国際基督教大学 細谷 利恵 (Rie Hosoya) International Christian University

In this talk, we determine irreducible modules of the Terwilliger algebra of a Qpolynomial distance-regular graph Γ with respect to a subset with a special condition. Here we focus on the case where Γ is the Johnson graph. We construct irreducible modules of the Terwilliger algebra of Γ from those of binary Hamming graphs. This is a joint work with Hajime Tanaka.

1 Width and dual width

Let Γ be a Q-polynomial distance-regular graph of diameter D with vertex set X. We refer the reader to [1], [2] for terminology and background materials on Q-polynomial distanceregular graphs. Let C be a nonempty subset of X. Let $\chi \in C^X$ be the characteristic vector of C, i.e.,

$$(\chi)_x = \begin{cases} 1 & \text{if } x \in C, \\ 0 & \text{otherwise.} \end{cases}$$

Let A_0, \ldots, A_D be distance matrices of Γ . We write $A = A_1$. Let E_0, \ldots, E_D be primitive idempotents of Γ . Brouwer, Godsil, Koolen and Martin [3] introduced two parameters of C. The width w of C is defined as

$$w = \max\{i \mid \chi^T A_i \chi \neq 0\}.$$

Dually, the dual width w^* of C is defined as

$$w^* = \max\{i \mid \chi^T E_i \chi \neq 0\}.$$

We can verify that $w = \max\{\partial(x, y) \mid x, y \in C\}$, i.e., the maximum distance between two vertices in C. Obviously, w = 0 if and only if $C = \{x\}$ $(x \in X)$. The following fundamental bound holds.

Theorem 1 [3]

$$w+w^*\geq D.$$

When the above bound is attained, Brouwer et.al. showed that some good properties hold:

Theorem 2 [3] Suppose $w + w^* = D$. Then

(i) C is completely regular.

(ii) C induces a Q-polynomial distance-regular graph whenever C is connected.

Recently, Tanaka proved the following:

Theorem 3 [8] Suppose $w + w^* = D$. Then

- (i) C induces a Q-polynomial distance-regular graph whenever $q \neq -1$.
- (ii) C is convex if and only if Γ has classical parameters.

The subsets with $w + w^* = D$ were classified for some Q-polynomial distance-regular graphs (see [3], [8]). Our current goal is to characterize Q-polynomial distance-regular graphs having subsets with $w + w^* = D$ in terms of Terwilliger algebras. We will see the definitions and basic terminology on Terwilliger algebras in the next section.

2 Terwilliger algebras and modules

Let $C \subset X$. Let $\Gamma_i(C) = \{x \in X \mid \partial(x, C) = i\}$, i.e., the *i* th subconstituent of Γ with respect to *C*. We define the diagonal matrix $E_i^* \in \operatorname{Mat}_X(C)$ so that

$$(E_i^*)_{xx} = \begin{cases} 1 & \text{if } x \in \Gamma_i(C), \\ 0 & \text{otherwise.} \end{cases}$$

The Terwilliger algebra $\mathcal{T}(C)$ of Γ with respect to C is defined as follows:

$$\mathcal{T}(C) = \langle A, E_0^*, \dots, E_D^* \rangle \subset \operatorname{Mat}_X(C).$$

It is known that $\mathcal{T}(C)$ is semisimple, and non-commutative in general. If we set $C = \{x\}$ $(x \in X)$, then $\mathcal{T}(C)$ is identical to the ordinary Terwilliger algebra $\mathcal{T}(x)$ or the subconstituent algebra introduced by Terwilliger [10]. Suzuki generalized the theory of subconstituent algebras to the case associated with subsets [6].

Let $W \subset \mathbf{C}^X$ be an irreducible $\mathcal{T}(C)$ -module. There are two types of decompositions of W into subspaces which are invariant under the action of E_i^* and E_i respectively:

$$W = E_0^*W + \dots + E_D^*W \quad (\text{direct sum}),$$
$$W = E_0W + \dots + E_DW \quad (\text{direct sum}).$$

We define parameters for W to describe isomorphism classes of irreducible modules; The endpoint ν of W is defined as $\nu = \min\{i \mid E_i^*W \neq 0\}$, and the dual endpoint μ of W is $\mu = \min\{i \mid E_iW \neq 0\}$. The diameter of W is defined as $d = |\{i \mid E_i^*W \neq 0\}| - 1$. W is called thin if dim $E_i^*W \leq 1$ for all i.

Suppose C satisfies $w + w^* = D$. We have a preceeding result on irreducible modules of endpoint 0:

Theorem 4 [5] Suppose C satisfies $w + w^* = D$. Let W be an irreducible T(C)-module of endpoint $\nu = 0$. Then W is thin with $d = w^*$.

Our primary goal is to determine irreducible $\mathcal{T}(C)$ -modules of arbitrary endpoint ν . In this article, we discuss the case of Johnson graphs.

3 Johnson graphs

Definition 3.1 The binary Hamming graph $\tilde{\Gamma} = H(N,2)$ ($N \ge 2D$) has vertex set

$$\tilde{X} = \{ (\overbrace{x_1 \cdots x_N}^N) \mid x_i \in \{0, 1\} \},\$$

i.e., the set of binary words of length N, and two vertices $x, y \in \tilde{X}$ are adjacent if x and y differ in exactly 1 coordinate.

Definition 3.2 The Johnson graph $\Gamma = J(N, D)$ has vertex set

$$X = \Gamma_D(\mathbf{0}) = \{ (x_1 \cdots x_N) \in \tilde{X} \mid (\# \text{ of } 1s) = D \},\$$

i.e., the set of binary words of length N and weight D, and two vertices $x, y \in X$ are adjacent if x and y differ in exactly 2 coordinates.

Theorem 5 [3] Let $\Gamma = J(N, D)$ and $C \subset X$. Suppose C satisfies $w + w^* = D$. Then

$$C \cong \{ (\overbrace{1\cdots 1}^{w^*} \overbrace{\ast \cdots \ast}^{N-w^*}) \mid (\# \text{ of } 1s) = D \},$$

i.e., the induced subgraph on C is isomophic to the Johnson graph $J(N - w^*, D - w^*)$.

Let $C = \{(\overbrace{1\cdots1}^{w^*}, \overbrace{*\cdots*}^{N-w^*}) \mid (\# \text{ of } 1s) = D\}$, and $\Gamma^{(1)} = H(w^*, 2), \ \Gamma^{(2)} = H(N - w^*, 2).$ Then $C = \Gamma^{(1)}_{w^*}(\mathbf{0}) \times \Gamma^{(2)}_w(\mathbf{0}),$

and we also have

$$\Gamma_i(C) = \Gamma_{w^*-i}^{(1)}(\mathbf{0}) \times \Gamma_{w+i}^{(2)}(\mathbf{0}).$$

Let $\mathcal{T}_1(\mathbf{0})$ be the Terwilliger algebra of $H(w^*, 2)$ with respect to $\mathbf{0}$, where $\mathbf{0}$ denotes the all zero word, and $\mathcal{T}_2(\mathbf{0})$ the Terwilliger algebra of $H(N - w^*, 2)$ with respect to $\mathbf{0}$. Let $\mathcal{T}(C)$ be the Terwilliger algebra of J(N, D) with respect to C. Let \tilde{X} denote the vertex set of H(N, 2). Recall that the vertex set X of J(N, D) is a subset of \tilde{X} . For a subset \mathcal{A} of $\operatorname{Mat}_{\tilde{X}}(C)$, let $\mathcal{A}|_{X \times X} \subset \operatorname{Mat}_X(C)$ denote the set of principal submatrices of matrices in \mathcal{A} . The following is the key lemma.

Lemma 6

$$\mathcal{T}(C) \subseteq \mathcal{T}_1(\mathbf{0}) \otimes \mathcal{T}_2(\mathbf{0})|_{X \times X} \quad (\subset \operatorname{Mat}_X(C))$$

Let W_i be an irreducible $\mathcal{T}_i(0)$ -module (i = 1, 2). Let

$$W := W_1 \otimes W_2|_X \subset \boldsymbol{C}^X,$$

where the right hand side denotes the set of vectors from $W_1 \otimes W_2$ whose indices are restricted on X. Then

Lemma 7 W is a $\mathcal{T}(C)$ -module.

Go [4] gave an explicit description of W_1 , W_2 . We will make use of results in [4] for the characterization of W.

Lemma 8 Let \mathcal{B}_1 , \mathcal{B}_2 be standard bases for W_1 , W_2 (see [4]). Then

- (i) $\mathcal{B} := \{ u \otimes u' \mid u \in \mathcal{B}_1, u' \in \mathcal{B}_2, u \otimes u' \mid_X \neq 0 \}$ is a basis for W.
- (ii) $\operatorname{Span}\{u \otimes u'\} = E_i^*W$ for some *i*.
- (iii) W is thin.

We can determine the endpoint of W by comparing suppots of W_1 and W_2 . For determination of the dual enpoint of W, the following will be useful:

Proposition 9 [11] Let $\mathcal{T}(\mathbf{0})$ be the Terwilliger algebra of the binary Hamming graph H(N,2) with respect to **0**. Let U be an irreducible $\mathcal{T}(\mathbf{0})$ -module of endpoint r. Then $\mathbf{v}(\neq \mathbf{0}) \in U|_X$ is an eigenvector of J(N,D) for eigenvalue θ_r .

Next we will check that W is irreducible. To see that it is so, we consider a tridiagonal matrix. Let $[A]_{\mathcal{B}}$ be the matrix representing A with respect to the basis \mathcal{B} . Then $[A]_{\mathcal{B}}$ is tridiagonal since W is thin. Moeover, by calculation we can verify that the off-diagonal entries of $[A]_{\mathcal{B}}$ are nonzero. Hence we have the following:

Lemma 10 W is an irreducible T(C)-module.

4 Main results

Let $\Gamma = J(N, D)$ and $C \subset X$. Suppose C satisfies $w + w^* = D$. Let $\mathcal{T}(C)$ be the Terwilliger algebra of Γ with respect to C. Let W be an irreducible $\mathcal{T}(C)$ -module of endpoint ν , dual endpoint μ , diameter d.

Theorem 11 There exist integers e, f satisfying

$$0 \le e \le \left\lfloor \frac{w^*}{2} \right\rfloor, \quad 0 \le f \le \left\lfloor \frac{N - w^*}{2} \right\rfloor,$$
$$\nu = \max\{e, f - w\}, \quad \mu = e + f,$$
$$d = \begin{cases} w^* - 2\nu & \text{if } \nu = e, \\ \min\{D - \mu, N - D - 2\nu - w\} & \text{if } \nu = f - w. \end{cases}$$

Remarks. e, f comes from endpoints of W_1, W_2 . **Remarks.** If $N \neq 2D$, then e, f are uniquely determined for given ν, μ, d . In this case,

 $\mathcal{T}(C) = \mathcal{T}_1 \otimes \mathcal{T}_2|_{X \times X}$ in Lemma 6.

Theorem 12 W has a basis $\mathcal{B} = \{v_0, \ldots, v_d\}$ satisfying

 $\boldsymbol{v}_i \in E^*_{i+\nu} W \quad (0 \le i \le d),$

and with respect to which the matrix representing A is tridiagonal with entries

$$c_i(W) = i(i + 2\nu - \mu + w),$$

$$a_i(W) = D(N - D) + \mu(\mu + d - N - 1) + d(d - N + 2\nu + w) + i(N - 4\nu - 2i - 2w),$$

$$b_i(W) = (d - i)(N - d - 2\nu - \mu - i - w).$$

Remarks. $c_i(W) + a_i(W) + b_i(W) = \theta_{\mu}$. **Remarks.** If w = 0, the above $c_i(W)$, $a_i(W)$, $b_i(W)$ coincide with the results by Ter-

williger [10].

Corollary 13 Isomophism classes are determined by (ν, μ, d) .

5 Remark

Let $A^* = diag(E_1\chi)$. Then (A, A^*) acts on W as a Leonard pair with parameter array $(h, r, s, s^*, r, d, \theta_0, \theta_0^*)$ (Dual Hahn):

$$\begin{array}{rcl} \theta_i &=& \theta_0 + hi(i+1+s), \\ \theta_i^* &=& \theta_0^* + s^* i, \\ \varphi_i &=& hs^* i(i-d-1)(i+r), \\ \phi_i &=& hs^* i(i-d-1)(i+r-s-d-1). \end{array}$$

Especially, we have

$$s = -N - 2 + 2\mu,$$

 $r = -N + d + 2\nu + \mu - 1 + w.$

See [9] for details on Leonard pairs. If w = 0, the above parameters coincide with the results by Terwilliger [10].

References

- [1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, California, 1984.
- [2] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer Verlag, Berlin, Heidelberg, 1989.
- [3] A. E. Brouwer, C. D. Godsil, J. H. Koolen and W. J. Martin, Width and dual width of subsets in polynomial association schemes, J. Combin. Th. (A) 102 (2003), 255-271.
- [4] J. T. Go, The Terwilliger algebra of the Hypercube, Europ. J. Combin. 23 (2002), 399-430.
- [5] R. Hosoya and H. Suzuki, Tight distance-regular graphs with respect to subsets, European J. Combin. 28 (2007), 61-74.
- [6] H. Suzuki, The Terwilliger algebra associated with a set of vertices in a distance-regular graph, J. Algebraic Combinatorics 22 (2005), 5-38.
- [7] H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. Combin. Theory (A) 113 (2006), 903-910.
- [8] H. Tanaka, On subsets with minimal width and dual width, in preparation.
- [9] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an algebraic approach to the Askey scheme of orthogonal polynomials, arXive:math/0408390.
- [10] P. Terwilliger, The subconstituent algebra of an association schemes, (part I, II, III), J. Alg. Combin. 1 (1992), 363-388, 2(1993), 73-103, 177-210.
- [11] P. Terwilliger, Lecture note on algebraic graph theory (Suzuki-version).