THE INEQUALITY $\mathfrak{b}>\aleph_{1}$ CAN BE CONSIDERED AS AN ANALOGUE OF SUSLIN＇S HYPOTHESIS

TERUYUKI YORIOKA
依圆旗吾／静間大学

Abstract

In［3］，the author introduced a chain condition，called the anti－ rectangle refining property，of forcing notions and the statement $\neg \mathcal{C}$（arec）that We show that every forcing notion with the anti－rectangle refining property has an uncountable antichain．Since a typical example of a forcing notion with the anti－rectangle refining property is an Aronszajn tree，$\neg \mathcal{C}$（arec）is a generalization of Suslin＇s Hypothesis．We show that $-\mathcal{C}$（arec）implies that the bounding number is larger than \aleph_{1} ，that is，this statement can be considered as an analogue of Suslin＇s Hypothesis．

1．Introduction

The author investigated several fragments of Martin＇s Axiom in［3］．Fragments of Martin＇s Axiom were studied mainly by Stevo Todorčević in 1980＇s，and many applications are discovered（see［2］and his many other articles）．In this manuscript， we give a proof of one question in this area as follows．

We explain some notions in［3］．A forcing notion \mathbb{P} has the anti－rectangle refining property if for any uncountable subset I and J of \mathbb{P} ，there exists uncountable subsets I^{\prime} and J^{\prime} of I and J respectively such that for every $p \in I^{\prime}$ and $q \in J^{\prime}, p$ and q are incompatible in \mathbb{P} ．$\neg \mathcal{C}(\operatorname{arec})$ is the statement that every forcing notion with the anti－ rectangle refining property has an uncountable antichain．Since an Aronszajn tree has the anti－rectangle refining property，$\neg \mathcal{C}$（arec）can be considered a generalization of Suslin＇s Hypothesis．In fact，$\neg \mathcal{C}$（arec）implies Suslin＇s Hypothesis and that every （ ω_{1}, ω_{1} ）－gaps are indestructible．The author would like to find other examples of a generalization of Suslin＇s Hypothesis，that is，other statements about combinatorics on ω_{1} which is deduced from $\neg \mathcal{C}$（arec）．One candidate is the statement that the bounding number \mathfrak{b} is larger than \aleph_{1} ．

We had already known that $\mathcal{K}_{2}($ rec $)$ ，which is a weak fragments of Martin＇s Axiom and implies $\neg \mathcal{C}$（arec），implies that $\mathfrak{b}>\aleph_{1}$ ．So it is naturally arisen a question that $\neg \mathcal{C}$（arec）implies $\mathfrak{b}>\aleph_{1}$ ．In this manuscript，we show a positive answer of this question，that is \mathcal{C}（arec）implies that $\mathfrak{b}>\aleph_{1}$ in section 3.

A proof of the theorem is self contained in this manuscript，however I omit some proofs of well known results in section 2．All of them are written in［3］or［1］．

2．A reason why we will prove as below

At first，we will see a proof that $\mathcal{K}_{2}($ rec $)$ implies $\mathfrak{b}>\mathcal{K}_{1}$ ．A partition $\left[\omega_{1}\right]^{2}=$ $K_{0} \cup K_{1}$ has the rectangle refining property if for any uncountable subset I and

[^0]
TERUYUKI YORIOKA

J of ω_{1}, there exist uncountable subsets I^{\prime} and J^{\prime} of I and J respectively such that for every $\alpha \in I^{\prime}$ and $\beta \in J^{\prime}$, if $\alpha<\beta$, then $\{\alpha, \beta\} \in K_{0}$. We note that the rectangle refining property is a strong property than the countable chain condition. $\mathcal{K}_{2}(\mathrm{rec})$ is the statement that every partition $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ with the rectangle refining property has an uncountable K_{0}-homogeneous set. We note that \mathcal{K}_{2} (rec) is deduced from Martin's Axiom for \aleph_{1}-dense sets, and \mathcal{K}_{2} (rec) implies $\neg \mathcal{C}$ (arec).

Let $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ be a set of strictly increasing functions from ω into ω such that for every ξ and η in ω_{1}, if $\xi<\eta$, then $f_{\xi} \leq * f_{\eta}$, i.e. there exists $m \in \omega$ such that for all $n \geq m, f_{\xi}(n) \leq f_{\eta}(n)$. For this family, we define a partition $\left[\omega_{1}\right]^{2}=K_{0} \cup K_{1}$ by letting $\{\xi, \eta\} \in K_{0}$ iff there exists m and n in ω such that $f_{\xi}(m)<f_{\eta}(m)$ and $f_{\eta}(n)<f_{\xi}(n)$. We call that F is unbounded when for every function g in ω^{ω}, there exists $f \in F$ such that $f \mathbb{Z}^{*} g$. We note that if F is unbounded, then this partition has the rectangle refining property. (This follows from Lemma 3.2 below.) However, in [1, Lemma 16], if F is unbounded, since an uncountable subset of F is also unbounded, for every uncountable subset F^{\prime} of F, there are two functions f and g in F such that g dominates f everywhere, i.e., for every $n \in \omega, f(n) \leq g(n)$. Therefore, $\mathcal{K}_{2}(\mathrm{rec})$ implies $\mathfrak{b}>\mathcal{K}_{1}$.

So to try to prove that $\mathcal{\mathcal { C }}$ (arec) implies $\mathfrak{b}>\aleph_{1}$, it seems to be natural to modify the argument above. Let \mathbb{P}^{\prime} be a forcing notion which consists of finite subsets σ of ω_{1} such that the set $\left\{f_{\xi} ; \xi \in \sigma\right\}$ is totally ordered by the dominance everywhere, i.e., for every $\xi \in \sigma$ and $n \in \omega$, $\max \left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\} \leq f_{\xi}(n)$, ordered by the reverse inclusion. As the above partition has the rectangle refining property, we note that \mathbb{P}^{\prime} has the anti-rectangle refining property if F is unbounded. So if we show that \mathbb{P}^{\prime} is ccc whenever F is unbounded, we conclude that F doesn't have to be unbounded. However, unfortunately, in general, \mathbb{P}^{\prime} does not have the ccc even if F is unbounded. For example, if the set $\left\{\left\{\xi_{\zeta}, \eta_{\zeta}\right\} ; \zeta \in \omega_{1}\right\}$ is a subset of \mathbb{P}^{\prime} such that

- for any $\zeta<\zeta^{\prime}$ in $\omega_{1}, \xi_{\zeta}<\eta_{\zeta}<\xi_{\zeta^{\prime}}$, and
- for any $\zeta \in \omega_{1}, f_{\xi_{\zeta}}(0)=0$ and $f_{\eta_{\zeta}}(1)=1$,
then it is an uncountable antichain in \mathbb{P}^{\prime}.
In section 3, we define a forcing notion \mathbb{P} which is a modification of \mathbb{P}^{\prime} and show that (Lemma 3.2) \mathbb{P} has the anti-rectangle refining property whenever F is unbounded, and (Lemma 3.3) \mathbb{P} has the countable chain condition whenever F is unbounded. This completes the proof of our theorem.

3. A proof

Throughout this section, let $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ be a set of strictly increasing functions from ω into ω such that for every ξ and η in ω_{1}, if $\xi<\eta$, then $f_{\xi} \leq^{*} f_{\eta}$. We define a forcing notion \mathbb{P} which consists of finite subsets σ of ω_{1} such that for every $\xi \in \sigma$ and $n \in \omega$, either $\max \left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\} \leq f_{\xi}(n)$ or $f_{\xi}(n) \in$ $\left\{f_{\zeta}(n) ; \zeta \in \sigma \cap \xi\right\}$, ordered by the reverse inclusion.

Proposition 3.1. Suppose that $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded. Then there exists $e \in \omega$ such that for every $n \in \omega \backslash e$ and $k \in \omega$, the set $\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k\right\}$ is uncountable.

$$
\neg \mathcal{C}(\text { arec }) \Rightarrow \mathrm{b}>\kappa_{1}
$$

Proof. Assume not, i.e. there exists an infinite set Z of natural numbers such that for every $n \in Z$, there exists $k_{n} \in \omega$ such that the set $\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k_{n}\right\}$ is countable. Let $\delta \in \omega_{1}$ be such that for all $n \in Z,\left\{\xi \in \omega_{1} ; f_{\xi}(n) \geq k_{n}\right\}$ is a subset of δ. Let $\left\{n_{i} ; i \in \omega\right\}$ be an increasing enumeration of Z, and we define a function g on ω by

$$
g(m):=\max \left(\left\{f_{\delta}(m)\right\} \cup\left\{k_{n_{i}} ; i \in m+1\right\} \cup\{g(i)+1 ; i \in m\}\right)
$$

for each $m \in \omega$. We notice that for each $\xi \in \delta, f_{\xi} \leq^{*} g$. Moreover for each $\xi \in \omega_{1} \backslash \delta$ and $m \in \omega$, since $m \leq n_{m}$,

$$
f_{\xi}(m) \leq f_{\xi}\left(n_{m}\right)<k_{n_{m}} \leq g(m)
$$

So F is bounded by g, which is a contradiction.
Lemma 3.2. If $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded, then \mathbb{P} has the anti-rectangle refining property.
Proof. Let I and J be uncountable subsets of \mathbb{P}. By shrinking I and J if necessary, we may assume that

- I forms a Δ-system with a root μ, and J also forms a Δ-system with a root ν,
- all members of I has the same size, and all members of J also has the same size,
- for any $\sigma \in I$ and $\tau \in J$,
$\max (\mu \cup \nu)<\min (\sigma \backslash \mu), \quad \max (\mu \cup \nu)<\min (\tau \backslash \nu), \quad(\sigma \backslash \mu) \cap(\tau \backslash \nu)=\emptyset$,
- there exists $e \in \omega$, such that for every $\sigma \in I$ and $\tau \in J$ and $n \geq e$,

$$
\max \left(\left\{f_{\zeta}(n) ; \zeta \in \mu \cup \nu\right\}\right)<\min \left(\left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\}\right)
$$

and

$$
\max \left(\left\{f_{\zeta}(n) ; \zeta \in \mu \cup \nu\right\}\right)<\min \left(\left\{f_{\eta}(n) ; \eta \in \tau \backslash \nu\right\}\right) .
$$

We notice that for every $A \in\left[\omega_{1}\right]^{\kappa_{1}}$, the set $\left\{f_{\xi} ; \xi \in A\right\}$ is unbounded. So by the previous lemma, there exists $e_{0} \geq e$ such that for every $k \in \omega$, the set

$$
\left\{\sigma \in I ; \min \left(\left\{f_{\xi}\left(e_{0}\right) ; \xi \in \sigma \backslash \mu\right\}\right) \geq k\right\}
$$

is uncountable. Let J^{\prime} be uncountable subset of J and $k_{0} \in \omega$ such that for every $\tau \in J^{\prime}$,

$$
\max \left(\left\{f_{\eta}\left(e_{0}\right) ; \eta \in \tau\right\}\right) \leq k_{0},
$$

and then we take an uncountable subset I^{\prime} of I such that for every $\sigma \in I^{\prime}$,

$$
\min \left(\left\{f_{\xi}\left(e_{0}\right) ; \xi \in \sigma \backslash \mu\right\}\right)>k_{0} .
$$

Then we notice that for any $\sigma \in I^{\prime}$ and $\tau \in J^{\prime}$, since $e_{0} \geq e$, if $\tau \nsubseteq \max (\sigma)+1$, then σ and τ are incompatible in \mathbb{P}.

Conversely, by the previous lemma, there exists $e_{1}>e_{0}$ such that for every $k \in \omega$, the set

$$
\left\{\tau \in J^{\prime} ; \min \left(\left\{f_{\eta}\left(e_{1}\right) ; \eta \in \tau \backslash \nu\right\}\right) \geq k\right\}
$$

is uncountable. Let $I^{\prime \prime}$ be uncountable subset of I^{\prime} and $k_{1} \in \omega$ such that for every $\sigma \in I^{\prime \prime}$,

$$
\max \left(\left\{f_{\xi}\left(e_{1}\right) ; \xi \in \sigma\right\}\right) \leq k_{1}
$$

TERUYUKI YORIOKA

and then we take an uncountable subset $J^{\prime \prime}$ of J^{\prime} such that for every $\tau \in J^{\prime \prime}$,

$$
\min \left(\left\{f_{\eta}\left(e_{1}\right) ; \eta \in \tau \backslash \nu\right\}\right)>k_{1} .
$$

Then we notice that, since $e_{1} \geq e$, for any $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}$, if $\sigma \nsubseteq \max (\tau)+1$, then σ and τ are incompatible in \mathbb{P}.

By shrinking $I^{\prime \prime}$ and $J^{\prime \prime}$ if necessary, we may assume that for any $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}$, either $\tau \nsubseteq \max (\sigma)+1$ or $\sigma \nsubseteq \max (\tau)+1$. Then for every $\sigma \in I^{\prime \prime}$ and $\tau \in J^{\prime \prime}, \sigma$ and τ are incompatible in \mathbb{P}.

Lemma 3.3. If $F=\left\{f_{\xi} ; \xi \in \omega_{1}\right\}$ is unbounded, then \mathbb{P} has the countable chain condition.

Proof. Here, for each $\sigma \in \mathbb{P}$, letting $\left\langle\xi_{i} ; i \in\right| \sigma\rangle$ be an increasing enumeration of σ, we denote

$$
\vec{\sigma}:=\left\langle f_{\xi_{i}} ; i \in\right| \sigma| \rangle,
$$

which is a member of the set $\left(\omega^{\omega}\right)^{|\sigma|}$. Let I be an uncountable subset of \mathbb{P}. Without loss of generality, we may assume that

- I forms a Δ-system with a root μ,
- for every σ and τ in I, either $\max (\sigma)<\min (\tau \backslash \mu)$ or $\max (\tau)<\min (\sigma \backslash \mu)$, - there exists $n_{0} \in \omega$ such that for every $n \geq n_{0}, \sigma \in I$ and $\xi \in \sigma \backslash \mu$,

$$
\max \left\{f_{\zeta}(n) ; \zeta \in \mu\right\}<f_{\xi}(n),
$$

- there exists $k \in \omega$ such that for every $\sigma \in I,|\sigma|=k$,
- for every σ and τ in $I, \vec{\sigma}\left|n_{0}=\vec{\tau}\right| n_{0}$, i.e. for each $j \in k$, the initial segment of the j-th element of $\vec{\sigma}$ of length n_{0} is equal to the initial segment of the j-th element of $\vec{\tau}$ of length n_{0}.
Then there exists $\gamma \in \omega_{1}$ such that the set $\left\{\vec{\sigma} ; \sigma \in I \cap[\gamma]^{<\aleph_{0}}\right\}$ is dense in the set $\{\vec{\sigma} ; \sigma \in I\}$ as a subspace of the space $\left(\omega^{\omega}\right)^{k}$. We fix some (any) $\nu \in I \backslash[\gamma]^{<\aleph_{0}}$. For each $\sigma \in I$, we define two functions g_{σ} and h_{σ} on ω as follows: For each $n \in \omega$,

$$
g_{\sigma}(n):=\max \left\{f_{\xi}(n) ; \xi \in \sigma\right\}\left(=\max \left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\}\right),
$$

and

$$
h_{\sigma}(n):=\min \left\{f_{\xi}(n) ; \xi \in \sigma \backslash \mu\right\} .
$$

We notice that for σ and τ in I, if $\max (\sigma)<\min (\tau \backslash \mu)$, then $g_{\sigma} \leq h_{\tau}$. So we can find $n_{1} \geq n_{0}$ and $I^{\prime} \in\left[I \backslash[\gamma]^{<\aleph_{0}}\right]^{N_{1}}$ such that for every $\tau \in I^{\prime}$ and $n \geq n_{1}$, $g_{\nu}(n) \leq h_{\tau}(n)$, and for every τ and τ^{\prime} in $I^{\prime}, \vec{\tau}\left|n_{1}=\overrightarrow{\tau^{\prime}}\right| n_{1}$. Since F is unbounded and I^{\prime} is uncountable, the set $\left\{h_{\tau} ; \tau \in I^{\prime}\right\}$ is unbounded. Hence there exists $n \geq n_{1}$ such that the set $\left\{h_{\tau}(n) ; \tau \in I^{\prime}\right\}$ is infinite. Let

$$
n_{2}:=\min \left\{n \in\left[n_{1}, \omega\right) ;\left\{h_{\tau}(n) ; \tau \in I^{\prime}\right\} \text { is infinite }\right\} .
$$

By the minimality of n_{2}, we can take $\vec{t} \in\left(\omega^{n_{2}}\right)^{k}$ and infinite $I^{\prime \prime} \subseteq I^{\prime}$ such that

- for all $\tau \in I^{\prime \prime}, \vec{t} \subseteq \vec{\tau}$, i.e. for every $j \in k$, the j-th member of \vec{t} is an initial segment of the j-th member of $\vec{\tau}$,
- the set $\left\{h_{\tau}(n) ; \tau \in I^{\prime \prime}\right\}$ is infinite.

BIBLIOGRAPHY

By our assumption, there exists $\sigma \in I \cap[\gamma]^{<\aleph_{0}}$ such that $\vec{t} \subseteq \vec{\sigma}$. Then there is $n_{3} \geq n_{2}$ such that for every $n \geq n_{3}, g_{\sigma}(n) \leq g_{\nu}(n)$, and take $\tau \in I^{\prime \prime}$ such that $g_{\nu}\left(n_{3}\right)<h_{\tau}\left(n_{2}\right)$.

We will show that for every $n \geq n_{2}, g_{\sigma}(n) \leq h_{\tau}(n)$ holds. If $n_{2} \leq n<n_{3}$, then

$$
g_{\sigma}(n)<g_{\sigma}\left(n_{3}\right) \leq g_{\nu}\left(n_{3}\right)<h_{\tau}\left(n_{2}\right) \leq h_{\tau}(n),
$$

so it is ok. If $n \geq n_{3}$, then since $n \geq n_{3} \geq n_{1}$ and $\tau \in I^{\prime \prime} \subseteq I^{\prime}$,

$$
g_{\sigma}(n) \leq g_{\nu}(n) \leq h_{\tau}(n)
$$

We recall that $\vec{t} \in\left(\omega^{n_{2}}\right)^{k}$ is an initial segment of both $\vec{\sigma}$ and $\vec{\tau}$, for every $n \geq n_{2}$, $g_{\sigma}(n) \leq h_{\tau}(n)$, and both σ and τ are members of \mathbb{P}. Therefore $\sigma \cup \tau$ is also a condition of \mathbb{P}, i.e. σ and τ are compatible in \mathbb{P}.

4. Acknowledgment

I would like to thank Stevo Todorčevic for a discussion on the question in this manuscript during the international conference of Topology in 2007 December at Kyoto.

References

[1] S. Todoř̌ević. Remarks on cellularity in products, Compositio Math. 57 (1986), no. 3, 357372.
[2] S. Todorčević. Partition Problems in Topology, volume 84 of Contemporary mathematics, American Mathematical Society, Providence, Rhode Island, 1989.
[3] T. Yorioka. Some weak fragments of Martin's Axiom related to the rectangle refining property, to appear in Arch. Math. Logic.

Department of Mathematics, Shizuoka University, Ohya 836, Shizuoka, 422-8529, JAPAN
E-mail address: styorio@ipc.shizuoka.ac.jp

[^0]: Supported by Grant－in－Aid for JSPS Fellow，No．18840022，Ministry of Education，Culture， Sports，Science and Technology．

