \in X \mid \partial(x, C)=i\}$, i.e., the i th subconstituent of Γ with respect to C. We define the diagonal matirx $E_{i}^{*} \in \operatorname{Mat}_{X}(\boldsymbol{C})$ so that

$$
\left(E_{i}^{*}\right)_{x x}=\left\{\begin{array}{lr}
1 & \text { if } x \in \Gamma_{i}(C) \\
0 & \text { otherwise }
\end{array}\right.
$$

The Terwilliger algebra $\mathcal{T}(C)$ of Γ with respect to C is defined as follows:

$$
\mathcal{T}(C)=<A, E_{0}^{*}, \ldots, E_{D}^{*}>\subset \operatorname{Mat}_{X}(C)
$$

It is known that $\mathcal{T}(C)$ is semisimple, and non-commutative in general. If we set $C=$ $\{x\}(x \in X)$, then $\mathcal{T}(C)$ is identical to the ordinary Terwilliger algebra $\mathcal{T}(x)$ or the subconstituent algebra introduecd by Terwilliger [10]. Suzuki generalized the theory of subconstituent algebras to the case associated with subsets [6].

Let $W \subset \boldsymbol{C}^{\boldsymbol{X}}$ be an irreducible $\mathcal{T}(C)$-module. There are two types of decompositions of W into subspaces which are invariant under the action of E_{i}^{*} and E_{i} respectively:

$$
\begin{aligned}
& W=E_{0}^{*} W+\cdots+E_{D}^{*} W \quad \text { (direct sum) } \\
& W=E_{0} W+\cdots+E_{D} W \quad \text { (direct sum) }
\end{aligned}
$$

We define parameters for W to describe isomorphism classes of irreducible modules; The endpoint ν of W is defined as $\nu=\min \left\{i \mid E_{i}^{*} W \neq 0\right\}$, and the dual endpoint μ of W is $\mu=\min \left\{i \mid E_{i} W \neq 0\right\}$. The diameter of W is defined as $d=\left|\left\{i \mid E_{i}^{*} W \neq 0\right\}\right|-1 . W$ is called thin if $\operatorname{dim} E_{i}^{*} W \leq 1$ for all i.

Suppose C satisfies $w+w^{*}=D$. We have a preceeding result on irreducible modules of endpoint 0 :

Theorem 4 [5] Suppose C satisfies $w+w^{*}=D$. Let W be an irreducible $\mathcal{T}(C)$-module of endpoint $\nu=0$. Then W is thin with $d=w^{*}$.

Our primary goal is to determine irreducible $\mathcal{T}(C)$-modules of arbitrary endpoint ν. In this article, we discuss the case of Johnson graphs.

3 Johnson graphs

Definition 3.1 The binary Hamming graph $\tilde{\Gamma}=H(N, 2)(N \geq 2 D)$ has vertex set

$$
\tilde{X}=\{(\overbrace{x_{1} \cdots x_{N}}^{N}) \mid x_{i} \in\{0,1\}\}
$$

i.e., the set of binary words of length N, and two vertices $x, y \in \tilde{X}$ are adjacent if x and y differ in exactly 1 coordinate.

Definition 3.2 The Johnson graph $\Gamma=J(N, D)$ has vertex set

$$
X=\tilde{\Gamma}_{D}(0)=\left\{\left(x_{1} \cdots x_{N}\right) \in \tilde{X} \mid(\# \text { of } 1 s)=D\right\}
$$

i.e., the set of binary words of length N and weight D, and two vertices $x, y \in X$ are adjacent if x and y differ in exactly 2 coordinates.

Theorem 5 [3] Let $\Gamma=J(N, D)$ and $C \subset X$. Suppose C satisfies $w+w^{*}=D$. Then

$$
C \cong\{(\overbrace{1 \cdots 1}^{w^{*}} \overbrace{* \cdots *}^{N-w^{*}}) \mid(\# \text { of } 1 s)=D\}
$$

i.e., the induced subgraph on C is isomophic to the Johnson graph $J\left(N-w^{*}, D-w^{*}\right)$.

Let $C=\{(\overbrace{1 \cdots 1}^{w^{*}} \overbrace{* \cdots *}^{N-w^{*}}) \mid(\#$ of 1 s$)=D\}$, and $\Gamma^{(1)}=H\left(w^{*}, 2\right), \Gamma^{(2)}=H\left(N-w^{*}, 2\right)$.
Then

$$
C=\Gamma_{w^{\bullet}}^{(1)}(\mathbf{0}) \times \Gamma_{w}^{(2)}(\mathbf{0})
$$

and we also have

$$
\Gamma_{i}(C)=\Gamma_{w^{*}-i}^{(1)}(\mathbf{0}) \times \Gamma_{w+i}^{(2)}(\mathbf{0})
$$

Let $\mathcal{T}_{1}(\mathbf{0})$ be the Terwilliger algebra of $H\left(w^{*}, 2\right)$ with respect to $\mathbf{0}$, where $\mathbf{0}$ denotes the all zero word, and $\mathcal{T}_{2}(0)$ the Terwilliger algebra of $H\left(N-w^{*}, 2\right)$ with respect to 0 . Let $\mathcal{T}(C)$ be the Terwilliger algebra of $J(N, D)$ with respect to C. Let \tilde{X} denote the vertex set of $H(N, 2)$. Recall that the vertex set X of $J(N, D)$ is a subset of \tilde{X}. For a subset \mathcal{A} of $\operatorname{Mat}_{\tilde{X}}(\boldsymbol{C})$, let $\left.\mathcal{A}\right|_{X \times X} \subset \operatorname{Mat}_{X}(\boldsymbol{C})$ denote the set of principal submatrices of matrices in \mathcal{A}. The following is the key lemma.

Lemma 6

$$
\left.\mathcal{T}(C) \subseteq \mathcal{T}_{1}(0) \otimes \mathcal{T}_{2}(0)\right|_{X \times X} \quad\left(\subset \operatorname{Mat}_{X}(C)\right)
$$

Let W_{i} be an irreducible $\mathcal{T}_{i}(\mathbf{0})$-module $(i=1,2)$. Let

$$
W:=\left.W_{1} \otimes W_{2}\right|_{x} \subset C^{X}
$$

where the right hand side denotes the set of vectors from $W_{1} \otimes W_{2}$ whose indices are restricted on X. Then

Lemma $7 W$ is a $\mathcal{T}(C)$-module.
Go [4] gave an explicit description of W_{1}, W_{2}. We will make use of results in [4] for the characterization of W.

Lemma 8 Let $\mathcal{B}_{1}, \mathcal{B}_{2}$ be standard bases for W_{1}, W_{2} (see [4]). Then
(i) $\mathcal{B}:=\left\{u \otimes u^{\prime}\left|u \in \mathcal{B}_{1}, u^{\prime} \in \mathcal{B}_{2}, u \otimes u^{\prime}\right|_{X} \neq 0\right\}$ is a basis for W.
(ii) $\operatorname{Span}\left\{u \otimes u^{\prime}\right\}=E_{i}^{*} W$ for some i.
(iii) W is thin.

We can determine the endpoint of W by comparing suppots of W_{1} and W_{2}. For determination of the dual enpoint of W, the following will be useful:

Proposition 9 [11] Let $\mathcal{T}(0)$ be the Terwilliger algebra of the binary Hamming graph $H(N, 2)$ with respect to $\mathbf{0}$. Let U be an irreducible $\mathcal{T}(\mathbf{0})$-module of endpoint r. Then $\left.\boldsymbol{v}(\neq \mathbf{0}) \in U\right|_{X}$ is an eigenvector of $J(N, D)$ for eigenvalue θ_{r}.

Next we will check that W is irreducible. To see that it is so, we consider a tridiagonal matrix. Let $[A]_{\mathcal{B}}$ be the matrix representing A with respect to the basis \mathcal{B}. Then $[A]_{\mathcal{B}}$ is tridiagonal since W is thin. Moeover, by calculation we can verify that the off-diagonal entries of $[A]_{\mathcal{B}}$ are nonzero. Hence we have the following:

Lemma $10 W$ is an irreducible $\mathcal{T}(C)$-module.

4 Main results

Let $\Gamma=J(N, D)$ and $C \subset X$. Suppose C satisfies $w+w^{*}=D$. Let $\mathcal{T}(C)$ be the Terwilliger algebra of Γ with respect to C. Let W be an irreducible $\mathcal{T}(C)$-module of endpoint ν, dual endpoint μ, diameter d.

Theorem 11 There exist integers e, f satisfying

$$
\begin{gathered}
0 \leq e \leq\left\lfloor\frac{w^{*}}{2}\right\rfloor, \quad 0 \leq f \leq\left\lfloor\frac{N-w^{*}}{2}\right\rfloor, \\
\nu=\max \{e, f-w\}, \quad \mu=e+f, \\
d=\left\{\begin{array}{l}
w^{*}-2 \nu \\
\min \{D-\mu, N-D-2 \nu-w\} \quad \text { if } \nu=e,
\end{array}\right.
\end{gathered}
$$

Remarks. $\quad e, f$ comes from endpoints of W_{1}, W_{2}.
Remarks. If $N \neq 2 D$, then e, f are uniquely determined for given ν, μ, d. In this case, $\mathcal{T}(C)=\left.\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right|_{X_{\times X}}$ in Lemma 6.

Theorem $12 W$ has a basis $\mathcal{B}=\left\{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{d}\right\}$ satisfying

$$
\boldsymbol{v}_{i} \in E_{i+\nu}^{*} W \quad(0 \leq i \leq d)
$$

and with respect to which the matrix representing A is tridiagonal with entries

$$
\begin{aligned}
c_{i}(W)= & i(i+2 \nu-\mu+w) \\
a_{i}(W)= & D(N-D)+\mu(\mu+d-N-1)+d(d-N \\
& +2 \nu+w)+i(N-4 \nu-2 i-2 w) \\
b_{i}(W)= & (d-i)(N-d-2 \nu-\mu-i-w)
\end{aligned}
$$

Remarks. $\quad c_{i}(W)+a_{i}(W)+b_{i}(W)=\theta_{\mu}$.
Remarks. If $w=0$, the above $c_{i}(W), a_{i}(W), b_{i}(W)$ coincide with the results by Terwilliger [10].

Corollary 13 Isomophism classes are determined by (ν, μ, d).

5 Remark

Let $A^{*}=\operatorname{diag}\left(E_{1} \chi\right)$. Then $\left(A, A^{*}\right)$ acts on W as a Leonard pair with parameter array ($h, r, s, s^{*}, r, d, \theta_{0}, \theta_{0}^{*}$) (Dual Hahn):

$$
\begin{aligned}
\theta_{i} & =\theta_{0}+h i(i+1+s) \\
\theta_{i}^{*} & =\theta_{0}^{*}+s^{*} i \\
\varphi_{i} & =h s^{*} i(i-d-1)(i+r) \\
\phi_{i} & =h s^{*} i(i-d-1)(i+r-s-d-1)
\end{aligned}
$$

Especially, we have

$$
\begin{gathered}
s=-N-2+2 \mu \\
r=-N+d+2 \nu+\mu-1+w
\end{gathered}
$$

See [9] for details on Leonard pairs. If $w=0$, the above parameters coincide with the results by Terwilliger [10].

References

[1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, California, 1984.
[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
[3] A. E. Brouwer, C. D. Godsil, J. H. Koolen and W. J. Martin, Width and dual width of subsets in polynomial association schemes, J. Combin. Th. (A) 102 (2003), 255-271.
[4] J. T. Go, The Terwilliger algebra of the Hypercube, Europ. J. Combin. 23 (2002), 399-430.
[5] R. Hosoya and H. Suzuki, Tight distance-regular graphs with respect to subsets, European J. Combin. 28 (2007), 61-74.
[6] H. Suzuki, The Terwilliger algebra associated with a set of vertices in a distance-regular graph, J. Algebraic Combinatorics 22 (2005), 5-38.
[7] H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. Combin. Theory (A) 113 (2006), 903-910.
[8] H. Tanaka, On subsets with minimal width and dual width, in preparation.
[9] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an algebraic approach to the Askey scheme of orthogonal polynomials, arXive:math/0408390.
[10] P. Terwilliger, The subconstituent algebra of an association schemes, (part I, II, III), J. Alg. Combin. 1 (1992), 363-388, 2(1993), 73-103, 177-210.
[11] P. Terwilliger, Lecture note on algebraic graph theory (Suzuki-version).

