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1 Motivation and Basic Definition

In 1919, Borel[l] introduced the new class of Lebesgue measure zero sets
called strong measure zero sets today. The family of all strong measure zero
sets become $\sigma$-ideal and is called the strong measure zero ideal. The four
cardinal invariants (the additivity, covering number, uniformity and cofinal-
ity) related to the strong measure zero ideal have been studied. In 2002,
Yorioka[2] obtained the results about the cofinality of the strong measure
zero ideal. In the process, he introduced the ideal $\mathcal{I}_{f}$ for each strictly increas-
ing function $f$ on $\omega$ . The ideal $\mathcal{I}_{f}$ relates to the structure of the real line. We
are interested in how the cardinal invariants of the ideal $\mathcal{I}_{f}$ behave. $Ma\dot{i}$ly,
we te interested in the cardinal invariants of the ideals $\mathcal{I}_{f}$ . In this paper,
we deal the consistency problems about the relationship between the cardi-
nal invariants of the ideals $\mathcal{I}_{f}$ and the minimam and supremum of cardinal
invariants of the ideals $\mathcal{I}_{g}$ for all $g$ .

We explain some notation which we use in this paper. Our notation is
quite standard. And we refer the reader to [3] and [4] for undefined notation.

For sets X and $Y$, we denote by $xY$ the set of all functions $homX$ to Y.
We denote by $<w_{2}$ the set of all finite partial function $hom\omega$ to 2. We write

$\exists^{\infty}$ and $v\infty$
) to mean that “for infinitely many” and “for all but finitely

many” respectively. For a family $\mathcal{A}$ of subsets of ,V, we define the foUowing
cardinals.

add $(A)= \min\{|\mathcal{F}| :\mathcal{F}\subset \mathcal{A}and\cup \mathcal{F}\not\in \mathcal{A}\}$ ,
$cov(\mathcal{A})=\min\{|\mathcal{F}| :\mathcal{F}\subset \mathcal{A}and\cup \mathcal{F}=\mathcal{X}\}$,
non $( \mathcal{A})=\min$ { $|Y|$ : $Y\subset \mathcal{X}$ and $Y\not\in \mathcal{A}$}, and
$cof(\mathcal{A})=\min$ { $|\mathcal{F}|$ : $\mathcal{F}\subset \mathcal{A}$ and $\forall A\in \mathcal{A}\exists B\in \mathcal{F}(A\subset B)$ }.
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It is easy to check that $\mathcal{A}\subset \mathcal{B}$ implies non $(\mathcal{A})\leq non(\mathcal{B})$ and $cov(A)\geq$

$cov(\mathcal{B})$ . If $\mathcal{I}$ is a proper $\sigma$-ideal on $\mathcal{X}$ , that is, $\mathcal{I}$ is a $\sigma$-ideal and $\mathcal{I}$ contains
all singletons of $\mathcal{X}$ and does not contain $\mathcal{X}$ , it holds that $\omega_{1}\leq add(\mathcal{I})\leq$

$cov(\mathcal{I})\leq cof(\mathcal{I})$ and add $(\mathcal{I})\leq non(\mathcal{I})\leq cof(\mathcal{I})$ . We often use the notation
CON $(\varphi)$ for a closed formura $\varphi$ if formula $\varphi$ is consistent. And CH, GCH and
MA stand for the continuum hypothesis, the general continuum hypothesis
and the Martin’s axiom respectively.

We win work on the topological spaces; the Baire space $w\omega$ , the Cantor
space $2$ or the space $\mathcal{X}_{b}=\prod_{n<w}b(n)$ where $b\in\omega\omega$ instead of the real line R.
We call an element of any of these spaces a real. We denote by $\mathcal{M},$ $\mathcal{N}$ and $S\mathcal{N}$

the lded of meager subsets, the ideal of Lebesgue measure zero subsets and
the ideal of the strong measure zero subsets of the real line respectively. Each
cardinal (the additivity, covering number, uniformity or cofinality) defined
by $\mathcal{M},$

$\mathcal{N}$ or $S\mathcal{N}$ is constant in any of the above topological spaces.

2 Definition of the ideals $\mathcal{I}_{f}$

In this section, we mention the ideals $\mathcal{I}_{f}$ . These ideals are introduced by
T. Yorioka to study the cofinality of the strong measure zero ideal. The
following definitions are not original definitions which Yorioka introduced,
but these $\mathfrak{W}e$ the same ideals as Yorioka defined.

Deflnition 2.1 For $\sigma\in w(^{<w}2)$ , define $[\sigma]$ by
$[\sigma]=\{x\in w2 : \exists^{\infty}n<\omega(\sigma(n)\subset x)\}$.

For each $g\in w\omega$ which is non-decreasing, define $T(g)$ by
$T(g)=\prod_{n<w}^{g(n)}2$,

and denote by $\mathcal{J}_{g}$ the family
$J_{g}=\{X\subset w2 : \exists\sigma\in T(g)(X\subset[\sigma])\}$ .

Note that $g\leq^{*}g’$ implies $\mathcal{J}_{g}\supset J_{9’}$ .

Definition 2.2 (T. Yorioka [2]) Let $f\in\omega\omega$ be strictly increasing. Define
the relation $<<f$ on $ww$ and the set $S(f)$ by

$f\ll g$ iff $\forall k<\omega\forall^{\infty}n<\omega(f(n^{k})\leq g(n))$ ,
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$S(f)=\bigcup_{f\ll g}T(g)$ ,
and denote by $\mathcal{I}_{f}$ the family

$\mathcal{I}_{f}=\{X\subset\omega 2 : \exists\sigma\in S(f)(X\subset[\sigma])\}$.

To make the ideal $\mathcal{I}_{f}$ a $\sigma$-ideal for each strictly increasing function $f$ ,
Yorioka introduced the order $‘\ll$ .

Fact 2.3 (T. Yorioka [2]) Let $f\in w\omega$ be strictly increasing. Then $\mathcal{I}_{f}$ is a
$\sigma$-ideal. $\square$

It is the fact that $f\leq*f’$ implies $\mathcal{I}_{f’}$ is a subideal of $\mathcal{I}_{f}$ . By this fact,
we have that $f\leq^{*}f’$ implies $cov(\mathcal{I}_{f})\leq cov(\mathcal{I}_{f’})$ and non $(\mathcal{I}_{f})\geq non(\mathcal{I}_{f’})$ . It
means that min { $cov(\mathcal{I}_{f})$ : $f\in ww$ and $f$ is strictly increasing} $=cov(\mathcal{I}_{id_{\theta}})$

and sup {non $(\mathcal{I}_{f})$ : $f\in w\omega$ and $f$ is strictly increasing} $=non(\mathcal{I}_{id_{u}})$ where
$id_{w}$ is the identity function from $\omega$ to $\omega$ . About the additivity and cofinality
of the ideaJs $\mathcal{I}_{f}$ , we have the following fact.

Eact 2.4 (S. Kamo) Let $f,$ $f’\in w\omega$ be strictly increasing. If $\forall^{\infty}n<\omega$

$(f(n+1)-f(n)\leq f’(n+1)-f’(n))$ holds, then add $(\mathcal{I}_{f})\geq add(\mathcal{I}_{f’})$ and
$cof(\mathcal{I}_{f})\leq cof(\mathcal{I}_{f’})$ hold. $\square$

The supremum of the additivity of $\mathcal{I}_{f}$ and the minimum of the cofinality
of $\mathcal{I}_{f}$ are detarmined by the above fact. These are add $(\mathcal{I}_{id_{w}})$ and $cof(\mathcal{I}_{id_{w}})$

respectively. So, we define the folowing cardinal invariants related to the
ideais $\mathcal{I}_{f}$ . We describe the consistency results of these invariants.

minadd $= \min${ $add(\mathcal{I}_{f})$ : $f\in w\omega$ and $f$ is strictly increasing},
supcov $= \sup$ { $cov(\mathcal{I}_{f})$ : $f\in w\omega$ and $f$ is strictly increasing},
minnon $= \min${ $non(\mathcal{I}_{f})$ : $f\in\omega\omega$ and $f$ is strictly increasing},
supcof $= \sup$ { $cof(\mathcal{I}_{f})$ : $f\in w\omega$ and $f$ is strictly increasing}.

3 ZFC results

It can be easily proved that the null ideaJ $\mathcal{N}$ is the subideal of the ideal $\mathcal{I}_{f}$

for all strictly function $f\in w\omega$ . So, we have that $cov(\mathcal{I}_{f})\geq cov(\mathcal{N})$ and
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non $(\mathcal{I}_{f})\leq non(\mathcal{N})$ . Also, for each strictly function $f\in(d\omega$ , it can be easily
proved that the ideal $\mathcal{I}_{f}$ and the meager ideal $\mathcal{M}$ are isogonal. Therefore it
holds that $cov(\mathcal{I}_{f})\leq non(\mathcal{M})$ and non $(\mathcal{I}_{f})\geq cov(\mathcal{M})$ . About the additivity
and cofinaJity of $\mathcal{I}_{f}$ , the following theorem is proved in 2006.

Theorem 3.1 (S. Kamo) add $(\mathcal{I}_{f})\leq \mathfrak{b}$ and $cof(\mathcal{I}_{f})\geq \mathfrak{d}$ . $\square$

It is the known fact that the additivity of the meager ideal $\mathcal{M}$ is the
minimum of the unbounding number and the uniformity of the strong mea-
sure zero ideal $S\mathcal{N}$ . About the coflnality of the meager ideal $\mathcal{M}$ , M. Kada
showed a fact that the cofinality of the meager ideal $\mathcal{M}$ is the maximum of
the dominating number and the cardinal invariant $\mathfrak{v}_{ubd}$ that is introduced by
M. Kada [5].

And we have the following lemma about the minimum of uniformity of
$\mathcal{I}_{f}$ . Because the strong measure zero ideal corresponds with the intersection
of the ideals $\mathcal{I}_{f}$ for aJ1 $f\in w\omega$ .

Lemma 3.2 minnon $=non(S\mathcal{N})$ and supcov $=0_{u}u$ . 口

It remarks that minadd $\leq add(\mathcal{M})$ and supcof $\geq cof(\mathcal{M})$ hold by the
theorem 3.1 and lemma 3.2.

We have the twenty cardinal invariants (the invariants in the Cicho\’{n}) $s$

diagram, the invariants related to the ideals $\mathcal{I}_{f}$ and $w_{1}$ and the continuum
c). The following diagram (Flgure 1) summarizes the relationships between
these cardinal invariants which is provable in ZFC. The arrows in the diagram
point toward larger invariant.
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Figure 1: Cicho\’{n}’s diagram and the cardinal invariants related to the ideals $\mathcal{I}_{f}$

Moreover, we introduce the relationship between the cardinal invariants
related to the ideals $\mathcal{I}_{f}$ and the cardinal invariants of the strong measure
zero ideal $S\mathcal{N}$ . The strong measure zero ideal is included the ideals $\mathcal{I}_{f}$ for
all $f\in w\omega$ . So, we have the following results about the supremum of the
covering numbers of $\mathcal{I}_{f}$ . By the lemma 3.2, the minimum of the uniformity
of $\mathcal{I}_{f}$ is identical to the uniformity of the strong measure zero ideal $S\mathcal{N}$.

Lemma 3.3 supcov $\leq cov(SN)$ . 口

And we have the foUowing results for the additivity.

Lemma 3.4 minadd $\leq add(SN)$ .
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Proof of Lemma 3.4 Let $\mathcal{A}$ be a family of the strong measure zero subsets
on $w_{2}$ satisfying the union is not element of $S\mathcal{N}$ and $|\mathcal{A}|=add(S\mathcal{N})$ . By
$S\mathcal{N}=\cap\{\mathcal{I}_{f} : f\in\omega\omega\}$ , there exists a strictly increasing function $f_{0}\in\omega\omega$

such $that\cup \mathcal{A}\not\in \mathcal{I}_{fo}$ . So, the additivity of $\mathcal{I}_{f_{0}}$ is bounded by the cardinality of
$\mathcal{A}$ . Therefore minadd $\leq add(\mathcal{I}_{f_{0}})\leq|\mathcal{A}|=add(S\mathcal{N})$ , because $\mathcal{A}$ is a subfamily
of $\mathcal{I}_{fo}$ . $\square (Lemma3.4)$

We can expect the dual of the lemma above, that is, the supremum of the
cofinaJity of $\mathcal{I}_{f}$ is an upper bound of the cofinality of $S\mathcal{N}$ . But it is possible
that the cofinality of $S\mathcal{N}$ is larger than the continuum. We introduce a
number that is beyond the cofinality of the strong measure zero ideal $SN$.
Lemma 3.5 $cof(S\mathcal{N})\leq 2^{\Phi}$ .

Proof of Lemma 3.5 Let $\mathcal{D}$ be a dominating family of strictly increasing
function of $w\omega$ satisfying $|D|=\mathfrak{d}$ . For each $f\in D$ , we take a cofinal ftlily
$F_{f}$ of the ideal $\mathcal{I}_{f}$ such that $|\mathcal{F}_{f}|=cof(\mathcal{I}_{f})$ . Put

$\mathcal{B}=\{\bigcap_{f\in \mathcal{D}}\pi(f)$ : $\pi\in\prod_{f\in \mathcal{D}}\mathcal{F}_{f}\}$ .

It is the fact that each element of $\mathcal{B}$ is a strong measure zero subset. Be
cause for each dominating family $D$ , the strong measure zero ideal $S\mathcal{N}$ is the
intersection of the ideal $\mathcal{I}_{f}$ for all $f\in D$ .

The cardinality of $\mathcal{B}$ is equal to $2^{\Phi}$ . In order to prove that $\mathcal{B}$ is a cofinal
family of $S\mathcal{N}$ , let $X$ be a strong measure zero subset on $w_{2}$ . There exists
$Y_{f}\in \mathcal{I}_{f}$ such that $X\subset Y_{f}$ for each $f\in \mathcal{D}$ , because $X\in SN\subset \mathcal{I}_{f}$ holds. So,
$X\subset\cap\{Y_{f} : f\in \mathcal{D}\}\in \mathcal{B}$ holds. $\square (Lemma3.5)$

4 Consistency results

In this section, we introduce some consistency results. At the first, we intro-
duce the consistency results between the cardinal invariants related to the
ideals $\mathcal{I}_{f}$ and the cardinal invariants in the Cicho\’{n}’s diagram. It is known
result that the Martin’s axlom implies add $(\mathcal{I}_{f})=c$ for all strictly increas-
ing function $f\in w\omega$ . This is proved by using the forcing notion which is
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introduced by T. Yorioka [2]. Therefore it is consistent that minadd $>\omega_{1}$

holds. And we have proved the consistency that $cof(\mathcal{I}_{f})<c$ for all strictly
increasing function $f\in\omega\omega$ . This is proved by using a $\omega_{2}$-stage countable
support iteration of forcing notions with the Sacks property [6]. Therefore it
is consistent that supcof $<c$ .

We proved the following lemma.

Lemma 4.1 (CH) Let $D_{w_{2}}$ be the $\omega_{2}$ -stage finite support iteration of the
Hechler forcing notion. Then it holds that $|\vdash D_{w_{2}}$

”
$\forall f\in w\omega(cov(\mathcal{I}_{f})=\omega_{1})$ and

add $(\mathcal{M})=\omega_{2}’$ .

Proof of Lemma 4.1 Let $f$ be a $D_{v_{2}}$ -name for strictly increasing function
in $\omega w$ . There exist $\alpha<\omega_{2}$ and $f\in V^{D_{Q}}$ such that $|\vdash f=f$ . Consider the
generic model $V^{D_{\alpha}}$ as the ground model and the iteration $D_{\alpha,w_{2}}$ as the $\omega_{2^{-}}$

stage fimite support iteration $D_{w_{2}}$ of the Hechler forcing notion in $V^{D_{\alpha}}$ .
In order to show that $|\vdash D_{w_{2}}w_{2}\subset\cup\{[\sigma] : \sigma\in S(f)\}$, let $\dot{x}$ be a $D_{w_{2}}-$

name for a real. There exists a countable subset $I$ of $\omega_{2}$ and a $D_{I}$-name
$\dot{y}$ such that $|\vdash D_{I}\dot{y}\in\omega_{2}$ and $1\vdash 0_{u_{2}}\dot{y}=\dot{x}$ , where the forcing notion $D_{I}$

for each subset $I$ of $w_{2}$ is defined by the $w_{2}$-stage finite support iteration
$\langle P_{\xi},\dot{Q}_{\zeta}$ : $\xi<w_{2}\rangle s$uch that $\dot{Q}_{\xi}$ is a $P_{\xi}$-name for the Hechler forcing notion

if $\xi\in I$ , otherwize $Q_{\xi}$ is a $P_{\xi}$-name for trivial forcing notion for each $\xi<\omega_{2}$ .
It is known that $D_{I}$ is a complete embedding of $D_{w_{2}}$ .

Let $\langle I_{n} : n<\omega\rangle$ be $a\subset$-increasing sequence of finite subsets of $I$ such
$that\cup\{I_{n} : n<\omega\}=I$ . For each $n<\omega$ and each function $\varphi$ ffom $I_{n}$ to
$n_{2}$ define the subset $R(n, \varphi)$ by

$R(n, \varphi)=\{p\in D_{I}$ : $supp(p)=I_{n}$

and $\forall\xi\in I_{n}(p\lceil\xi|\vdash\exists h\in wwp(\xi)=(\varphi(\xi), h))$ }.

Then $R(n, \varphi)$ is centered $\bm{t}d\cup\{R(n, \varphi)$ : $n<\omega$ and $\varphi:I_{n}arrow n_{2\}}$ is dense
in $D_{I}$ . We have the following claim.

Claim 4.2 Let $n$ be an element ofw and $\varphi$ a fiunction from $I_{n}$ to $\mathfrak{n}_{2}$ . For
$D_{I}$ -name $a$ for an element of a finite set in the ground model, there exists $b$

such that $p|\mu\dot{a}\neq b$ for all $p\in R(n, \varphi)$ .
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Proof of Claim 4.2 Since $R(n, \varphi)$ is centered, this claim can be easily
proved. $\square (Claim4.2)$

Let $\langle(n_{i}, \varphi_{i}) : i<\omega\rangle$ be a sequence of all pairs of $n<\omega$ and $\varphi:I_{n}arrow n_{2}$

and $g$ a function in $ww$ such that $g\gg f$ . For each $i<w$ , take $si\in g(i)2$

by considering $\dot{y}rg(i)$ as $\dot{a}$ in the claim above. Define $\sigma\in \mathcal{T}(g)\subset S(f)$ by
$\sigma(i)=s_{i}$ for $i<w$ . Then it holds that $|\vdash n_{I}\dot{y}\in[\sigma]$ . Hence we have that

$|\vdash m_{-2}^{\dot{x}}\in[\sigma]$ . $\square (Lemma4.1)$

And we proved the dual of the lemma above.

Lemma 4.3 $(MA+c=w_{2})$ Let $D_{w_{1}}$ be the $w_{2}$ -stage finite support iteration

of the Hechler forcing notion. Then it holds that $|\vdash m_{w_{2}}$

“
$\forall f\in w\omega(non(\mathcal{I}_{f})=$

$\omega_{2})$ and $cof(\mathcal{M})=\omega_{1}$ ”.

Proof of Lemma 4.3 This lemma is proved by the same way as the
lemma 4.1. $\square (Lemma4.3)$

By these results, we have the following consistency results.

Corollary 4.4 $CoN(supcov<non(\mathcal{M}))$ and $CoN(minadd<add(\mathcal{M}))$ . $\square$

Corollary 4.5 $CoN(minnon>cov(\mathcal{M}))$ and CON(supcof $>cof(\mathcal{M})$ ). $\square$

Also we studied about the consistency problems between the cardinal
invariants of $\mathcal{I}_{fo}$ for each function $f_{0}\in ww$ and the minimum or supremum
of the cardinal invariants of $\mathcal{I}_{f}$ for all $f\in\omega\omega$ . We obtained the following
results for the covering number and uniformity.

Theorem 4.6 (CH) For all stri ctly increasing functions $g\in\nu w$ there $e$ vist
a stri ctly increasing jfunction $f\in ww$ and a forcing notion $\mathbb{P}$ which $8atisfies$

countable chain condition such that. $|\vdash rcov(\mathcal{I}_{f})>cov(\mathcal{I}_{g})$ . $\square$

Theorem 4.7 $(MA+c=w_{2})$ For all strictly increasing functions $g\in ww$

there exist a strictly increasing function $f\in w\omega$ and a forcing notion $\mathbb{Q}$

which satisfies countable chain condition such that $|\vdash Qnon(\mathcal{I}_{f})<non(\mathcal{I}_{9})$ .
口
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By these theorem, we can obtain the following corollary immediately.

Corollary 4.8 $CoN$ ( $\exists f$ (supcov $>cov(\mathcal{I}_{f})$ )) and CON ( $\exists f$ (minnon $<non(\mathcal{I}_{f}))$).
口

About the covering number and uniformity, we obtain some results. But
we have no consistency results between the invariants of each $\mathcal{I}_{f}$ and the
minimum (or supremum) of the invariants of all $\mathcal{I}_{f}$ about the additivity(or

cofinality).

Question 4.9 Is it consistent that there is a stnctly increasing function $f\in$

$ww$ such that minadd $<add(\mathcal{I}_{f})$ ? And is it consistent that there is a stri ctly
increasing function $f\in w\omega$ such that supcof $>cof(\mathcal{I})$ ?

Next, we introduce the consistency results between the strong measure
zero ideal and the ideals $\mathcal{I}_{f}$ . We have the three inequalties, that is, minadd $\leq$

$add(S\mathcal{N})$ and supcov $\leq cov(S\mathcal{N})$ and $cof(SN)\leq 2^{l}$ . (The minimum of the
uniformity of the ideais $\mathcal{I}_{f}$ is equal to the uniformity of the strong measure
zero ideal $S\mathcal{N}.$ )

As the results related to the additivity and covering number, the following

results is known.

Fact 4.10 (Bartoszy\’{n}ski [3]) (CH) Let $EE_{wz}$ be the $\omega_{2}$ -stage countable
support iteration of the eventually equal forcing notion. Then

$1\vdash BE_{w_{2}}cof(\mathcal{M})\square$

$=w_{1}$ and add $(S\mathcal{N})=\omega_{2}$ .

By minadd $\leq supcov\leq cof(\mathcal{M})$ , the following corollary can be obtained
immediately.

Corollary 4.11 $CoN(minadd<add(S\mathcal{N}))$ and $CoN(supcov<cov(S\mathcal{N}))$ .
口

About the cofinality of the strong measure zero ideal $S\mathcal{N}$ , the following

fact is known.

Fact 4.12 (T. Yorioka [2]) CH implies $cof(S\mathcal{N})=\mathfrak{d}_{w_{1}}$ , where $\mathfrak{d}_{w_{1}}$ is the

dominating number for the fimctiom in $w_{1}\omega_{1}$ . $\square$
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By $w_{2}\leq \mathfrak{d}_{w_{1}}\leq 2^{w_{1}}$ , GCH implies that the cofinality of the strong measure
zero ideal $S\mathcal{N}$ is equal to $2^{\theta}$ .

Also, the cofinality of the strong measure zero ideal $S\mathcal{N}$ is equal to the
continuum in the model satisfying the Borel conjecture. And it is consistent
that the Borel conjecture holds and the dominating number $\mathfrak{d}$ is equal to
the continuum. (By using the $w_{2}$-stage countable support iteration of the
Mathias forcing notlon, we can obtai a model in which the Borel conjecture
holds and the dominating number $\mathfrak{d}$ is equal to the continuum [7].) So it is
consistent that $cof(S\mathcal{N})<2^{\mathfrak{d}}$ .
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