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ABSTRACT. We construct a new model of ZFC in which $\omega_{1}$ carries
a saturated Mter.

1. INTRODUCTION

In the groundbreaking work [8] Kunen established

Theorem 1. If there is a huge cardinal, there is a forcing extension in
which $w_{1}$ cames a saturated filter.

See $[5, 6]$ for detailed expositions of Kunen’s proof.
In these notes we present a model as in Theorem 1 that can be

defined simply. This would make it easier to analyze the model in
detail. Moreover the method of the proof is expected to work for other
problems.

2. PRELIMINARIES

We refer the reader to [7] for background material. Throughout the
paper $\kappa$ denotes a regular cardinal. By a filter on $\kappa$ we mean a normal
one. We say that a filter on $\kappa$ is saturated if it is $\kappa^{+}$-saturated.

Suppose that $P$ and $Q$ are posets. We say that a map $\pi:Parrow Q$ is
a projection if

$\bullet$ $\pi$ is order-preserving, i.e. $p’\leq p$ implies $\pi(p’)\leq\pi(p)$ , and
$\bullet$ if $q\leq\pi(p)$ , then there is $p^{*}\leq p$ with $\pi(p^{*})\leq q$.

SuPpose that $\pi$ : $Parrow Q$ is a projection. Then it is easy to see
that if $D$ is dense open in $Q,$ $\pi^{-1}(D)$ is dense in $P$ . So if G C $P$ is
generic, $\pi G$ generates a generic filter over $Q$ . We say that a projection
$\pi$ : $Parrow Q$ is total if ran $\pi$ is dense (or equivalently predense) in $Q$ .
Note that a projection $\pi:Parrow Q$ is total if $\pi(1_{P})=1_{Q}$ .
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Lemma 1. If there is a total projection from $\pi$ : $Parrow Q$ , then $Q$ can
be completely embedded into $B(P)$ , the completion of $P$ .

Proof. Since $\pi$ is total, we can define $e:Qarrow B(P)-\{0\}$ by

$e(q)= \sum\{p : \pi(P)\leq q\}$ .
It is easy to check that $e$ is a complete embedding. $\square$

Suppose that $\mu$ is a cardinal and that $\{S_{i} : i\in I\}$ is a nonempty set
of posets. We write $\prod\{S_{i}\mu : i\in I\}$ for the $\mu$-product of $\{S_{i} : i\in I\}$ , i.e.

$\prod\{S_{i}\mu : i\in I\}=\cup\{\prod_{i\in d}S_{i}$ : $d\in[I]<\mu\}$ .
$\prod\{S_{i}\mu : i\in I\}$ is ordered by: $s’\leq s$ iff dom $s’\supset doms$ and $s’(i)\leq s(i)$

in $S_{i}$ for every $i\in I$ .

3. MODIFYING THE SILVER COLLAPSE

In [9] Silver defined a variation of the Levy collapse, now called the
Silver collapse. This section introduces a modification of the Silver
collapse and establishes its basic properties.

Suppose that $\lambda$ is an inaccessible cardinal $>\kappa$ . $S(\kappa, \lambda)$ denotes the
set of all functions of the form $s$ : $\delta\cross darrow\lambda$ , where

$\bullet\delta<\kappa$ ,
$\bullet$ $d$ is a set of $\kappa$-closed cardinals $<\lambda$ of size $\leq\kappa$ , and
$\bullet$ $s(\eta, \nu)<\nu$ for every $(\eta, \nu)\in\delta\cross d$ .

Here a cardinal $\nu$ is $\kappa$-closed if $\nu^{<\kappa}=\nu>\kappa$ . $S(\kappa, \lambda)$ is ordered by
reverse inclusion: $s’\leq s$ iff $s’\supset s$ . Standard arguments show that

Lemma 2. $S(\kappa, \lambda)$ is $\kappa$ -closed, has $\lambda- cc$ and forces $\lambda=\kappa^{+}$ .
Also note that if $P$ has $\kappa- cc$ and size $\kappa$ , forcing with $P$ does not

change the class of $\kappa$-closed cardinals.
Here is the main result of this section:

Lemma 3. SuPpose that $P$ has $\kappa- cc$ and size $\kappa$ . Then there is a total
projection from $P\cross S(\kappa, \lambda)$ to $P*\dot{S}(\kappa, \lambda)$ that is the identity on the
first coordinate.

Proof. Since $P$ has $\kappa- cc$ and size $\kappa$ , if $\nu$ is a cardinal, there exist at
most $\nu<\kappa$ representatives from the P-names $\dot{\tau}$ such that $1\vdash P\dot{\tau}<\nu$ . So
if $\nu$ is a $\kappa$-closed cardinal, there exist exactly $\nu$ representatives from
the P-names $\dot{\tau}$ such that $|\vdash p\dot{\mathcal{T}}<\nu$ . Note that a $\kappa$-closed cardinal has
cofinality $\geq\kappa$ . Hence if $\nu$ is $\kappa$-closed and $|\vdash p\dot{\mathcal{T}}<\nu$ , then $|\vdash p\dot{\mathcal{T}}<\gamma$ for
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some $\gamma<\nu$ . Thus we can list as $\{\dot{\tau}_{\xi} : \xi<\lambda\}$ a set of P-names so that
for every $\kappa$-closed cardinal $\nu\leq\lambda$

$\bullet$ if $\xi<\nu$ , then $|\vdash p\dot{\mathcal{T}}_{\zeta}<\nu$ and
$\bullet$ if $|\vdash p\dot{\mathcal{T}}<\nu$ , then $|\vdash p\dot{\mathcal{T}}=\dot{\tau}_{\xi}$ for some $\xi<\nu$ .

Define
$\pi$ : $P\cross S(\kappa, \lambda)arrow P*\dot{S}(\kappa, \lambda)$

by
$\pi(p, s)=(p,\dot{s})$ ,

where $\dot{s}$ is a P-name such that $|\vdash P\dot{s}\in\dot{S}(\kappa, \lambda)$ as follows: Since $s\in$

$S(\kappa, \lambda)$ , there are $\delta$ and $d$ such that
$\bullet$ dom $s=\delta\cross d$ ,
$\bullet$ $\delta<\kappa$ and
$\bullet$ $d$ is a set of $\kappa$-closed cardinals $<\lambda$ of size $\leq\kappa$ .

Define a P-name $\dot{s}$ so that $P$ forces
$\bullet$ dom $\dot{s}=\delta\cross d$ and
$\bullet$ $\dot{s}(\eta, \nu)=\dot{\tau}_{s(\eta,\nu)}$ for every $(\eta, \nu)\in\delta\cross d$ .

Note that $|\vdash P\dot{s}(\eta, \nu)<\nu$ for every $(\eta, \nu)\in\delta\cross d$ by $s(\eta, \nu)<\nu$ and
the choice of $\{\dot{\tau}_{\xi} : \xi<\lambda\}$ . Also $d$ remains a set of $\kappa$-closed cardinals
after forcing with $P$ . Thus $P$ forces $\dot{s}\in\dot{S}(\kappa, \lambda)$ .
Claim. $\pi$ is a total projection.

Proof. Since $\pi(1_{P}, \emptyset)=(1_{P}, \emptyset)$ , it remains to prove that $\pi$ is a projec-
tion. It is easy to see that $\pi$ is order-preserving.

SuPpose that $(p, s)\in P\cross S(\kappa, \lambda)$ and $(q, i)\leq\pi(p, s)$ in $P*\dot{S}(\kappa, \lambda)$ .
We need to find $(p^{*}, s^{*})\in P\cross S(\kappa, \lambda)$ such that $(p^{*},s^{*})\leq(p, s)$ and
$\pi(p^{*}, s^{*})\leq(q, i)$ . Let $p^{*}=q$ . It remains to give $s^{*}\in S(\kappa, \lambda)$ such that
$s^{*}\leq s$ and $\pi(p^{*}, s^{*})\leq$. $(p^{*}, i)$ .

Since $P$ forces $i\in S(\kappa, \lambda)^{P}$ , there are P-names $\dot{\delta}$ and $\dot{d}$ such that $P$

forces
$\bullet$ dom $i=\dot{\delta}\cross\dot{d}$ ,
$\bullet$

$\dot{\delta}<\kappa$ and
$\bullet$

$\dot{d}$ is a set of $\kappa$-closed cardinals $<\lambda$ of size $\leq\kappa$ .
Since $P$ has $\kappa- cc$ , there is $\delta^{*}<\kappa$ such that $|\vdash P\dot{\delta}<\delta^{*}$ . Since $P$ does
not change the class of $\kappa$-closed cardinals, there is a set d’ of $\kappa$-closed
cardinals $<\lambda$ of size $\leq\kappa$ such that $|\vdash Pd\subset d^{*}$ . Moreover since

$|\vdash Pi\in\dot{S}(\kappa, \lambda)$ and dom $i=\dot{\delta}\cross\dot{d}\subset\delta^{*}\cross d^{*}$ ,

there is a P-name $i^{*}$ such that
$|\vdash Pi^{*}:$ $\delta^{*}xd^{*}arrow\lambda$ is in $\dot{S}(\kappa, \lambda)$ and $i^{u}\leq i$ .
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Since
$(p^{*}, i)\leq(q, i)\leq\pi(p, s)$ in $P*\dot{S}(\kappa, \lambda)$ ,

we have $p^{*}|\vdash p$ dom $s\subset$ dom $i$ . Hence by $|\vdash P$ dom $i\subset\delta^{*}\cross d^{*}$ , we have
dom $s\subset\delta^{*}\cross d^{*}$ . Define $s^{*}$ : $\delta^{*}\cross d^{*}arrow\lambda$ so that

$\bullet$ $s^{*}|doms=s$ and
$\bullet$ if $(\eta, \nu)\not\in$ dom $s$ , then $s^{*}(\eta, \nu)$ is the minimal $\xi$ such that $P$

forces
$\dot{\tau}_{\xi}=i’(\eta, \nu)$ .

We claim that $s’\in S(\kappa, \lambda)$ . Note that this implies $s^{*}\leq s$ by
$s^{*}|doms=s$ . First recall that $\delta^{*}<\kappa$ and d’ is a set of $\kappa$-closed
cardinals $<\lambda$ of size $\leq\kappa$ . It remains to prove that $s^{*}(\eta, \nu)<\nu$ for
every $(\eta, \nu)\in\delta^{*}\cross d^{*}$ . If $(\eta, \nu)\in doms$ , then $s’(\eta, \nu)=s(\eta, \nu)<\nu$ by
$s\in S(\kappa, \lambda)$ . If $(\eta, \nu)\not\in doms$ , the conclusion follows $homI\vdash pi^{*}(\eta, \nu)<$

$\nu$ and the choice of $\{\dot{\tau}_{\xi} : \xi<\lambda\}$ .
Finally we prove that $\pi(p^{*}, s^{*})\leq(p’, i)$ in $P*\dot{S}(\kappa, \lambda)$ . Let $\pi(p^{*}, s^{*})=$

$(p’,\dot{s}^{*})$ . It suffices to show that $p^{*}|\vdash P\dot{s}’\leq i$ . First recall that $P$

forces dom $i\subset\delta^{*}\cross d^{*}=$ dom $s’=$ dom $\dot{s}$’. It remains to prove that
$p^{*}|\vdash p\dot{s}^{*}|$ dom $i=i$ . First note that for every $(\eta, \nu)\in doms$

$P^{*}P\cdot$
The second equality follows from $s^{*}|doms=s$ , and the third from
$(p^{*},i)\leq\pi(p, s)$ . Next $P$ forces that for every $(\eta, \nu)\in domi$ -dom $s$

$\dot{s}^{*}(\eta, \nu)=\dot{\tau}_{s(\eta,\nu)}=i^{*}(\eta, \nu)=i(\eta, \nu)$ .
To see the second equality, recall that $P$ forces dom $i\subset\delta^{*}\cross d^{*}$ and
$\dot{\tau}_{s(\eta,\nu)}=i^{*}(\eta, \nu)$ for every $(\eta, \nu)\in\delta^{*}\cross d$

’ -dom $s$ . The third equality
follows from $|\vdash Pi’\leq i$ . $\square$

This completes the proof. 口

Remark 1. For a P-name $\dot{S}$ for a poset let $T(\dot{S})$ be the term space,
i.e. the set of canonical representatives from $\{\dot{s} : |\vdash p\dot{s}\in\dot{S}\}$ ordered
by: $\dot{s}’\leq\dot{s}$ iff $|\vdash P\dot{s}’\leq\dot{s}$ in $\dot{S}$ . It is known (and easy to see) that
id: $P\cross T(\dot{S})arrow P*S$ is a total projection. See [2] for details. The
method of the proof of Lemma 3 shows that if $P$ has $\kappa- cc$ and size $\kappa$ ,
$S(\kappa, \lambda)$ is isomorphic to

{ $\dot{s}\in T(\dot{S}(\kappa,$ $\lambda)):\exists\delta<\kappa\exists d\subset\lambda|\vdash p$ dom $\dot{s}=\delta\cross d$},

which is dense in $T(\dot{S}(\kappa, \lambda))$ .
Remark 2. The results in this section should be valid with the modified
Silver collapse replaced by a suitable modification of the Levy collapse.
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4. MAIN THEOREM

This section is devoted to a proof of

Theorem 2. Suppose that $\kappa$ is huge and $\mu$ is a regular cardinal $<\kappa$ .
Then there is a forcing extension in which $\kappa=\mu^{+}$ and $\kappa ca7\tau ies$ a
saturated filter.
Proof. Let $j:Varrow M$ be a huge embedding with critical point $\kappa$ and
$\lambda=j(\kappa)$ . Define

$P= \prod^{\mu}\{S(\alpha, \kappa)$ : $\alpha\in\{\mu, \kappa)\cap Reg\}$ .
It is easy to see that $P\subset V_{\kappa}$ is $\mu$-closed and has size $\kappa$ .
Claim. $P$ has $\kappa- cc$ .

Proof. Let $A\in[P]^{\kappa}$ . We need to find distinct $s,$ $t\in A$ such that $s(\alpha)$

and $t(\alpha)$ agree on dom $s(\alpha)\cap domt(\alpha)$ for every $\alpha\in doms\cap$ dom $t$ .
Since $\kappa$ is inaccessible and $|doms|<\mu<\kappa$ for $s\in A$ , there is

$B\in[A]^{\kappa}$ such that {dom $s$ : $s\in B$} forms a $\Delta$-system. Let $r$ be
the root. Since $|r|<\mu$ , there is $\beta<\kappa$ with $r\subset\beta$ . For $s\in B$ and
$\alpha\in r$ let dom $s(\alpha)=\delta_{\alpha}^{s}\cross d_{\alpha}^{s}$ . Then $\delta_{\alpha}^{\delta}<\alpha<\beta$ and 1 $d_{\alpha}^{\delta}|\leq\alpha<\beta$.
Since $\kappa$ is inaccessible, there are $C\in[B]^{n}$ and $\langle\delta_{\alpha} : \alpha\in r\rangle$ such that
$\langle\delta_{\alpha}^{s} : \alpha\in r\rangle=\langle\delta_{\alpha} : \alpha\in r\rangle$ for every $s\in C$ and $\{\bigcup_{\alpha\in r}\{\alpha\}\cross d_{\alpha}^{\epsilon} : s\in C\}$

forms a $\Delta$-system. Let $\bigcup_{\alpha\in r}\{\alpha\}\cross d_{\alpha}$ be the root. Since $|r|<\mu$

and $d_{\alpha}\in[\kappa]<\beta$ for $\alpha\in r$ , there is $\gamma<\kappa$ with $\bigcup_{\alpha\in r}d_{\alpha}\subset\gamma$ . Then
$s(\alpha)(\delta_{\alpha}\cross d_{\alpha})\subset\gamma$ for every $\alpha\in r$ . Since $\kappa$ is inaccessible, there is
$D\in[C]^{\kappa}$ such that $s\vdasharrow\langle s(\alpha)|(\delta_{\alpha}\cross d_{\alpha}) : \alpha\in r\rangle$ is constant on $D$ . Now
it is easy to check that any two elements of $D$ are as desired. $\square$

Since $S(\mu, \kappa)$ can be completely embedded into $P,$ $P$ forces $\kappa=\mu^{+}$ .
Thus $P*\dot{S}(\kappa, \lambda)$ forces $\lambda=\kappa^{+}=\mu^{++}$ .
Claim. $P*\dot{S}(\kappa, \lambda)$ forces that $\kappa$ cames a saturated filter.
Proof. Since $\lambda M\subset M$ , we have

$j(P)= \prod${ $S(\alpha,$
$\lambda)\mu$ : $\alpha\in[\mu,$ $\lambda)\cap$ Reg}.

Define $\varphi:j(P)arrow P\cross S(\kappa, \lambda)$ by
$\varphi(t)=(\langle t(\alpha)|(\alpha\cross\kappa):\alpha\in domt\cap\kappa\rangle,t(\kappa))$ .

(It is understood that $t(\kappa)=\emptyset$ if $\kappa\not\in$ dom $t.$ ) It is easy to check
that $\varphi$ is a total Projection. By Lemma 3 there is a total projection
$\pi$ : $P\cross S(\kappa, \lambda)arrow P*S(\kappa, \lambda)$ that is the identity on the first coordinate.

67



Let $\overline{G}\subset j(P)$ be V-generic. Since $\varphi$ is a projection, $\varphi\overline{G}$ generates
a V-generic filter in $P\cross S(\kappa, \lambda)$ that has the form $G\cross H$ . Since $\pi$ is a
projection, $\pi(G\cross H)$ generates a V-generic filter in $P*\dot{S}(\kappa, \lambda)$ . Since
$\pi$ is the identity on the first coordinate, the generated filter has the
form $G*K$ . Note that $jG=G\subset\overline{G}$ by $P\subset V_{\kappa}$ . Hence we can extend
$j$ to $j$ : $V[G]arrow M[\overline{G}]$ in $V[\overline{G}]$ . SInce $j(P)$ has $\lambda- cc$ and $\lambda MCM$ in
$V$ , we have $\lambda M[\overline{G}]\subset M[\overline{G}]$ in $V[\overline{G}]$ .

The rest of the proof is essentially the same as that of Kunen, so we
just give an outline. In $V[G]$ let $\{X_{\xi} : \xi<\lambda\}$ list the set of $S(\kappa, \lambda)-$

names for subsets of $\kappa$ . In $V[\overline{G}]$ let

$s^{*}=\cup jK$ .

The standard arguments show that $s^{*}\in S(\lambda,j(\lambda))^{M[q}$ . Since $\lambda M[\overline{G}]\subset$

$M[\overline{G}]$ in $V[\overline{G}]$ , we get a desending sequence $\{s_{\xi}. : \xi<\lambda\}\subset S(\lambda,j(\lambda))^{M[\overline{q}}$

such that $s_{0}\leq s^{*}$ and each $s_{\xi}$ decides $\kappa\in j(X_{\xi})$ . Then in $V[\overline{G}]$

$U=\{(\dot{X}_{\xi})_{\kappa!S_{\xi}}|\vdash\kappa\in j(\dot{X}_{\xi})\}$

is a $V[G][K]$-ultrafilter on $\kappa$ . Since $P*\dot{S}(\kappa, \lambda)$ can be completely
embedded into $B(j(P))$ and $\overline{G}$ is arbitrary, there is a $j(P)/(G*K)-$
name $\dot{U}$ such that in $V[G][K]$

$j(P)/(G*K)|\vdash\dot{U}$ is a $V[G][K]$-ultrafilter on $\kappa$ .

Now in $V[G][K]$

$F=\{X\subset\kappa:j(P)/(G*K)|\vdash X\in\dot{U}\}$

is a filter on $\kappa$ . It is easy to check that $X \ovalbox{\tt\small REJECT}\mapsto\sum\{p : p|\vdash X\in\dot{U}\}$

defines a complete embedding ffom $F^{+}$ into $B(j(P)/(G*K))$ . Since
$j(P)/(G*K)$ has $\lambda- cc,$ $F$ is saturated. $\square$

This completes the proof. 口

Remark 3. Suppose that $\kappa$ is huge with target $\lambda$ . Then it is easy to
see that $\lambda$ is a Woodin cardinal. Refining a result of [4], Todor\v{c}evi\v{c}
showed that if $\lambda$ is Woodin, the Levy collapse Co1 $(\omega_{1)}\lambda)$ produces a
saturated filter on $\omega_{1}$ (see [1]). In contrast Co1 $(\omega_{2}, \lambda)$ does not neces-
sarily produce a saturated filter on $\omega_{2}$ (see [3]). On the other hand the
Todor\v{c}evic result implies that the iteration Co1$(\omega, \kappa)*Co1(\kappa, \lambda)$ pro-
duces a saturated filter on $\omega_{1}$ . It appears unknown, however, whether
the iteration Co1 $(\omega_{1}, \kappa)*Co1(\kappa, \lambda)$ produces a saturated filter on $\omega_{2}$ .
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