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ABSTRACT. In [3], the author introduced a chain condition, called the anti-
rectangle reflning property, of forcing notions and the statement $\neg C(arec)$ that
We show that every forcing notion with the anti-rectangle refining property
ha8 an uncountable antichain. Since a typical example of a forcing notion
with the anti-rectangle reflning property is an Aronszajn tree, $\neg C$ (arec) is a
generalization of Suslin’s Hypothesis. We show that 4(arec) implies that the
bounding number is larger than $\aleph_{1}$ , that is, this statement can be considered
as an analogue of Suslin’8 Hypothesis.

1. INTRODUCTION

The author investigated several fragments of Martin’s Axiom in [3]. Fragments
of Martin’s Axiom were studied mainly by Stevo Todor\v{c}evi\v{c} in $1980’ s$ , and many
applications are discovered (see [2] and his many other articles). In this manuscript,
we give a proof of one question in this area as follows.

We explain some notions in [3]. Aforcing notion $\mathbb{P}$ has the anti-rectangle refining
prvpeny if for any uncountable subset $I$ and $J$ of $\mathbb{P}$ , there exists uncountable subsets
$I’$ and $J’$ of $I$ and $J$ respectively such that for every $p\in I’$ and $q\in J’,$ $p$ and $q$ are
incompatible in $\mathbb{P}$ . $\urcorner C(arec)$ is the statement that every forcing notion with the anti-
rectangle refining property has an uncountable antichain. Since an Aroozajn tree
has the anti-rectangle refining property, $\neg C(arec)c\bm{t}$ be considered ageneralization
of Suslin’s Hypothesis. In fact, $\neg C(arec)$ implies Suslin’s Hypothesis $\bm{t}d$ that every
$(\omega_{1},\omega_{1})$-gaps are indestructible. The author would like to find other examples of a
generalization of Suslin’s Hypothesis, that is, other statements about combinatorics
on $w_{1}$ which is deduced $hom\neg C(arec)$ . One candidate is the statement that the
bounding number $\mathfrak{b}$ is larger than $\aleph_{1}$ .

We had already known that $\mathcal{K}_{2}(rec)$ , which is aweak hagments of Martin’s
Axiom and implies $\neg C(arec),$ implies that $\mathfrak{b}>\aleph_{1}$ . So it is naturaUy arisen a
question that $\neg C(arec)$ implies $\mathfrak{b}>\aleph_{1}$ . In this manuscript, we show apositive
answer of this question, that $i_{8\urcorner}C(arec)implie8$ that $\mathfrak{b}>\aleph_{1}$ in section 3.

Aproof of the theorem is self contained in this manuscript, however Iomit some
proofs of $weU$ known results in section 2. All of them are written in [3] or [1].

2. A REASON WHY WE WILL PROVE AS BELOW

At first, we will see a proof that $\mathcal{K}_{2}$ (rec) implies $\mathfrak{b}>\aleph_{1}$ . A partition $[w_{1}]^{2}=$

$K_{0}\cup K_{1}$ has the rectangle refining property if for any uncountable subset $I$ and
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$J$ of $\omega_{1}$ , there exist uncountable subsets $I’$ and $J’$ of $I$ and $J$ respectIvely such
that for every $\alpha\in I’$ and $\beta\in J’$ , if $\alpha<\beta$ , then $\{\alpha,\beta\}\in K_{0}$ . We note that the
rectangle refining property is a strong property than the countable chain condition.
$\mathcal{K}_{2}$ (rec) is the statement that every partition $[\omega_{1}]^{2}=K_{0}\cup K_{1}$ with the rectangle
refining property has an uncountable $K_{0}$-homogeneous set. We note that $\mathcal{K}_{2}$ (rec)
is deduced from Martin’s Axiom for $\aleph_{1}$ -dense sets, and $\mathcal{K}_{2}$ (rec) implies $\neg C(arec)$ .

Let $F=\{f_{\xi};\xi\in\omega_{1}\}$ be a set of strictly increasing functions from $\omega$ into $w$ such
that for every $\xi$ and $\eta$ in $w_{1}$ , if $\xi<\eta$ , then $f_{\xi}\leq*f_{\eta}$ , i.e. there exists $m\in\omega$

such that for all $n\geq m,$ $f_{\xi}(n)\leq f_{\eta}(n)$ . For this family, we define a partition
$[\omega_{1}]^{2}=K_{0}\cup K_{1}$ by letting $\{\xi,\eta\}\in K_{0}$ iff there exists $m$ and $n$ in $\omega$ such that
$f_{\xi}(m)<f_{\eta}(m)$ and $f_{\eta}(n)<f_{\xi}(n)$ . We call that $F$ is unbounded when for every
function $g$ in $\omega^{w}$ , there exists $f\in F$ such that $f\not\leq^{*}9$ . We note that if $F$ is
unbounded, then this partition has the rectangle refining property. (This follows
from Lemma 3.2 below.) However, in [1, Lemma 16], if $F$ is unbounded, since an
uncountable subset of $F$ is also unbounded, for every uncountable subset $F’$ of $F$ ,
there are two functions $f$ and $g$ in $F$ such that $g$ dominates $f$ everywhere, i.e., for
every $n\in\omega,$ $f(n)\leq g(n)$ . Therefore, $\mathcal{K}_{2}$ (rec) implies $b>\aleph_{1}$ .

So to try to prove that $\neg C(arec)$ implies $b>\aleph_{1}$ , it seems to be natural to modify
the argument above. Let $\mathbb{P}’$ be a forcing notion which consists of finite subsets $\sigma$

of $\omega_{1}$ such that the set $\{f_{\xi};\xi\in\sigma\}$ is totally ordered by the dominance everywhere,
i.e., for every $\xi\in\sigma$ and $n\in w$ , max $\{f_{\zeta}(n);\zeta\in\sigma\cap\xi\}\leq f_{\xi}(n)$, ordered by the
reverse inclusion. As the above partition has the rectangle refining property, we
note that $\mathbb{P}’$ has the anti-rectangle refining property if $F$ is unbounded. So if we
show that $\mathbb{P}’$ is ccc whenever $F$ is unbounded, we conclude that $F$ doesn’t have to
be unbounded. However, unfortunately, in general, $\mathbb{P}’$ does not have the ccc even
if $F$ is unbounded. For example, if the set $\{\{\xi_{\zeta},\eta_{\zeta}\};\zeta\in\omega_{1}\}$ is a subset of $\mathbb{P}’$ such
that

$\bullet$ for any $\zeta<\zeta’$ in $w_{1},$ $\xi_{\zeta}<\eta_{\zeta}<\xi_{\zeta’}$ , and
$\bullet$ for any $\zeta\in\omega_{1},$ $f_{\xi}(0)=0$ and $f_{\eta_{\zeta}}(1)=1$ ,

then it is an uncountable antichain in P.

In section 3, we define a forcing notion $\mathbb{P}$ which is a modification of $\Psi$ and
show that (Lemma 3.2) $\mathbb{P}$ has the anti-rectangle refining property whenever $F$ is
unbounded, and (Lemma 3.3) $P$ has the countable chain condition whenever $F$ is
unbounded. This completes the proof of our theorem.

3. A PROOF

Throughout this section, let $F=\{f_{\xi}; \xi\in w_{1}\}$ be a set of strictly increasing
functioms $kom\omega$ into $w$ such that for every $\xi$ and $\eta$ in $\omega_{1}$ , if $\xi<\eta$ , then $f_{\xi}\leq^{*}f_{\eta}$ .
We define a forcing notion $\mathbb{P}$ which consists of finite subsets $\sigma$ of $\omega_{1}$ such that
for every $\xi\in\sigma$ and $n\in\omega$ , either max $\{f_{\zeta}(n);\zeta\in\sigma\cap\xi\}\leq f_{\xi}(n)$ or $f_{\xi}(n)\in$

$\{f_{\zeta}(n);\zeta\in\sigma\cap\xi\}$ , ordered by the reverse inclusion.

Proposition 3.1. Suppose that $F=\{f_{\xi}; \xi\in\omega_{1}\}$ is unbounded. Then there enists
$e\in w$ such that for every $n\in w\backslash e$ and $k\in w$ , the set $\{\xi\in w_{1}; f_{\xi}(n)\geq k\}$ is
uncountable.
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$\neg C(arec)\Rightarrow b>\aleph_{1}$

Proof. Assume not, i.e. there exists an infinite set $Z$ of natural numbers such that
for every $n\in Z$ , there exists $k_{n}\in w$ such that the set $\{\xi\in\omega_{1}; f_{\xi}(n)\geq k_{n}\}$ is
countable. Let $\delta\in\omega_{1}$ be such that for all $n\in Z,$ $\{\xi\in w_{1}; f_{\xi}(n)\geq k_{n}\}$ is a subset
of $\delta$ . Let $\{n_{i};i\in w\}$ be an increasing enumeration of $Z$ , and we define a function $g$

on $w$ by

$g(m)$ $:= \max(\{f_{\delta}(m)\}\cup\{k_{n} ; i\in m+1\}\cup\{g(i)+1;i\in m\})$

for each $m\in w$ . We notice that for each $\xi\in\delta,$ $f_{\xi}\leq g$ . Moreover for each $\xi\in w_{1}\backslash \delta$

and $m\in\omega$ , since $m\leq n_{m}$ ,
$f_{\xi}(m)\leq f_{\xi}(n_{m})<k_{n_{m}}\leq g(m)$ .

So $F$ is bounded by 9, which is a contradiction. $\square$

Lemma 3.2. If $F=\{f_{\xi};\xi\in w_{1}\}$ is unbounded, then $\mathbb{P}$ has the anti-rectangle oe-
fining property.

Pmof Let $I$ and $J$ be uncountable $8ubsets$ of P. By shrinking $I$ and $J$ if necessary,
we may assume that

$\bullet$ I $form8$ a $\Delta$-system with a root $\mu$ , and $J$ also forms a $\Delta$-system with a root
$\nu$ ,

$\bullet$ all members of $I$ has the same size, and all members of $J$ also has the same
size,

$\bullet$ for any $\sigma\in I$ and $\tau\in J$ ,
$\max(\mu\cup\nu)<\min(\sigma\backslash \mu)$ , $\max(\mu\cup\nu)<\min(\tau\backslash \nu)$ , $(\sigma\backslash \mu)\cap(\tau\backslash \nu)=\emptyset$ ,

$\bullet$ there exists $e\in\omega$ , such that for every $\sigma\in I$ and $\tau\in J$ and $n\geq e$ ,
max $( \{f_{\zeta}(n);\zeta\in\mu\cup\nu\})<\min(\{f_{\xi}(n);\xi\in\sigma\backslash \mu\})$

and

max $( \{f_{(}(n);\zeta\in\mu\cup\nu\})<\min(\{f_{\eta}(n);\eta\in\tau\backslash \nu\})$ .
We notice that for every $A\in[\omega_{1}]^{\aleph_{1}}$ , the set $\{f_{\xi};\xi\in A\}$ is unbounded. So by the

previous lemma, there exists $e_{0}\geq e$ such that for every $k\in w$ , the set

{ $\sigma\in I$ ; mIn $(\{f_{\xi}(e_{0});\xi\in\sigma\backslash \mu\})\geq k$}
is uncountable. Let $J’$ be uncountable subset of $J$ and $k_{0}\in\omega$ such that for every
$\tau\in J’$ ,

max $(\{f_{\eta}(e_{0});\eta\in\tau\})\leq k_{0}$ ,
and then we take an uncountable subset $I’$ of $I$ such that for every $\sigma\in I’$ ,

$\min(\{f_{\xi}(e_{0});\xi\in\sigma\backslash \mu\})>k_{0}$ .
Then we notice that for any $\sigma\in I’$ and $\tau\in J’$ , since $e_{0}\geq e$ , if $\tau\not\subset m\alpha(\sigma)+1$ ,
then $\sigma$ and $\tau$ are incompatible in P.

Conversely, by the previous lemma, there exists $e_{1}>e_{0}$ such that for every
$k\in\omega$ , the set

{$\tau\in J’$ ; min $(\{f_{\eta}(e_{1});\eta\in\tau\backslash \nu\})\geq k$}
is uncountable. Let $I^{u}$ be uncountable subset of $I’$ and $k_{1}\in w$ such that for every
$\sigma\in I’’$ ,

max $(\{f_{\xi}(e_{1});\xi\in\sigma\})\leq k_{1}$ ,
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and then we take an uncountable subset $J”$ of $J’$ such that for every $\tau\in J’’$ ,

min $(\{f_{\eta}(e_{1});\eta\in\tau\backslash \nu\})>k_{1}$ .
Then we notice that, since $e_{1}\geq e$ , for any $\sigma\in I’’$ and $\tau\in J’’$ , if $\sigma\not\subset\max(\tau)+1$ ,
then $\sigma$ and $\tau$ are incompatible in P.

By shrinking $I”$ and $J”$ if necessary, we may $w$sume that for any $\sigma\in I’’$ and
$\tau\in J’’$ , either $\tau\not\subset\max(\sigma)+1$ or $\sigma\not\subset\max(\tau)+1$ . Then for every $\sigma\in I’’$ and
$\tau\in J’’,$ $\sigma$ andr are incompatible in P. $\square$

Lemma 3.3. If $F=\{f_{\xi};\xi\in w_{1}\}$ is unbounded, then $\mathbb{P}$ has the countable chain
condition.

Proof. Here, for each $\sigma\in \mathbb{P}$ , letting $\langle\xi_{i};i\in|\sigma|\rangle$ be an increasing enumeration of $\sigma$ ,
we denote

$\vec{\sigma}:=(f_{\xi}$ ; $i\in|\sigma|\rangle$ ,

which is a member of the set $(w^{w})^{|\sigma|}$ . Let $I$ be an uncountable subset of P. Without
loss of generality, we may assume that

$\bullet$ I forms a $\Delta$-system with a root $\mu$ ,
$\bullet$ for every $\sigma$ and $\tau$ in $I$ , either $\max(\sigma)<\min(\tau\backslash \mu)$ or $\max(\tau)<\min(\sigma\backslash \mu)$ ,
$\bullet$ there exists $n_{0}\in w$ such that for every $n\geq n_{0},$ $\sigma\in I$ and $\xi\in\sigma\backslash \mu$ ,

max $\{f_{\langle}(n);\zeta\in\mu\}<f_{\xi}(n)$ ,

$\bullet$ there exists $k\in w$ such that for every $\sigma\in I,$ $|\sigma|=k$ ,
$\bullet$ for every $\sigma$ and $\tau$ in $I,\vec{\sigma}\square n_{0}=\tilde{\tau}|n_{0}$ , i.e. for each $j\in k$ , the initial segment

of the j-th element of a of length $n_{0}$ is equal to the initial segment of the
j-th element of $\vec{\tau}$ of length $n_{0}$ .

Then there exists $\gamma\in w_{1}$ such that the set $\{\tilde{\sigma};\sigma\in I\cap[\gamma]<\aleph_{0}\}$ is dense in the set
$\{\tilde{\sigma};\sigma\in I\}$ as a subspace of the space $(w^{w})^{k}$ . We fix some (any) $\nu\in I\backslash [\gamma]^{<\aleph_{0}}$ . For
each $\sigma\in I$ , we define two functions $g_{\sigma}$ and $h_{\sigma}$ on $w$ as follows: For each $n\in w$ ,

$g_{\sigma}(n):=mu\{f_{\xi}(n);\xi\in\sigma\}(=m\alpha\{f_{\xi}(n);\xi\in\sigma\backslash \mu\})$ ,

and
$h_{\sigma}(n)$ $;= \min\{f_{\xi}(n);\xi\in\sigma\backslash \mu\}$ .

We notice that for $\sigma$ and $\tau$ in $I$ , if $\max(\sigma)<\min(\tau\backslash \mu)$ , then $g_{\sigma}\leq h_{\tau}$ . So we

can find $n_{1}\geq n_{0}$ and $I’\in[I\backslash [\gamma]<\aleph_{0}]^{\aleph_{1}}$ such that for every $\tau\in I’$ and $n\geq n_{1}$ ,
$g_{\nu}(n)\leq h_{\tau}(n)$ , and for every $\tau$ and $\tau’$ in $I’,\tilde{\tau}\square n_{1}=\tau^{\tilde{\prime}}rn_{1}$ . Since $F$ is unbounded
and $I’$ is uncountable, the set $\{h_{\tau};\tau\in I’\}$ is unbounded. Hence there exists $n\geq n_{1}$

such that the set $\{h_{\tau}(n);\tau\in I’\}$ is infinite. Let

$n_{2}:= \min$ {$n\in[n_{1},w);\{h_{\tau}(n);\tau\in I’\}$ is infinite}.
By the minimality of $n_{2}$ , we can take $\overline{t}\in(\omega^{na})^{k}$ and infinite $I”\subseteq I’$ such that

$\bullet$ for all $\tau\in I’’,$ $t\subseteq\sim\vec{\tau}$, i.e. for every $j\in k$ , the j-th member of $t^{\sim}is$ an initial
segment of the j-th member of $\tilde{\tau}$,

$\bullet$ the set $\{h_{\tau}(n);\tau\in I’’\}$ is infinite.
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By our assumption, there exists $\sigma\in I\cap[\gamma]<\aleph_{0}$ such that $tarrow\subseteq\vec{\sigma}$ . Then there is
$n_{3}\geq n_{2}$ such that for every $n\geq n_{3},$ $g_{\sigma}(n)\leq g_{\nu}(n)$ , and take $\tau\in I’’$ such that
$g_{\nu}(n_{3})<h_{\tau}(n_{2})$ .

We will show that for every $n\geq n_{2,9\sigma}(n)\leq h_{\tau}(n)$ holds. If $n_{2}\leq n<n_{S}$ , then
$g_{\sigma}(n)<g_{\sigma}(n_{3})\leq g_{\nu}(n_{3})<h_{\tau}(n_{2})\leq h_{\tau}(n)$ ,

so it is ok. If $n\geq n_{3}$ , then since $n\geq n_{3}\geq n_{1}$ and $\tau\in I’’\subseteq I’$ ,
$g_{\sigma}(n)\leq g_{\nu}(n)\leq h_{\tau}(n)$ .

We recall that $t\inarrow(w^{n_{2}})^{k}$ is an initial segment of both $\check{\sigma}$ and $\tilde{\tau}$, for every $n\geq n_{2}$ ,
$g_{\sigma}(n)\leq h_{\tau}(n)$ , and both $\sigma$ and $\tau$ are members of $\mathbb{P}$ . Therefore $\sigma\cup\tau$ is also a
condition of $\mathbb{P}$ , I.e. $\sigma$ and $\tau$ are compatible in P. $\square$
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