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A> B >0 ensures (A5 APA%)7 > (AFBPAE)e forp>0,g> 1,7 >0
with (14 7)g > p+ r and brief survey of its recent applications

TAKAYUKI FURUTA (Tokyo University of Science)
WHRERKY HH¥EZ

§1 Introduction

A capital letter means a bounded linear operator on a Hilbert space H. An operator T
is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all z € H, and T is said to be
strictly positive (denoted by T > 0) if T is positive and invertible.

Theorem LH (1934, Léwner-Heinz inequality, denoted by (LH) briefly).
(LH) If A> B >0 holds, then A* > B* for any a € [0, 1].

This celebrated LH had been originally proved by Lowner (1934) and afterward by Heinz
(1951). Many nice proofs of (LH) are known.

Although (LH) asserts that A > B > 0 ensures A® > B® for any « € [0, 1], unfortunately
A% > B® does not always hold for o > 1. The following result has been obtained from this
point of view.

Theorem F. (1987, Furuta)
If A> B >0, then for eachr > 0,

p (1+r)g=p+r

(i)  (B3APB%)7 > (BiBPB):
and

()  (A3APA%)3 > (A5BPA)

(1,0)
FIGURE 1

hold forp>0 and ¢ > 1 with (1 +7r)g>p+r. ©,-r)

In Theorem F,(i) is equivalent to (ii). The domain drawn for p,q and r in FIGURE 1 is
best possible one for Theorem F by K.Tanahashi [1]. Consider two magic boxes
£(0) = (B50B%)% and g(0) = (A50A%)1.
Theorem F can be regarded as follows. Although A > B > 0 does not always ensure
AP > B? for p > 1 in general, but Theorem F asserts the following “ two order preserving
operator inequalities”
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f(AP) = f(BP) and g(A?) > g(BP)
hold whenever A > B > 0 under the condition p , ¢ and r in FIGURE 1.

About 20 years have passed since appearance in 1987 of Theorem F. According to remark-
able chievements of many mathematicians who have interested with operator inequalities
during the 20 years, we have been finding a lot of applications of Theorem F in several
branches, briefly speaking, we can devide these branches into the following three branches
(A) operator inequalities, (B) norm inequalities, and (C) operator equations.

(A) OPERATOR INEQUALITIES

(A-1) Several characterizations of operators logA > logB and its applications;

(A-2) Applications to the relative operator entropy;

(A-3) Applications to Ando-Hiai log majorization and logarithmic trace inequalities;

(A-4) Generalized Aluthge transformation on p-hyponormal operators;

(A-5) Several classes associated with log-hyponormal and paranormal operators;

(A-6) Operator functions implying order preserving inequalities.

(A-7) Applications to Kantorovich type operator inequalities.

- (B) NORM INEQUALITIES

(B-1) Several generalizations of Heinz-Kato theorem;

(B-2) Generalizations of some theorem on norms;

(B-3) An extension of Kosaki trace inequality and parallel results

(C) OPERATOR EQUATIONS
(C-1) Generalizations of Pedersen-Takesaki theorem and related results.

In this short talk, as the area of applications of Theorem F is vast, I would like to confine
myself to some recent applications of Theorem F of my own interest and related topics,
so we would like to focus ourselves to state log majorization, logarithmic trace inequalities
(A-3) and order preserving operator functions (A-6) without their proofs. We state only
proof of Theorem F since Theorem F is the central position of this paper.

Lemma A. (Lemma 1 in Furuta [5]) Let X be a positive invertible operator and Y be
an invertible operator. For any real number A,

(YXY*) = YX3( XYY X2)-1Xiy~,
Proof of Lemma A. Let YX% = UH be the polar decomposition of Y X %',where U is
unitary and H = |Y X#|. Then we have
(YXY*) = (UHU*)* = YXiH-IHP H-1XiY* = YX3(Xiy*y X)) »-1xiy+ O
It easily turns out that we don’t require the invertibility of A and B in the case A > 1
in Lemma A which is obviously seen in the proof. Lemma A is very simple with its proof
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stated above, but quite useful tool in order to treat operator transformation in operator
theory.

Proof of Theorem F. At first we prove (ii). In the case 1 > p > 0, the result is obvious

by Theorem L-H. We have only to consider p > 1 and ¢ = &£ since (ii) of Theorem F

for values g larger than &4 : +r ~ follows by Theorem L-H, that is, we have only to prove the
following

(1.1) AT > (ATBPAR)»F  for anyp>1 and r > 0.
We may assume that A and B are invertible without loss of generality. In the case
r € [0,1], A> B > 0 ensures A" > B" holds by Theorem L-H. Then we have
(A5BPAS)s = ASBE(BFA"B¥F)5+ B5AF by Lemma A
< ASB¥(B¥B-"B¥)i BiAl
= AiBA% < AT,
and the first inequality follows by B~" > A~" and Theorem L-H since ﬁ% € [0,1] holds,
and the last inequality follows by A > B > 0, so we have the following (1.2)
(1.2) AYT > (ASBPAR)SH  forp>1 andre[0,1).
Put A; = A" and B, = (A5 BPA%)#% in (1. 2). Repeating (1.2) again for A; > B; > 0,
ry €[0,1] and p; > 1,

Al+r1 > (A%BflA?)ﬁ;

Put p; = Sy 2> L > 1 and r; =1, then
(1.3) A21+r) > (A'+%BPA'+é)—‘—lﬁ+‘J11 forp>1, andr € [0,1].
Put § = r+ 1 in (1.3). Then %—% = p+8 since 2(1 +r) = 1 + s, so that (1.3) can be

rewritten as follows;

(1.4) Alte > (ASBPAR)S forp>1, and s € [1,3)].

Consequently (1.2) and (1.4) ensure that (1.2) holds for any r € [0, 3] since r € [0, 1] and
s =2r + 1 € [1, 3] and repeating this process, (1.1) holds for any r > 0, (ii) is shown.

If A> B > 0, then B! > A~! > 0. Then by (ii), for each r > 0, B-52 >
(B¥ APB7¥)4 holds for each p and gsuch that p > 0, ¢ > 1land (1+7)g > p+r.
Taking inverses gives (i), so the proof of Theorem F is complete. O

This one page proof in Furuta [3] and the original one in Furuta [1], afterward, in Fijii
(1] and Kamei [1].

Remark 1.1. Recall that the essential assert of Theorem F is as follows since Theorem
F is obvious in case 1 > p > 0 by Theorem L-H:
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A>B20< A" > (A§BPA5)ﬁ for p>1and r > 0.

Theorem GF ( Generalization of Theorem F). If A > B > 0 with A > 0, then for
te0,1] andp > 1,
F(r,s) = AT {A3(AF BPAT )P A5 ) o0 AT
is a decreasing function for r >t and s > 1, and At = F(A, A,r,s) > F(4A, B,r,s), that
1s,
(GF) At > (A5 (AT BPAT) AR} Todi
holds fort € [0,1),p>1,r >t and s > 1.

The original proof of Theorem GF is in Furuta [5], and an alternative one is in M.Fijii-
Kamei [1]. An elementary one-page proof of (GF) is in Furuta [7]. Further extensions of
Theorem GF and related results are obtained by many researchers, and some of them are
in Furuta [9], Furuta-Hashimoto-Ito [1], Furuta-Yanagida- Yamazaki [1], Lin [1] and Kamei

[2][3]. It is originally shown in Tanahashi [2] that the exponent value G’% of the
right hand of (GF) is best possible and alternative proofs of this fact are in Fujii-Matsumoto-
Nakamoto [1], Yamazaki [1]. (GF) interpolates Theorem F and an inequality equivalent
to the main result of log majorization in Ando-Hiai [1] (see Remark 2.1 in §2). Recently

extensions and generalizations of Theorem F are in M.Uchiyama [2] and M.Yanagida [2].

§2 Fundamental results associated with log majorization
In this section a capital letter means n x n matrix. Following Ando and Hiai [1], let us
define the log majorization for positive semidefinite matrices A, B > 0, denoted by A ( lo>-g ) B
if
k k n n
T2 =] x(B), k=1,2,...,n—1,and ] N(4) = [ M(B), ie., det A=det B,
i=1 i=1 i=1 i=1
where A\1(A) = A2(A) > ... 2 A(A) and A1(B) = Ao(B) = ... = A\(B) are the eigenvalues
of A and B, respectively, arranged in decreasing order. When 0 < a < 1, the a-power
mean of positive invertible matrices A, B > 0 is defined by in Kubo-Ando [1]
A #.B = A¥(AT BAT )AL,
. Further, A#,B for A, B > 0 is defined by A#.,B = leiﬂ)l(A + el)#a(B + €l).
For the sake of convenience for symbolic expression, we define A §, B, for any real number
s >0 and for A > 0 and B > 0, by the following
AR,B = A}(AT BAT)%A}.
AloB in the case 0 < a < 1 just coincides with the usual a-power mean. The following
excellent and useful log majorization is shown in Ando and Hiai [1, Theorem 2.1].
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Theorem A. For every AAB>0and0<a <1,
(2.1) (A#.B)" (l>-)A'#aBT forr > 1.
og

Also, (2.1) can be transformed into the following matrix inequality (2.2) of Theorem B in
Ando and Hiai [1,Theorem 3.5]:

Theorem B. If A> B > 0 with A > 0, then

(2.2) AT > {A’zc(A:il'BPAil)TAf}% forr,p > 1.
We obtained the following extension of Theorem A in Furuta [5, Therorem 2.1] applying
the method in Ando and Hiai [1] to (GF) of Theorem GF in §1.

Theorem C. For every A>0, B>0, 0< a <1 and for each t € [0,1],
(AthaB)* - A7t (4171, B)

og)
a(l—t+r) _ (1=t+r1)s
(1-ot)s+ar and h = (1-—at)s+ar’

holds for s > 1, andr >t > 0, where 8 =

Remark 2.1. The inequality (GF) in Theorem GF interpolates Theorem F and Theorem
B, in fact, when we put ¢ = 1 and r = s in (GF), we have Theorem B, and when we put
t=0and s =1 in (GF), we have Theorem F by Remark 1.1. Also when we put t = 1 and
r = s in Theorem C which is equivalent to (GF), we have Theorem A.

Next, we state the following result which is shown in Hiai and Petz [1, Theorem 3.5] and,
recently, a new proof is given in Bebiano, Lemos and Providencia [1, Theorem 2.2].

Theorem D. If A, B > 0, then for every p > 0
(2.3) %Tr[A log(A% BPA%)] > Tr[A(log A + log B)]
holds and the left hand side of (2.3) converges the right hand side as p | 0.

Theorem E. IfA20; B>0,0<a<1andp>0, then
(2.4) %’IT[A log(A?f, BF)] + %Tr[A log(A% B~PA%)] > Tr[Alog 4]
holds and the left hand side of (2.4) converges the the right hand side as p | 0.

The inequality (2.4) is shown in Ando and Hiai [1, Theorem 5.3], and the convergence
of (2.4) is shown in Bebiano, Lemos and Providencia [1, Corollary 2.2].

We extend Theorem D and Theorem E by applying the trace inequality derived from
log majorization equivalent to an order preserving inequality. We show a log majorization
equivalent to an order preserving operator inequality.

Theorem 2.1. The following (i) and (ii) hold and are equivalent:
(i) If A, B > 0, then for eacht € [0,1] andr > ¢
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ANAT BPAT )3 A} - AT BE(BRA By BEY AR
(log)

holds for any s > 1 andp > q > 0.

(ii) If A> B > 0 with A > 0, then for eacht € [0,1] and r > t

AT S (A5 (AT BR AT A5}

holds for any s > 1 andp > q > 0.

Theorem 2.2. If A,B > 0, then, for everylp >0,
(6.1) Tr[Alog(AS BPAR)] -4 log{B%(B%47B%)-1B%)})

p

> Tr[Alog A]
holds for any p > 0 and s > 1, and the left hand side converges to the right hand side as
plO.

Corollary 2.3.
(i) If A, B > 0, then, for everyp > 0,
(6.2) 1Ty[Alog(A% BPAR)] > Tr[Alog A + Alog B]
holds and the left hand side converges to the right hand side as p | 0.
(ii) If A, B > 0, then, for everyp > 0,
(63) 2 [Alog(A8 BPA3)] — 1Ty{A log(B? A"BY)]
> ’II‘;[A log A] P
holds and the left hand side converges to the right hand side as p | 0.
We remark that (i) of Corollary 2.3 is Theorem D.
Theorem 2.4. If A > 0 and B > 0, then, for every positive number (3,
(6.4) S Tr[A log(A%4s B7)] —=Tr[Alog{A T (4P4B)* A7)
> ’II‘)r[A log A] i
holds for any p > 0, s > 1, and the left hand side converges to the right hand side as p | 0.
Corollary 2.5.
(i) If A, B > 0, then, for every positive number (3,
(6.5) -1-'1‘1'[A log( APz BP)] +-ﬁ-T;[A log(A¥B?A%))
> Tr[Alog A] g |
holds for any p > 0, and the left hand side converges to the right hand side as p | 0.
(ii) If A, B > 0, then, for every positive number (3,
(6.6) 2 YA log(APhsBP)] —Tr[Alog(AF BPAR )P AP(AE BP AT )]
> 'II‘Jr[A log A] P
holds for any p > 0 and the left hand side converges to the right hand side as p | 0.
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We remark that, when A > 0, B > 0 and 8 € [0, 1], (i) of Corollary 2.5 becomes Theorem
E.

§3 Operator inequality implying generalized Bebiano-Lemos-Providéncia one

Let A,B > 0and 0 < a < 1. The famous Araki-Cordes inequality states that (A%BA%)"‘
(1>) A% B*A% holds and also Bebiano-Lemos-Providéncia inequality [1] asserts that
og
Aé(AfB’Af)fA% (>-)A1‘I‘tB‘A%"t holds for s >t > 0.
log
Very recently, Fujii-Nakamoto-Tominaga [1, Theorem 2.1 and Corollary 2.2] have shown
the following interesting norm inequality:

Let A)B > 0. Then
||A% (A% BrroA$) A3 || > || A B+ A ||
holds for allp > 1 and s > 0.
In fact, this result is essentially equivalent to the following Theorem FNT, whicg is essen-
tially shown Fujii-Nakamoto-Tominaga [1], as an extension of both Araki-Cordes inequality
and Bebiano-Lemos-Providéncia one:
Theorem FNT. For every A, B> 0 andp > 1,
{Ab(atBreoats Al) S - AMBIRAY
holds for any s > 0. e
As an application of (G-1) of Theorem G, we shall give an operator inequality implying
generalized Bebiano-Lemos-Providéncia one.

Theorem 3.1 Furuta [11]. The following (i) and (ii) hold and they are equivalent:

(i). For every A>0,B>0,0<a<1andeachte [0,1], and any real number q # 0,
31)  {ai(aiBai)af) (1>)A’tﬁﬁl{fé‘t(A%’“B,«ﬁ%'*)a,ﬁl}/3,4"1%‘“‘—'2
og

a(l—t+r) (1-t+7)s
> > = = .
holds for s > 1 and r > t, where 3 (=at)s For and h (G—at)s+ar
(ii). IfA> B >0 with A> 0, then fort € [0,1] andp > 1, '
(3.2) AT > (A5(AT BPAT ) AR} o

holds for s > 1 andr > t.

Remark 3.1. (3.1) in (i) of Theorem 8.1 can be rewritten as follows: For every A > 0,
B>0,0<a<1 andeachte|0,1], and any real number q # 0,
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(3.1%) (A (A Y, B) AT} K) AT {A-0-1y (4-(+aty By} 4*E
og
a(l—t+r) (1—t+7)s
> > = — .
holds for s > 1 and r > t, where 8 T—al)s T or, and h A—ob)star

Remark 3.2. Put ¢ = —1 and replace A by A~!in (3.1°), then (i) of Theorem 3.1 yields
the following result (a). Moreover, (a) implies (b) by putting t = 1 and r = s.

(a) For every A>0,B>0,0<a<1 andeachtel01l]
(AﬂaB)h - Al—t+rnﬂ(A1—thsB)
(log)

a(l—t+r) _ (1=t+r)s
(1—at)s+ar and h = (1-ot)s+ar

holds for s > 1 and r > t, where § =

(b) For every AAB>0,0<a<1
(At B)" (1>) A8, B" r>1.
og
In fact (a) is Theorem C itself in §2 and (b) is Theorem A itself in §2,which is a very
important result in log majorization.

Corollary 3.2. The following (i), (ii) and (iii) hold and they are equivalent:
(i) For every A,B >0, 0 < a <1 and any real number q # 0,
(A3 (AR BAY e AR > AL (A BASE ) TR
holds for any r > 0. ‘ e |
(ii) IfA> B >0, then forp>1,
AMT > (A5 BPAR)SE
holds for any r > 0.
(iii) For every A,B >0, p > 1 and any real number q # 0,
(A% (ASBPHAR) s AF Y 5 A5 (A“%*ﬂBp+sAi“—z-"ﬁ)p+, salen)

(log)
holds for anyr > 0 and s > 0.

Corollary 3.3. The following (i), (ii) and (iii) hold and they are equivalent:

(i) For every A, B>0and0<a <1,
{A}(AiBAY)AR) SR A—E‘ B A
holds for any q > 0. (
(ii) IfA> B >0, then forp > 1,
AMT > (ASBPAR)P

holds for any r > 0.
(iii) For every A,B >0 and p > 1,
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{AF(ASBPrAt) s ABY S~ A Bt A
(log)
holds for any s > 0.

Remark 3.3. We remark that (i) of Theorem 3.1 is “log majorization equivalent to
Theorem G in matriz case”, and (i), (iii) of Corollary 3.2 and also (i), (iii) of Corollary
3.3 are all considered as “log rﬁajom'zation equivalent to an essential part of Theorem F
in matriz case ”. Needless to say, (iii) of Corollary 3.3 is Theorem FNT itself. And the
equivalence between (i) and (iii) in Corollary 3.3 is essentially shown in Mujii-Nakamoto-
Tominaga [1].

84 Decreasing monotonicity of order preserving operator functions
associated with (GF) in Theorem GF in §1

In this chapter, we state the recent results on decreasing monotonicity of order preserving
operator functions associated with (GF) and related satellite order preserving operator
inequalities associated with (GF) without proofs. ‘

Theorem 4.1 Furuta [12]. Let A> B >0 with A>0,t € [0,1] and p > 1. Then
FO\p) = AT{A} (AT BPAT A} AT
satisfies the following properties:

(i) F(r,w) > F(r,1) > F(r,s) > F(r,s')

1-t¢

holds for any 8 > s> 1,r >t and tSw51~

(i) F(g,s) > F(t,s) 2 F(r,s) > F(r', s)
holds for anyr' >r >t, s>1andt-1<q<t.

We state several satellite inequalities of (GF) in Theorem GF as applications of Theorem
4.1.

Corollary 4.2. If A> B >0 with A > 0, then fort € [0,1] and p > 1,

(i) (Atﬂpr) CED I > B> {Aé(A:i!BPA_Tt)"A%}?pT:)a_M
> AT {AS(AT BPAT A5} o0 AT
(ii) (AtngP)m >B> AE;—'(A!-;!B,,A;}!)%E_:A:_;;

> A {AS (AT BPAT )P AT ) 005 AN

hold fors > 1,r >t andp

tSwSI.
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Corollary 4.3. If A> B >0 with A> 0, then fort € [0,1] andp > 1,

0 A1 B > B > {AF(AT BrAT y Al y oo
p—itq
2 A%!{Ag(A?BPA?)sAg}z;—:{ﬁ;—rAt;f
W A1 B 2 B2 A (AT BPAT AT
p—ttq

> A {AS(AF BPAT ) A5} o AT

hold fors>1,r>tandt-1<q<'t.

Very recently, Kamei showed the following interesting result.
Theorem K [Kamei [3]). If A> B >0 with A> 0, then fort € [0,1] andp > 1,
At BP > A3F(r,s)A% holds forr >t and s > 1.
Since A$F(r,s)A} = A5 {AF(A% BPAT)* A5} o9+ A*F holds, (i) or (ii) of Corollary
4.2 implies Theorem K. Also (i) or (ii) of Corollary 4.3 implies Theorem K.

Corollary 4.2 and Corollary 4.3 easily imply the following known satellete inequalities in
[9, § 3.2.5, Corollary 2],

IfA>B2>0 with A> 0, then fort € [0,1) andp > 1,
() {B¥(BFAPBF)*Bi}od% > A> B > {A} (AT BPAT) Al }oow
and
(i) BT (BFAPBF)FEBS > A> B> AT (AT BPAT )i A
hold for s > 1, r >t and t € [0,1]. '

We state contrast among Theorem 4.1 and related results

I would list statements (4.1)-(4.4) in the following Remark 4.1 as a concluding remark.

Remark 4.1. Let A> B >0 with A > 0, t € [0,1] and p > 1. Then the following
properties hold.
(4.1) F(r,s) = AT{A3(AT BP AT ) A5} o0 AT
s a decreasing function of r and s such thatr >t and s > 1.
(4.2) F(r,w) = AT {AS(AT BPAF v AT} 0eF AT
8 not a decreasing function of r and w such thatr >t and -%t <w<1, but

F(r,w) > F(r,1)

holds for anyr >t and;—:—z <w<1.

(4.3) F(g,s) = A7 {A}(AF BPAT) A1} AT
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s not a decreasing function of ¢ and s such that 0 < g <t and s > 1, but
F(q,s) > F(t,s)

holds for any0 < g <t and s > 1.

(4.4) F(q,s) = AT {A} (AT BPAT ) A3} oo AT

is not a decreasing function of ¢ and is not an increasing of s such thatt —1 < ¢ <0 and

s> 1, but '
F(q,8) 2 F(t,s)

holds for anyt —1<q<0ands>1.

(t-1,8) (ﬂf) (t,8) (r,8)

-1y 1 (1) EO e
w liw! Drwiil b ew
1t L
p—1t
t—1 0 q t 1 D)

tel0,1],p>1,r>t, s>1,

F?SwSl and t—-1<¢g<t

FIGURE 2
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