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Abstract

The weak hyponormalities of Hilbert space operators make important roles to
study the gaps of operators. In particular, p-hyponormality, p-paranormality, and
absolute p-paranormality has been considered to detect gaps of operators. But ex-
amples of those operators with weak hyponormality are not developed well still. In
this note we consider rank-one peturbation of weighted shifts to detect examples for
those operators and characterize weak hyponormalities of those operators. In addi-
tion, we discuss some related examples being distinct those weak hyponormalities.

1. Introduction. This is based on the joint work with G. Exner, I. Jung, and M. -
Lee([EJLL]) and was talked at the 2008 RIMS conference: Inequalities on linear operators
and its applications, which was held at Kyoto University on January 30-February 1 in
2008.

Let M be a separable, infinite dimensional, complex Hilbert space and let £(H) be
the algebra of all bounded linear operators on H. The study of operators with weak
hyponormality has been discussed for recent 30 years (see [Fur]). An operator T € L(H)
is said to be p-hyponormal (0 < p < 00) if (T*T)? > (TT*)*. In particular, if p = 1, then
T is semi-hyponormal ([Xi]). And T is said to be co-hyponormal if T is p-hyponormal for
all p € (0,00) ([MS]). Recall that an operator T' € L(H) has a unique polar decomposition
T = U|T), where |T| = (T*T)? and U is a partial isometry satisfying ker U = ker |T| =
kerT and ker U* = kerT*. For each p > 0, an operator T is absolute-p-paranormal if
WTPTz|| > ||Tz||P*! for all unit vector x € H. Every absolute-g-paranormal operator
is absolute-p-paranormal for ¢ < p ([Fur]). We call simply absolute-1-paranormal as
paranormal. And T is p-paranormal if || |T|PU |T|P z|| > |||T|" z||*> for all unit vectors
z € H. In particular, the 1-paranormality is referred to as the paranormality. Every
g-paranormal operator is p-paranormal for ¢ < p ([Fuj]). The implications among classes
of operators mentioned above are as follows:

e p-hyponormal = p-paranormal = absolute-p-paranormal (0 < p < 1);
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e p-hyponormal = absolute-p-paranormal => p-paranormal (p > 1).

Seeing that examples for those operators are not abundant, it is worthwhile to develop
examples to distinguish those classes. In [JLP] and [JLL] block matrix operators were
considered to classify the above operators, but it was proved in their models that p-
paranormality is equivalent to absolute-p-paranormality. Also, models of composition
operators were discussed in [JLP] and [BJ] to classify those operators with weak hy-
ponormality, but it also was shown that two such weak hyponormalities are equivalent
([BJ]). However, our rank-one perturbation models classify completely such two weak
hyponormalities. In this paper we discuss rank-one perturbations of weighted shifts.

The paper consists of three sections. In Section 2 we characterize quasinormality and
p-hyponormality for rank-one perturbation of a weighted shift, and obtain examples being
distinct the classes of p-hyponormal operators. In Section 3, we also characterize absolute
p-paranormal and p-paranormal operators, which provides examples being distinct the
classes of such operators. Especially, we discuss via numerical table that the absolute
p-paranormality is different from the p-paranormality as we said above.

Some of the calculations in this paper were obtained through computer experiments
using the software tool Mathematica [Wol].

2. p-hyponormality Let W, be a weighted shift with weight sequence a = {a;}%,
of nonnegative real numbers. Let {e;}%, be an orthonormal basis for H = £3(Z,).
Obviously, W, is hyponormal if and only if W, is p-hyponormal for any[some] p € (0, o0).
In particular, W, is normal if and only if o, = 0 for all (n > 0), which is equivalent to that
W, is quasinormal. Hence the weighted shifts can not separate classes of p-hyponormal
operators. But rank-one perturbations of weighted shifts with a positive real parameter

separate the classes of p-hyponormal operators positively.

2.1. Characterizations of quasinormality. We consider a rank-one perturbation
of weighted shift
T(k,t) :=Wo+t(ex®ex), k€N (2.1)

with parameter t € [0, 00).

Proposition 2.1. Let T := T'(k,t) be as in (2.1). Then T(k,t) is quasinormal if and
only if it holds that

i)if ax #0,thena; =0(0<i<k—-1)and o; = \/ak§+t2 (t2k+1);

i) if ax=0,thena;=0(0<i<k)and a; =t (i 2> k+1).

2.2. Characterizations for p-hyponormality.

Theorem 2.2. Let T'(k,t) be as in (2.1). Suppose that p € (0,00). Then

(i) T(0,t) is p-hyponormal if and only if a2 > o2 + % and oy > o; for i €N;

(ii) T'(k,t) is p-hyponormal if and only if a; < a;4y (0 < i <k —3), Qyks1 = Qigk
(i € N) and it holds that: ‘

611 >0, (511522 - 6%2 >0, and 533 (511622 - 6?2) - 5115%3 >0, (22)
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where
oy = “ak 2+ {( P +af—of_+ Te)Me + (@foy — 82— of + m)u } /(2w
512 = 621 = tak_l(llrk ’\k)/'ylcy 522 - (ai - ali—l)(“i —"\Z)/’W
O3 = 532 = lak(A} — ﬂk)/’)’h
03 = ab, - {(t2 + ak_ — ol + )M+ (af - — oy + 1)k} / (2wm);

M = (BPHoap +ap—w)/2 wm={E+ai_; +oi+7)/2
v = [(*+ai_; +al)? — 4(on_10)’)?  (with a_; :=0).

2.3. Examples for distinction of p—hyponormalities. Let W, be a weighted shift
with weight sequence o satisfying

an=00<n<k-2), 41 =Vx, apy =1, ap=2(n>k+1).

Let T :=T(k,t) = W, +tex Qe for 0 <z < 1, t € [0,00), and v = /(1 + z +2)? —
Applying Theorem 2.2 with z,¢, and -y, we obtain that (T*T)? > (TT*)? if and only if
AP > BP? for 0 < p < 0o, where

z tyz 0 0 0 0
=| tyT t*+1 0 | andB=| 0 24z t |.
0 0 4 0 t 1

To compute AP and BP, first we find eigenvalues and eigenvectors of A and B so that we
may have D = P~'AP and E = Q! BQ in usual fashion; in fact, D = Diag{\, u,4}, E =
Diag{0, A\, u}, A:=3(1+z+t* —7), p:= 11+ z+t*+1), and

z-t3~1-y z—ti-144 0 1 0 0
2tV 2tz 2 2
_ — té~1— te -1+
P= I I 0], Q=[o0 =i zan
0 0 1 0 1 1

By a direct computation, A = AP — BP = (§;;)3x3 with

on =g {W(—z+ 2+ 1+7)+pP(z -2 - 1+7)},

012 = 091 = %(ﬂp — M), b2 = %(1 —z)(uP — A7),

023 = O3 = %,(/\p = pP)t,

033 =4 — L {uP(l -z — 2+ ) + M (z+t2 - 1+ )},

d;; =0 otherwise.
And, we write d) (i = 1,2,3) for the determinant of the i x 7 upper left corner of the
matrix A. Sincez —#2—14++v>0and 0 < A < g, d) = &; > 0. By simple calculation,
we obtain

filzt.p) = ———-d® = N [1 - y(z ~ 1) — 2z + 2% + t? + zt?)

)\
— P [1+y(z— 1)+ 2° + % + z(t* - 2)].
And by more computation, we obtain that d®) = f“—P:?—’l f2(z, t, p), where
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folz,t,p) + =200 =) {pP(-1+v+z—®) + N1 +v—z+t%)}
+{2-Py+pP(-1-v+z+1®) - W(-1+v+z+1t?)}
2P =)zt + (1 — ) {WP(~1+v+z - ) + XP(1+y -z +3)}].
Since p > A, d® > 0 if and only if fo(r,t,p) >0for0 <z <1,t€ [0,00) and p > 0.

Hence T is p-hyponormal if and only if f; > 0 and f, > 0. And we obtain the regions for
p-hyponormalities in Figure 2.1.

t
1.98
p = 1/10"°
1.8 p= 0.25
1.1% ¢ p=05
p=0"T

’\\ ‘ p=1
0.2 | \\\ D=2

| o 0 = 3
0.285 -\\\\\\ p=4
‘\\\;} p=5

8.2 0.4 5.8 8.4 1

Figure 2.1 |

3. Weak hyponormalities There are several kinds of weak hyponormalities that are
weaker than p -hyponormality, for examples, p-paranormality, absolute p-paranormality
p-paranormality, absolute p-paranormality, A(p)-class, normaloid, and spectraloid. It is
not known whether the p-paranormality is different from the absolute p-paranormality for
each p € (0,00)\{1}. In this section we discuss p-paranormal and absolute p-paranormal
- operators and continue Example 2.3 to discuss distinction between p -paranormality and
absolute p-paranormalityp-paranormality.

3.1. Absolute p-paranormality. Let T € £(H). Then it follows from [Fur, p.174]

that T is absolute p-paranormal if and only if T*(T*T)*T — (p+ 1)T*T's? + ps?*! > 0 for
all s e R,.

Theorem 3.1. Let T := T(k,t) be as in (2.1). Suppose k > 2. Then the following
assertions are equivalent: :
(i) T is absolute p-paranormal;

(ii) ans1 > an, n € No\{k —i:i=0,1,2}; and for all s € R4,

' wn G20tk—10k—2 to20k—2
Qi(s) := | Pr0k-10k-2 w2 tog-1(ds — (p+1)s?) | >0,
thoax_2  tok-1(d3s — (p+ 1)sP) w33
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where
wn - =wn(p,t) = ¢10f; — (p+ 1)ag_,s” + ps™
woe : =wa(p,t) = ¢sai_, (p+ Dai_;s? + pst
waz = was(p,t) = t2hs + a,ca,c+1 (p+1)sP(t* + a,,) + psP*!.
¢ = ¢i(k,p) = (N + 10)/2+ (N — i)(E® — oy + )/ (2%);
@2 = ¢a(k,p) = tak—1(p} — A})/;
93 = ¢s(k,p) = (N + 1})/2 — (N} — 1R)(2® — o}, + af)/(2e)-

Proposition 3.2. Under the same notation with Theorem 8.1, it holds that

i) T(0,t) is absolute p-paranormal if and only if a? > t?+of and an1 > an (n > 1);

ii) T(1,t) is absolute p-paranormal if and only zf Qny1 > 0y (n > 2) and for all
s € ]R+,

< alé — (p+ 1)sPad + psPt! tao(é (p+ 1)sP) ) >

tag(d — (p+ 1)sP) t26 + a?a — (p + 1)sP(t2 + o) + psP** ) = 7
where 6 = ¢3(1, p).

The following remark comes immediately from Proposition 3.2 above.

Remark 3.3. T(0,t) is absolute paranormal if and only if T(0,t) is absolute p-
paranormal for all[some] p € (0, 00).

3.2. p-paranormality. Let T = U |T| € L(H). Then is follows from [YY, Propo-
sition 3] that T is p-paranormal if and only if |T|P U* |T|® U |T|P — 2s|T|*® + s2 > 0 for
all s € Ry. Let T(k,t) be as in (2.1) and let T(k,t) = U(k,t)|T(k,t)| be a polar decom-
position. Then U(k,t) has the form such that the (i + 1,3)-terms are 1,--- |1, Fj, 1,

(k > 1), where Fy is (k + 1, k) term of U(k,t) and

1 (onadslk, 3) = tha(k, 1) (thr(k, 3) — ax_1da(k, ) ) .
Fi= (ak Stk ) "Zxkcﬁfi,% )

Q10

1 (k > 1). For brevity we write ui; (k) is the (i, 5) term of Fi. By the similar method of
Theorem 3.1 and the above characterization for p-paranormality, we obtain the followmg
results, but we omit the detail proof here.

Proposition 3.4. Let T(k,t) be as in (2.1) and let ui; be as above. Then
(i) T(0,t) is p-paranormal if and only if oy = an (n > 1) and o? > ol + t%;
(i) T(1,t) is p-paranormal if and only if ape1 = an (n 2 1) and, for all s € Ry

| ( Y1 -261(Lp)s+5* ¥ —26x(1,p)s ) >0
Y2 - 2452(1,10)3 Vs —2¢3(L,p)s+s* ) =

and others are 0. In particular, U(0,t) = W+

with

v = LA Dun) + 21, Dun()f + o611, Dun(1) + ¢2(1, Dua())),

Y2 = ¢3(1,p)hn(1 ,§)u11(1)+¢2(1y§)u12(1)][¢2( :5)“11(1)+¢3(1,§)u12(1)]
+a[6n(1, D)ua (1) + 02(1, Byuna(1)]len (1, 2)'u21(1)+¢3(1,'g)u22(1)]'

¥s = ¢3(1,p)[¢(1, —)u11(1)+¢3(1 —)u12(1)12+a Plea(1, ")U21(1)+¢3(1 *)uzz(l)]z
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The following remark follows immediately from Proposition 3.4 (i).

Remark 3.5. T(0,t) is paranormal if and only if T(0,t) is p-paranormal for all
[some] p € (0, 00).

Theorem 3.6. Let T'(k,t) be as in (2.1) and let u;; and ¢; be as above. Suppose
k > 2. Then T(k,t) is p-paranormal if and only if ant1 2 0, (0<n<k—-3;n>k+1)
and, for all s € R,

(pll —_ 20’6 23 + S <P12 9013
Uy 1= Y12 a2 — 231 (p) + §* Y23 — 2¢2(p)s >0
Y13 w23 — 2¢2(p)s 33 — 2¢3(p)s + s*

where

723 =a:{’.2¢1(P)'
P12 -ak-2¢2(P)[¢1( )Ull(k)+¢2( Jurz(k));

P13 —Otk_2¢2(P)[¢2( )uu(k)+¢3(“)"12(k)];

2 =¢3(P)[¢1( )uu(k)+¢2( Jura(k))* + o, (¢ (B)Uzl(k)+¢2(2)u22(k)]2;

Cem =)t uu(k)+¢2( )ulz(k)][dh( Jun (k) + #3(3 )ulz(k)]
k+1[¢1( )uzl(k) + ¢2(§)u22(k)][¢2(§)u21(k) + ¢3(‘2')u22(k)],

ow =¢3<p)[¢2(§>uu<k>+¢3<§>uu(k)12+a211[¢2<—§>u21<k>+¢s(§>un(k>12;

(we write ¢i(p) for ¢s(k.p) for brevity).

Remark 3.7. Recall that T € L(H) is an A(p)-class operator if (T* |T|* T)# > |T)?
(0 < p < ). We can apply our method to this A(p) class operators. We leave these
computations to interesting readers.

3.3. Examples for weak hyponormalities (continued from Example 2.3). Let
T :=T(k,t) = Wa+tex®ex (0 < z £ 1) be as in Example 2.3. In this example, we discuss
operators T(z,t) with absolute-p-paranormality but not p-paranormality for p € (0,1),
and operators with p-paranormality but not absolute-p-paranormality for p € (1,00). In
Table 3.1, Qf) is the determinant of lower right 2 x 2 submatrix of 2 in Theorem 3.1,
and \Ilil) is the (2, 2)-term of ¥ and ‘Ilf) is the determinant of lower right 2 x 2 submatrix
of ¥}, in Theorem 3.6 (Note that (1,2), (1,3), (2,1), and (3,1) terms of {x; and ¥, are zero
and (1,1) term of ¥y is positive in this example.)

Algorithm 3.8. Under the same notation with Theorems 2.2, 3.1, and 3.4, we give
steps to obtain examples being distinct p-hyponormal, absolute-p-paranormality, and p-
paranormality.

I. Take p,z,t such that T(z,t) does not satisfy p-hyponormality in Figure 2 1, ie,
f=f(=z,t,p) <0

II. For p, z,t taken in Step I, check the positivity of wy;, wee, and Q(z) for all s € R,;

II1. For p, z,t taken in Step I, check the positivity q,(l) and \11(2), forall se R..
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We give examples being distinct absolute-p-paranormality, and p-paranormality for
0 < p<1andp> 1, respectively, as following.

Example 3.9 (Absolute p-paranormal but not p-paranormal for p < 1). If
we take p = .25; £ = .4; t = 1.166, then we have the following:

L f(z,t,p) = —2.24293;

IL for all s € Ry, wyy ~ .276285 + 25554 > 0; wy, = 482308 — .55'/% + .255%/4 > 0;
0P ~ 682086 — 1.3099951/4 + 62551/ + 883958554 — .8623615%2 + .062555/2 > 0;

IIL for all s € Ry, U ~ 865735 — 1.381435 + 52 > 0;

P ~ (—1.26429 + 5)(—1.26321 + 5)(.849122 — 1.265465 + %) ¥ 0.

Hence T is absolute p-paranormal but not p-paranormal.

Example 3.10 (p-paranormal but not absolute p-paranormal for p > 1). If
we take p = 2; z =.7; t = 1.347, then we have the following:

L f(z,t,p) =~ —2411.31; '

IL for all s € Ry, wy; = 1.23206 + 253 > 0; wyo = 6.43369 — 2.152 + 253 > 0

. 0P ~ 4(—3.34444+ 5)(—3.25175+ 5) (1.01729 + 5)(1.66817 + 5)(1.39443 — 1.36088 s+

)20

IIL for all s € Ry, U ~ 17.8439 — 3.52017s + s2 > 0;

P ~ 72.0573 — 24.6872s + 121.77452 + 21.9021s + s¢ > 0.
Hence T is p-paranormal but not absolute p-paranormal.
Repeating these processes in Examples 3.9 and 3.10 with Algoritm 3.8 and some

scales, we have the following table 3.1, which shows that the absolute-p-paranormality is
different from p-paranormality in some numerical computations.

Table 3.1
ple]l ¢t [flun|we QD[ ][vP®[pH|[ApP][pP
251411 -+ + ] + + + |NO|YES | YES
25 .4]1.166 -+ | + [ + + — |NO |YES |NO
50(.81].5 -1+ 1+ 1 + + + |NO |YES | YES
50| .81.85 -+ | + | + + — |NO|YES | NO
75161 .6 -+ |+ | + + + |NO|YES |YES
751 .6 | 1.189 -1+ ]+ | + + - NO | YES | NO
1 51133523 |~ | + | + | + + + | NO|YES |YES
1 b5 1133524 | - + | + | — + — | NO |[NO NO
2 |71 -+ |+ + + + |NO |YES | YES
2 7 11.347 - + | + - + + NO | NO YES
3 1216 -+ + |+ + + | NO|YES |YES
3 2116452 | — | + -+ - -+ + NO [ NO YES
4 1.911.367 -+ + | + + + |NO|YES |YES
4 9 [ 1.368 -+ | + - + + | NO |NO YES
5 S 115 -+ |+ | + -+ + NO | YES | YES
5 |.5(15537 |- + | + | — + + |NO [NO YES

p-H = p-hyponormal; A-p-H = absolute p-hyponormal; p-P = p-paranormal
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