Ultrafilters and Higson compactifications

Masaru Kada / 嘉田 勝
(Osaka Prefecture University, Japan / 大阪府立大学)

Abstract

We prove the following theorem: If there is a base \mathcal{F} of a non-rapid ultrafilter on ω , then we can approximate $\beta\omega$ by $|\mathcal{F}|$ -many Higson compactifications of ω in a nontrivial way. It is still open whether we can eliminate the assumption that \mathcal{F} is non-rapid.

MSC: Primary 03E17; Secondary 03E35, 54D35

1 Introduction

In this paper we give a partial answer to a question which was posed by Kada, Tomoyasu and Yoshinobu [3].

We refer the reader to the book [1] for undefined set-theoretic notions. For $X,Y\in [\omega]^{\omega}$, we write $X\subseteq^*Y$ (or $Y\supseteq^*X$) if $X\smallsetminus Y$ is finite. The symbol $\omega^{\uparrow\omega}$ denotes the set of all strictly increasing functions in ω^{ω} . For $f,g\in\omega^{\omega}$, we write $f\leq^*g$ if $f(n)\leq g(n)$ holds for all but finitely many $n\in\omega$. A dominating family is a cofinal subset of ω^{ω} with respect to \leq^* . The dominating number $\mathfrak d$ is the smallest cardinality of a dominating family.

For compactifications αX and γX of a completely regular Hausdorff space X, we write $\alpha X \leq \gamma X$ if there is a continuous surjection φ from γX onto αX such that $\varphi \upharpoonright X$ is the identity function on X, and $\alpha X \simeq \gamma X$ if $\alpha X \leq \gamma X \leq \alpha X$. The Stone-Čech compactification βX of X is the maximal compactification of X in the sense of the order relation X among compactifications of X modulo the equivalence relation X.

We introduce the following notation: For compactification αX of X and disjoint closed subsets A, B of X, we write $A \parallel B \ (\alpha X)$ if $\operatorname{cl}_{\alpha X} A \cap \operatorname{cl}_{\alpha X} B = \emptyset$, and otherwise we write $A \parallel B \ (\alpha X)$. It is not so hard to show that $A \parallel B \ (\alpha X)$ if and only if there is a bounded continuous function f from αX to $\mathbb R$ such that $f''A = \{0\}$ and $f''B = \{1\}$. Note that $\alpha X \leq \gamma X$ is equivalent to the assertion that, for disjoint closed subsets A, B of $X, A \parallel B \ (\alpha X)$ implies $A \parallel B \ (\gamma X)$. For a normal space $X, A \parallel B \ (\beta X)$ holds for any pair A, B of disjoint closed subsets of X.

We say a metric d on a space X is *proper* if each d-bounded subset of X has a compact closure. We say a metric space is proper if its metric is proper. For a proper metric space (X,d) and disjoint closed subsets A,B of X, we say A and B diverge with respect to the metric d, or A and B diverge in short, if for every R>0 there is a compact subset K of X such that $d(A \setminus K, B \setminus K) > R$ holds.

The Higson compactification \overline{X}^d of (X,d) is uniquely characterized (up to \simeq -equivalence) by the property that $A \parallel B \ (\overline{X}^d)$ if and only if A and B d-diverge. Note that Higson compactifications are metric-dependent.

In the paper [3] the authors introduced the following cardinal characteristics to investigate approximability of $\beta\omega$ by sets of Higson compactifications of ω . For a metrizable space X, let $PM'(\omega)$ be the set of proper metrics d on X such that d is compatible with the topology on X and $\overline{\omega}^d \not\simeq \beta\omega$ holds. For $d_1, d_2 \in PM'(\omega)$, we write $d_1 \sqsubseteq d_2$ if $\overline{\omega}^{d_1} \leq \overline{\omega}^{d_2}$ holds.

Definition 1.1. \mathfrak{hp}' is the smallest cardinality of a subset D of $\mathrm{PM}'(\omega)$ such that D is directed with respect to the order relation \sqsubseteq and $\sup\{\overline{\omega}^d:d\in D\}\simeq\beta\omega$, where the supremum is in the sense of the order relation \leq among compactifications of ω .

Throughout the present paper, an *ultrafilter* means a nonprincipal ultrafilter on ω . The cardinal u is the smallest cardinality of a subset of $[\omega]^{\omega}$ which generates an ultrafilter.

In the paper [3] the authors asked the following question.

Question 1.2. $hp' \leq u?$

This question is still open.

In Section 2 we prove that, if a subset \mathcal{F} of $[\omega]^{\omega}$ generates a non-rapid ultrafilter, then $\mathfrak{hp}' \leq |\mathcal{F}|$ holds. We say a filter \mathcal{F} on ω is rapid if for all $h \in \omega^{\uparrow \omega}$ there is a set $X \in \mathcal{F}$ such that for all $n < \omega$ we have $|X \cap h(n)| \leq n$, or equivalently, if the set of increasing enumerations of sets in \mathcal{F} is a dominating family. When an ultrafilter \mathcal{U} is generated by a subset \mathcal{F} of $[\omega]^{\omega}$, \mathcal{U} is rapid if and only if the set of increasing enumerations of sets of \mathcal{F} is a dominating family. As a consequence, we see that $\mathfrak{u} < \mathfrak{d}$ implies $\mathfrak{hp}' \leq \mathfrak{u}$, since an ultrafilter generated by a set of size less than \mathfrak{d} cannot be rapid. So the main result in Section 2 gives a partial answer to Question 1.2.

Remark 1.3. It is known that non-rapid ultrafilters can be constructed in ZFC, but we do not know if we can find a non-rapid ultrafilter which is generated by a subset of $[\omega]^{\omega}$ of size $\mathfrak u$ under ZFC. See Section 3 for further discussion.

2 The Main Result

First we prove a simple combinatorial lemma.

Lemma 2.1. Suppose that a subset \mathcal{F} of $\omega^{\uparrow \omega}$ is not a dominating family. Then there is a function $h \in \omega^{\uparrow \omega}$ such that, for all $f \in \mathcal{F}$ there are infinitely many $m < \omega$ such that the interval [h(m), h(m+1)) contains two consecutive values of f.

Proof. Suppose that $\mathcal{F} \subseteq \omega^{\uparrow \omega}$, $g \in \omega^{\uparrow \omega}$ and for all $f \in \mathcal{F}$ there are infinitely many $n < \omega$ which satisfy f(n) < g(n). Define $h \in \omega^{\uparrow \omega}$ by letting h(n) = g(2n) for each n. We show that h satisfies the requirement. Suppose not. Find an $f \in \mathcal{F}$ such that, for all but finitely many $m < \omega$, the interval [h(m), h(m+1)) contains at most one value of f. Then we can find a $k < \omega$ such that for all $n < \omega$ we have f(n+k) > h(n). Since h(n) = g(2n) and g is increasing, for all n > k we have f(n+k) > h(n) = g(2n) > g(n+k). But it is impossible by the choice of g.

Now we are going to prove the main theorem.

Theorem 2.2. Suppose that there is a subset \mathcal{F} of $[\omega]^{\omega}$ of size κ which generates a non-rapid ultrafilter on ω . Then $\mathfrak{hp}' \leq \kappa$.

Proof. Let \mathcal{F} be a subset of $[\omega]^{\omega}$ of size κ which generates a non-rapid ultrafilter. Then the set of increasing enumerations of sets in \mathcal{F} is not a dominating family. By the previous lemma, find a function $h \in \omega^{\uparrow \omega}$ such that, for every $X \in \mathcal{F}$, for infinitely many $m < \omega$ we have $|X \cap [h(m), h(m+1))| \geq 2$. We may assume that h(0) = 0. Define a function $\pi \in \omega^{\omega}$ by letting $\pi(k) = m$ if $h(m-1) \leq k < h(m)$.

For each $X \in \mathcal{F}$, we define a function ρ_X with domain $\omega \times \omega$ in the following way:

$$ho_X(k,l) = egin{cases} 0 & ext{if } k=l \ 1 & ext{if } k,l \in X, \ k
eq l \ ext{and} \ \pi(k) = \pi(l) \ \pi(k) + \pi(l) & ext{otherwise.} \end{cases}$$

It is easily checked that ρ_X is a metric on ω and any ρ_X -bounded subset of ω is finite, and so ρ_X is a proper metric on ω .

By the choice of h, For any $X \in \mathcal{F}$ there are infinitely many pairs $k, l \in \omega$ for which $\rho_X(k, l) = 1$ holds, and so we can construct a pair A, B of disjoint infinite subsets of ω so that $A \not \mid B (\overline{\omega}^{\rho_X})$ holds. This ensures that $\rho_X \in \text{PM}'(\omega)$ for all $X \in \mathcal{F}$.

Note that, for $X, Y \in \mathcal{F}$, $X \supseteq^* Y$ implies $\rho_X \sqsubseteq \rho_Y$. Since \mathcal{F} generates an ultrafilter, \mathcal{F} is \supseteq^* -directed (even \supseteq -directed), and so the set $\{\rho_X : X \in \mathcal{F}\}$ is \sqsubseteq -directed.

We can easily see that, for $B \subseteq \omega$, if $X \subseteq^* B$ or $X \subseteq^* \omega \setminus B$, then $B \parallel \omega \setminus B \ (\overline{\omega}^{\rho_X})$. Since \mathcal{F} generates an ultrafilter, for each $B \subseteq \omega$ we can find an $X \in \mathcal{F}$ such that $X \subseteq^* B$ or $X \subseteq^* \omega \setminus B$. This implies that, for any pair A, B of disjoint subsets of ω , there is an $X \in \mathcal{F}$ such that $A \parallel B \ (\overline{\omega}^{\rho_X})$ holds, which means that $\sup\{\overline{\omega}^{\rho_X} : X \in \mathcal{F}\} \simeq \beta\omega$. By the definition of \mathfrak{hp}' , we have $\mathfrak{hp}' \leq |\mathcal{F}| = \kappa$.

In the paper [3] the authors also introduced the following variant of the cardinal hp'.

Definition 2.3. $\mathfrak{h}\mathfrak{t}$ is the smallest cardinality of a subset D of $\mathrm{PM}'(\omega)$ such that D is well-ordered by \sqsubseteq and $\sup\{\overline{\omega}^d:d\in D\}\simeq\beta\omega$ (if such a set D exists; otherwise we write $\mathfrak{h}\mathfrak{t}=\infty$).

An ultrafilter is called a *simple* p_{κ} -point, where κ is a regular uncountable cardinal, if it is generated by a subset of $[\omega]^{\omega}$ which is well-ordered by \supseteq^* in order type κ . The following result is obtained as a corollary of the previous theorem.

Corollary 2.4. Suppose that there is a subset \mathcal{F} of $[\omega]^{\omega}$ of size κ such that \mathcal{F} is well-ordered by \supseteq^* and generates a non-rapid ultrafilter on ω (so \mathcal{F} generates a simple p_{κ} -point). Then $\mathfrak{ht} \leq \kappa$.

3 Consequences of the main result

The cardinal pp, which was introduced in [3], is the smallest cardinal κ for which a simple p_{κ} -point exists (if such a κ exists; otherwise we write $pp = \infty$). Here we introduce more cardinal characteristics.

Definition 3.1. $\mathfrak{u}(\text{non-rapid})$ is the smallest cardinality of a subset \mathcal{F} of $[\omega]^{\omega}$ which generates a non-rapid ultrafilter.

 $\mathfrak{pp}(\text{non-rapid})$ is the smallest cardinality of a subset \mathcal{F} of $[\omega]^{\omega}$ which is well-ordered by \supseteq^* and generates a non-rapid ultrafilter (if such a set \mathcal{F} exists; otherwise we write $\mathfrak{pp}(\text{non-rapid}) = \infty$).

Using the above cardinal characteristics, Theorem 2.2 and Corollary 2.4 are represented as follows.

Corollary 3.2. $hp' \leq u(\text{non-rapid})$ and $ht \leq pp(\text{non-rapid})$.

It is clear that $u \leq pp$, $u \leq u$ (non-rapid) and $pp \leq pp$ (non-rapid). Also it is easily observed that $u < \mathfrak{d}$ implies u(non-rapid) = u, and $pp < \mathfrak{d}$ implies pp(non-rapid) = pp. So we obtain the following result, which partially answers Question 1.2.

Corollary 3.3. If $u < \mathfrak{d}$, then $\mathfrak{hp}' \leq u$. If $\mathfrak{pp} < \mathfrak{d}$, then $\mathfrak{hp}' \leq \mathfrak{pp}$.

It is known that CH implies the existence of a simple p_{\aleph_1} -point. Since the

Miller forcing preserves p-points [1, Lemma 7.3.48] and the preservation of p-points is preserved under countable support iteration [1, Theorem 6.2.6], a generating set of a simple p_{\aleph_1} -point in the ground model still generates an ultrafilter in the forcing model by iterated Miller forcing. On the other hand, $\mathfrak{d} = \aleph_2$ holds in the model obtained by a countable support iteration of Miller forcing of length ω_2 over a model for CH. Hence $\mathfrak{pp} < \mathfrak{d}$ is consistent with ZFC.

But the following question is still open.

Question 3.4. u(non-rapid) = u? pp(non-rapid) = pp?

In the paper [3], another upper bound for \mathfrak{hp}' is given.

Definition 3.5 ([2, Section 5]). For a function $h \in \omega^{\omega}$, l_h is the smallest size of a subset Φ of $\prod_{n<\omega} [\omega]^{\leq 2^n}$ such that for every $f \in \prod_{n<\omega} h(n)$ there is a $\varphi \in \Phi$ such that $f(n) \in \varphi(n)$ for all but finitely many n. Let $l = \sup\{l_h : h \in \omega^{\omega}\}$.

Theorem 3.6 ([3, Theorem 6.11]). $hp' \leq l$.

Now we can see that the above inequality is consistently strict.

Corollary 3.7. hp' < l (moreover, ht < l) is consistent with ZFC.

Proof. We know that there is a proper forcing notion \mathbb{P} which satisfies the following two properties (see Remark 3.8).

- P preserves p-points.
- In the forcing model by \mathbb{P} , for any function $H \in \omega^{\omega} \cap \mathbf{V}$, there is a function $g \in \prod_{n < \omega} H(n)$ such that, for every function $x \in \prod_{n < \omega} H(n) \cap \mathbf{V}$ there are infinitely many $n < \omega$ with x(n) = g(n), where \mathbf{V} denotes a ground model.

We consider a forcing model obtained by a countable support iteration of alternation of Miller forcing and the above forcing notion \mathbb{P} of length ω_2 over a model for CH.

Since every iterand preserves p-points and the preservation of p-points is preserved under countable support iteration, a generating set of a simple p_{\aleph_1} -point in the ground model still generates an ultrafilter in our forcing model, and so $\mathfrak{pp} = \aleph_1$ holds. On the other hand, it is easily observed that $\mathfrak{d} = \mathfrak{l} = \aleph_2 = \mathfrak{c}$ holds in the same model. By Corollary 3.3, $\aleph_1 = \mathfrak{hp}' = \mathfrak{ht} < \mathfrak{l} = \aleph_2$ holds in this model.

Remark 3.8. The book [1] tells us in Subsection 7.4.C that the *infinitely* equal forcing EE meets the requirements which appear in the proof of Corollary 3.7. But Brendle pointed out (in private communication) that EE does not preserve p-points, and the following "tree-like infinitely equal forcing" TEE is what we actually need.

$p \in \mathbb{TEE}$ if:

- 1. p is a subtree of $\bigcup_{m<\omega} \prod_{n< m} 2^n$ without endpoints, 2. there is a $C \in [\omega]^{\omega}$ such that, for $s \in p$, if $|s| = n \in C$ then $\operatorname{succ}_p(s)=2^n,$

and TEE is ordered by inclusion.

Appendix: Ultrafilter number for non-q-points

After the submission of the first version of this article, Blass pointed out that the proof of the main theorem (Theorem 2.2) works under the assumption that \mathcal{F} generates an ultrafilter which is not a q-point.

An ultrafilter \mathcal{U} is called a *q-point* if for any finite-to-one function f with domain ω there is an element X of \mathcal{U} such that $f \upharpoonright X$ is a one-to-one function.

It is easy to see that a q-point is a rapid ultrafilter, so the assumption that $\mathcal F$ generates a non-q-point ultrafilter is weaker than that $\mathcal F$ generates a non-rapid ultrafilter.

To modify the proof of Theorem 2.2 to fit in the weaker assumption, just take a function π from ω to $\omega \setminus \{0\}$ which witnesses that the ultrafilter generated by \mathcal{F} is not a q-point. Then for any $X \in \mathcal{F}$ there are infinitely many $m \in \omega \setminus \{0\}$ for which $\pi^{-1}(\{m\}) \cap X$ has at least two elements. Define ρ_X for each $X \in \mathcal{F}$ in the same way as the original proof.

Let $\mathfrak{u}(\text{non-q-point})$ be the smallest size of a subset \mathcal{F} of $[\omega]^{\omega}$ which generates a non-q-point ultrafilter. Clearly we have the inequality $u \leq$ $\mathfrak{u}(\text{non-q-point}) \leq \mathfrak{u}(\text{non-rapid}), \text{ and so } \mathfrak{u} < \mathfrak{d} \text{ implies } \mathfrak{u} = \mathfrak{u}(\text{non-q-point}).$ Now we can refine the first inequality of Corollary 3.2 to the inequality $hp' \leq u(\text{non-q-point})$. Also, instead of the first equality of Question 3.4, we should ask whether u(non-q-point) = u is proved under ZFC.

References

- [1] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A. K. Peters, Wellesley, Massachusetts, 1995.
- [2] M. Kada, More on Cichoń's diagram and infinite games, J. Symbolic Logic 65 (2000), 1713–1724.
- [3] M. Kada, K. Tomoyasu, and Y. Yoshinobu, How many miles to $\beta\omega$? — Approximating $\beta \omega$ by metric-dependent compactifications, Topology Appl. 145 (2004), 277-292.