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Abstract

A new definition of product between the elements of Hida distributions dedined on the sharp time &ae
field is given. By this procedure the space of Hida distributions has the structure of ring. This newly
defned product is different to the well known $\theta tran\#om$. Its structure is much more complicated than the
one of the Stransform, and here we call the newly deflned product “ the Hlda product”. Through the
$H|da$ product we are able to define new operators that contains both the creation and $\ovalbox{\tt\small REJECT}$tion terms,
and then it is shown that the $(\Phi_{4})^{p}$ field $th\infty ry$ is rUizable within a framework of Banach space (i.e. by
modifying the usual Hilbert space arguments to that of Banach space).

$0$ Preliminaries

Throughout this paper, we set $d\in N$, wher.e $N$ is the set of natural numbers, the space-
time dimension, and take that $d-1$ is the space dimension and 1 is the dimension of time.
Correspondingly, we use the notations

$x\equiv(t,\tilde{x})\in \mathbb{R}xM^{-1}$ .
Let $S(\mathbb{R}^{d})$ (resp. $S(\mathbb{R}^{d-1})$ ) be the Schwartz space of rapidly decreasing test functions on the

$d$ dimensional Euclidean space $\mathbb{R}^{d}$ (resp. $d-1$ dimensional Euclidean space $\mathbb{R}^{d-1}$ ), equipped
with the usual topology by which it is a Flir\’echet nuclear space. Let $S’(\mathbb{R}^{d})$ (resp. $S’(\mathbb{F}^{-1})$ ) be
the topological dual space of $S(\mathbb{R}^{d})$ (resp. $S(\mathbb{P}^{-1})$).

In order to simplify the notations, in the sequel, by the symbol $D$ we denote both $d$ and
$d-1$ . In each discussion we exactly explain the dimension (space-time or space) of the field on
which wlb are working.

Now, suppose that on a complete probability space $(\Omega,\mathcal{F}, P)$ we are given an isonormal
Gaussian process $B^{D}=\{B^{D}(h), h\in L^{2}(\mathbb{R}^{D} ; \lambda^{D})\}$ , where $\lambda^{D}$ denotes the Lebesgue measure
on $\mathbb{R}^{D}$ (cf., e.g., [HKPS], $[SiSi]$ , [AY1,2] and references therein). Precisely, $B^{D}$ is a centered
Gaussian family of random variables such that

$E[B^{D}(h)B^{D}(g)]= \int_{R^{D}}h(x)g(x)\lambda^{D}(dx)$ , $h,$ $g\in L^{2}(\mathbb{R}^{D}; \lambda^{D})$ . (0.1)

We write
$B_{w}^{D}(h)= \int_{R^{D}}h(y)\dot{B}_{w}^{D}(y)dy$ , $\omega\in\Omega$.

Namely, $\dot{B}_{\omega}^{D}(\cdot)$ is the Gaussian white noise on $R^{D}$ .
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By the framework of the calculus on the abstract Wiener vpaces, $\dot{B}(y)dy$ is written by
$W_{w}^{D}(dy)$ (cf., [Nu], [AFY]). As far as the discussions for (0.6) and (0.7), which are not singular,
we may use the notation of the calculus on the abstract Wiener spaces, but to make the
symbols clear and for the discussions on the Hida distributions (going into the more singular
discussions) we prefer to use the notations of white noise analysis.

We are considering a massive scalar field and suppose that we are given a mass $m>0$ . Let
$\Delta_{d}$ and resp. $\Delta_{d-1}$ be the $d$, resp. $d-1$ , dimensional Laplace operator, and define the pseudo
differential operators $L_{-\frac{1}{2}}$ and $H_{-\frac{1}{4}}$ as follows:

$L_{-f}1=(-\Delta_{d}+m^{2})^{-f}1$ (0.2)

$H_{-\frac{1}{4}}=(-\Delta_{d-1}+m^{2})^{-l}4$ (0.3)

By the same symbols as $L_{-1,f}$ and $H_{-1,4}$ , we also denote the integral kernels of the corresponding
pseudo differential operators, i.e., the Fourier inverse tranaforms of the corresponding symbols
of the pseudo differential operators.

By making use of stochastic integral expressions, we define two extremely important random
fields $\phi_{N}$ , the Nelson’s Euclidean free fleld, and $\phi_{0}$ , the sharp time free field, as follows:
For $d\geq 2$ ,

$\phi_{N}(\cdot)\equiv\int_{R^{d}}L_{-\}(x-\cdot)\dot{B}^{d}(x)dx$, (0.4)

$\phi_{0}(\cdot)\equiv\int_{R^{d-1^{4}}}H_{-1}(d-\cdot)\dot{B}^{d-1}(\tilde{x})d\tilde{x}$. (0.5)

These definitions of $\phi_{N}$ and resp. $\phi_{0}$ seems formal, but they are $rigorou\epsilon ly$ defined as $S’(N)$
and resp. $S’(W^{-1})$ valued random variables through a limiting procedure (cf. $[AY1,2]$), more
precisly it has been shown that

$P(\phi_{N}(\cdot)\in B_{d}^{a,b})=1$ , for $a,$ $b$ such that $\min(1, \frac{2a}{d})+\frac{2}{d}>1,$ $b>d$ (0.6)

$P(\phi_{0}\in B_{d-1}^{a’,b’})=1$ , for $a^{l},$ $\nu$ such that $\min(1, \frac{2a’}{d-1})+\frac{1}{d-1}>1,$ $b’>d-1$ . (0.7)

Here for each $a,$ $b,$ $D>0$ , the Hilbert spaces $B_{d}^{a,b}$ , which is a linear subspace of $S’(R^{D})$ , is
defined by

$B_{D}^{a,b}=\{(|x|^{2}+1)^{\frac{b}{4}}(-\Delta_{D}+1)^{+\frac{t}{}}f:f\in L^{2}(\mathbb{R}^{D} ; \lambda^{D})\},$

,
(0.8)

where $x\in \mathbb{R}^{D}$ and $\lambda$ denotes the Lebesgue measure on $\mathbb{R}$, the scalar product of $B_{d}^{a,b}$ is given by

$<u|v>$ $=$ $\int_{R^{D}}\{T\iota$

$x$ $\{(-\Delta_{D}+1)^{5}((1+|x|^{2})^{-\frac{b}{4}}v(x))\}dx,$ $u,$ $v\in B_{D}^{a,b}$ . (0.9)

Let $\mu_{0}$ be the probability measure on $S’(W^{-1}arrow \mathbb{R})$ which is the probability law of the sharp
time free field $\phi_{0}$ on $(\Omega, \mathcal{F}, P)$ (cf. (0.7)), and $\mu_{N}$ be the probability measure on $S’(Farrow \mathbb{R})$

which is the probability law of the Nelson’s Euclidean free field on $F$ (cf. (0.6)).
We denote

$\phi_{0}(\varphi)\equiv<\phi_{0},$ $\varphi>\equiv\int_{R^{d-1}}(H_{-1,4}\varphi)(\tilde{x})\dot{B}^{d-1}(\tilde{x})d\dot{x}$,

153



and

: $\phi_{0}(\varphi_{1})\cdots\phi_{0}(\varphi_{\mathfrak{n}})$ :

$= \int_{R^{k(d-1)}}H_{-\frac{1}{4}}\varphi_{1}(\vec{x}_{1})\cdots H_{-\frac{1}{4}}\varphi_{1}(\tilde{x}_{k})$ : $\dot{B}^{d-1}(\tilde{x}_{1})\cdots\dot{B}^{d-1}(\vec{x}_{k})$ :

$\cross dd_{1}\cdots dd_{k}\in\bigcap_{q\geq 1}L^{q}(\mu_{0})$

for $\varphi,$
$\varphi_{j}\in S(\mathbb{R}^{d-1}arrow \mathbb{R})$ , $j=1,$ $\cdots$ , $k$ , $k\in N$, (0.10)

where (0.10) is the k-th multiple stochastic integral with respect to the Gaussian white noise
$\dot{B}^{d-1}$ on $M^{-1}$ .

Since, : $\phi_{0}(\varphi_{1})\cdots\phi_{0}(\varphi_{\mathfrak{n}})$ : is nothing more than an element of the n-th Wiener chaos of
$L^{2}(\mu_{0})$ , it also adomits an expression by means of the Hermite polynomial of $\phi_{0}(\varphi_{j}),$ $j=$
$1,$ $\cdots$ , $k$ (cf., e.g., [AY1,2] and references therein).

Remark 1. From the view point of the notational rigorousness, $\phi_{0}$ and $\phi_{N}$ are the
distribution valued random variables on the probability space $(\Omega, \mathcal{F}, P)$ , hence the notation
such as

: $\phi_{0}(\varphi_{1})\cdots\phi_{0}(\varphi_{n})$

$: \in\bigcap_{e\geq 1}L^{q}(\mu_{0})$

is incorrect. However in the above and in the sequel, since there is no ambiguity, for the simplic-
ity of the notations we use the notations $\phi_{0}$ and $\phi_{N}$ (with an obvious interpretation) to indicate
the measurable functions $X$ and resp. $Y$ on the measure spaces $(S’(\mathbb{P}^{-1}),\mu_{0}, \mathcal{B}(S’(W^{-1})))$ and
resp. $(S’(F),\mu_{N}, \mathcal{B}(S’(\Psi)))$ such that

$P(\{\omega : \phi_{0}(\omega)\in A\})=\mu_{0}(\{\phi : X(\phi)\in A\})$ , $A\in \mathcal{B}(S’(\Psi^{-1}))$ ,

$P$ ( $\{w : \phi_{N}(w)\in A’\})=\mu_{N}(\{\phi ; Y(\phi)\in A’\})$ , $A’\in \mathcal{B}(S’(W))$ ,

respectively, where $B(S)$ denotes the Borel $\sigma- field$ of the topological space $S$ .
口

Let
$H_{1,I}\equiv(-\Delta_{d-1}+m^{2})$ , (0.11)

and define the operator $d\Gamma(H\})$ on $L^{2}(\mu_{0})$ (for the notations cf. Remark 1.)

$d\Gamma(H_{1}z)(:\phi_{0}(\varphi_{1})\cdots\phi_{0}(\varphi_{n}):)=:\phi_{0}(H_{1}z\varphi_{1})\phi_{0}(\varphi_{2})\cdots\phi_{0}(\varphi_{n})$ $:+\cdots$

. . $.+.$ $\phi_{0}(\varphi_{1})\cdots\phi_{0}(\varphi_{n-1})\phi_{0}(H_{1}\varphi_{k})$ : (0.12)

We state the well known fundamental structures on the ffee field with the space time dimension
$d$ as follows:
Proposition 0.1 The operator $d\Gamma(H\#)$ on $L^{2}(\mu_{0})$ with the natural domain is an essentially
self adjoint non negative operator, and it is a generator of the Markovian semigroup, denoted
by $T_{t}\equiv e^{-ur(H)}t,$ ($i.e$ . satisfying the prvperties of positivity preserving and $L^{q}(\mu_{0})$ contraction
$(q\in[0, \infty]))$, moreover $T_{t}$ is hypercontractive (cf. $/GJ$).
ii) The operator $T_{t}\phi_{0}(\varphi)$ on the sharp time jbee field $L^{2}(\mu_{0})$ is identified with the Nelson
Euclidean free field $\phi_{N}$ in such a way that

$\int_{S’(B^{d-1}arrow B)}$ $T_{t_{1}}((T_{la}<\cdot,$ $\varphi_{2}>S’,s)S’,S$

$=E^{\mu_{N}}[<\phi, \varphi_{1}x\delta_{\langle t_{1}\}}(\cdot)><\phi, \varphi_{2}x\delta_{\{t_{1}+t,\}}(\cdot)>]$ , (0.13)
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iii) $-$ The operator $e^{-itd\Gamma(H)}$} on the sharp time free field $L^{2}(\mu_{0})$ is the time translation gropup
on the Wightman free field, and

$\epsilon^{iur(H)}\}\phi_{0}(\varphi)e^{-itd\Gamma(H)}f$ (0.14)

are the field operators on the free field with the space time dimension $d$ .
口

1 Definition of Hida prvduct

Let $d\in N$ $(d\geq 2)$ be a given space time dimension, and $\phi_{0}$ and $\phi_{N}$ be the corresponding
sharp time free field and Nelson’s Euclidean free field defined by (0.5) and (0.4) respectively,
and $\mu_{0}$ and $\mu_{N}$ be the probability laws of $\phi_{0}$ and $\phi_{N}$ respectively.

For real $\gamma$ , let
$H_{-\gamma}\equiv(-\Delta_{d-1}+m^{2})^{-\gamma}$. (1.1)

For $r\in N$, let $\Lambda_{r,d-1}\in C_{0}^{\infty}(F^{-1}arrow \mathbb{R}_{\vdash})$ be a given function such that

$0\leq\Lambda_{r,d-1}(\dot{x})\leq 1(d\in F^{-1}),$ $\Lambda_{r,d-1}\equiv 1(|t|\leq r),$ $\Lambda_{r,d-1}\equiv 0(|\tilde{x}|\geq r+\cdot 1)$ ,

for $p\in N$ define a Hida distribution $<:\phi_{0}^{2p}:,$ $\Lambda_{r,d-1}>on$ the space the test functions, $\bigcap_{q\geq 1}L^{q}(\mu_{0})$

as follows:
$<:\phi_{0}^{2p}:,$ $\Lambda_{r,d-1}>$

$\equiv\int_{(R^{d-1})^{2}},$ $\{\int_{R^{d-1}}\Lambda_{r,d-1}(\partial)\prod_{k=1}^{v}H_{-\}}(d-i_{k})dae\}$

$x$ : $\dot{B}^{d-1}(\tilde{x}_{1})\cdots\dot{B}^{d-1}(\tilde{x}v)$ : $d\tilde{x}_{1}\cdots d\tilde{x}_{2p}$ , (1.2)

here, all the way of using notations follow the rule given by Remark 1.
For $d=2$ $(d-1=1)$ we know that

$<:\phi_{0}^{2p}:,$
$\Lambda_{r,1}>\in\bigcap_{a\geq 1}L^{q}(\mu_{0})$

.

But our main interest is concentrated on the case where $d=4$ $(d-1=3)$ , and in this case
$<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>is$ not a random variable any more, but a Hida distribution.

In the sequel, if there is no indication of the dimension $d$ in each discussion, then we should
understand that the consideration is carried out on $d=4,$ $d-1=3$.

Let us define a new multiplication between two Hida distributions $<;\phi_{0}^{2p}$ :, $\Lambda_{r,3}>$ and
$<:\phi_{0}^{2p}$ :, $\Lambda_{r,S}>$ . We denote this new multiplication procedure as Hida product. It produces one
Hida distribution from another two, and the resulting distributions are different from the ones
derived through the well known S-transform and others. Hence, equipping this multiplication,
the space of Hida distribution has the structure of ring.

We have to stress that the Hida distributions generated through this new production proce-
dure are much more complicated than the ones given by the known multiplication procedures,
but they are much more fruitful, in fact by these distributions (operators) we may define the
non-trivial interactions on the 4-dimensional space time quantum field.

Deflnition. (Hida prvduct) For the space time dimension $d=4$, let $\phi_{0}$ be the sharp
time free field with $d-1=3$. Let the Hida distribution $<:\phi 2^{p}:,$ $A_{r,3}>be$ the $2p$-th Wick power
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of the sharp time free field defined by (1.2). The Hida product $<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>\cross \mathcal{H}<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>$

is defined as a distribution on the space of the test functions $\bigcap_{q\geq 1}L^{q}(\mu_{0})$ as follows:
$<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>\cross \mathcal{H}<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>$

$=<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>\cross<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>$

$-$ (all the terms that are not Hida distributions), (1.3)

explicitly
$<:\phi_{0}^{2p}:,$ $\Lambda_{r,3}>x_{\mathcal{H}}<:\phi_{0}^{2p}:,\Lambda_{r,3}>$

$\cong\int_{(R^{\theta})^{4p}}\{z$

$x\{\int_{R^{\theta}}\Lambda_{r,3}(y^{\tilde{\prime}})\prod_{k=1}^{2p}H_{-1,4}(y^{\tilde{\prime}}-x_{k}^{\vec{\prime}})dy^{\tilde{\prime}}\}$

$x$ : $\dot{B}^{3}(l_{1})\cdots\dot{B}^{3}(\partial_{2p})\dot{B}^{3}(x_{1}^{\tilde{\prime}})\cdots\dot{B}^{3}(\dot{x’}_{2p})$ : $d\tilde{x}_{1}\cdots dd_{2p}dx_{1}^{\tilde{\prime}}\cdots dx_{2p}^{\vec{\prime}}$

$+4p^{2} \int_{(R^{\theta})^{4p-}},$ $[ \int_{R^{\}xB^{s}}\{\Lambda_{r,3}(ff)\prod_{k=1}^{2p-1}H_{-\frac{1}{4}}(\dot{y}-\tilde{x}_{k})\}\{\Lambda_{r,3}(y^{\tilde{\prime}})\prod_{k=1}^{2p-1}H_{-\#}(y^{\vec{\prime}}-x_{k}^{\tilde{\prime}})\}$

$xH_{-f}1(\tilde{y}-y^{\tilde{\prime}})d\tilde{y}dy^{\tilde{\prime}]}$ : $\dot{B}^{3}(\tilde{x}_{1})\cdots\dot{B}^{3}(\tilde{x}_{2p-1})\dot{B}^{3}(x_{1}^{\tilde{\prime}})\cdots\dot{B}^{3}(x_{2p-1}^{\tilde{\prime}})$ :

$xM_{1}\cdots dd_{2p-1}d\tilde{\theta}_{1}\cdots dx_{2p-1}^{\tilde{\prime}}$ . (1.4)

口

Remark 2. i) To get a production between two $<:\phi_{0}^{2p}$ :, $\Lambda_{r,3}>$ , if we use the S-
transform, then we may only have the first term of (1.4) and do not have the second term of
(1.4). In fact, by $mak_{\dot{i}}g$ use of the S-transform one can reform the operators that only has
the creation terms and does not have any annihilation terms, on the other hand through the
Hida product we have the new operators that contains both the creation and annihilation
terms.

ii) For example for the 6-th power $(<:\phi_{0}^{2p} :, \Lambda_{r,3}>)^{6}$ , the corresponding Hida prvdust,
denoted by $(<:\phi_{0}^{2p}:,\Lambda_{r,3}>)_{\mathcal{H}}^{6}$ , involves much complicated terms. In particular, it possesses the
following important term having a hexagonal form:

$\int_{(R^{l})^{6x’ p-12}}[\int_{(B^{8})^{6}}\{,1$

$\cross H_{-f1}(y_{1}^{\sim}-y_{2}^{\sim})\{H_{-\urcorner}(\tilde{y_{2}}-\tilde{x}_{2,k})\}$

$xH_{-1}(y_{2}^{\sim}-y_{3}^{\sim})\{\Lambda_{r,3}(\tilde{y_{3}})\prod_{k=1}^{2p-2}H_{-\#}(\tilde{y_{3}}-\tilde{x}_{8,k})\}x\cdots$

$... \cross H_{-\#}(y_{6}^{\vee}-y_{1}^{\sim}).\{A_{r,3}(\tilde{y_{6}})\prod_{k=1}^{2p-2}H_{-1,4}(\overline{y_{6}}-d_{6,k})\}d\vec{y_{1}}\cdots dy_{6}^{\vee]}$

$x$ : $\dot{B}^{3}(i_{1,1})\cdots\dot{B}^{3}(\vec{x}_{6,2p-2}):M_{1,1}\cdots d\tilde{x}_{6,2p-2}$. (1.5)
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口

The definition of the Hida product can be extended to the higher dimensions by a obvious
manner. By using the Hida product we can define the power series of Hida distributions, in
particular we can set

$(e^{C<:\phi_{0}^{2p}:,\Lambda_{r,d-1}>})_{\mathcal{H}} \equiv\sum_{n=0}^{\infty}\frac{1}{n!}(C<:\phi_{0}^{2p}., \Lambda_{r,d-1}>)_{\mathcal{H}}^{\mathfrak{n}}$, $C\in C$ . (1.6)

Remark 3. By modifying the usual multiplication procedures of the random variable8
on the sharp time field to the Hida product, we can define the operator (cf. (0.14))

$e^{1ur(H)}(e^{it<:\phi_{o^{p}}:,\Lambda,>}d-1)_{\mathcal{H}}x^{\mathcal{H}}\phi_{0}(\varphi)\cross^{\mathcal{H}}e^{-iur(H)}$ (1.7)

with the domain $\bigcap_{q>1}L^{q}(\mu_{0})$ , which has the structure of the ring.
[GrotS] defines the operators which are defined by making use of the S-transform, and

[AGW] constructs the operators through the convolution of pseudo differential opetators with
generalized white noises, and they showed that these operators do not include the non trivial
interactions. $[NaMu]$ introduces an anther important approach of the construction of the field
by choosing special test functions that are not $S$ .

For $d=4$, every existing known result on the field operator with non trivial interaction, in
particular $\Phi_{4}^{4}$ , is a statement that the field operator can not be really an operator but a fom
on a Hilbert space and hence it does not admit an operation of productions.

口

In the next section, we try to construct the framework of the $(\Phi_{4})^{p}$ field theory on a Banach
space where the operators defined by (1.7) plays the role of the field operators (cf. Remark
2-i)).

2 Banach space realization of $(\Phi_{d})^{p}$ field theory

For $f(t,\tilde{x})\in S(\mathbb{R}^{d}arrow \mathbb{C})$ let (cf. (0.14))

$\phi(f)\equiv\int_{R}e^{itd\Gamma(H)}\phi_{0}(f(t, \cdot))e^{-iur(H)}dt$. (2.1)

Note that in (1.6) if we let $rarrow\infty$ , then

$(e^{C<:\phi_{0}^{2p}:,R^{d-1}>})_{\mathcal{H}} \equiv\sum_{n=0}^{\infty}\frac{1}{n!}(C<:\phi_{0}^{v}:,F^{-1}>)_{\mathcal{H}}^{n}$ , $C\in C$ (2.2)

is still well defined as a Hida distribution.
Thus for $f(t,\tilde{x})\in S(Narrow \mathbb{C})$ and $\lambda\geq 0$ we define an operator (cf. (1.7))

$\phi_{\lambda V}(f)\equiv\int_{\mathbb{R}}e^{ju\Gamma(H)}(e^{it\lambda<:\phi_{0}^{lp}:,R^{d-1}>})_{\mathcal{H}}x_{\mathcal{H}}\phi_{0}(f(t, \cdot)\cross \mathcal{H}e^{-iur(H)}(2.3)$

which maps a Hida distribution to a Hida distnbution.
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Let $E’$ be the linear space of Hida distributions and $E$ be a space of test functions thai is
the finite linear conbinations of

: $\phi(g_{1})\cdots\phi(g_{r});1$ , $g_{j}\in S(\mathbb{R}^{d}arrow \mathbb{C})$ , $j=1,$ $\ldots,$
$r$, $r\in \mathbb{Z}_{+}$ .

We define a dualization between $E’$ and $E$ as follows:
for $f_{l}\in S(R^{d}arrow \mathbb{C}),$ $(l=1, \ldots, k)$ and $g_{j}\in S(\mathbb{R}^{d}arrow \mathbb{C}),$ $(j=1, \ldots, r),$ $k,$ $r\in \mathbb{Z}_{+}$

$<\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1,$ : $\phi(g_{1})\cdots\phi(g_{r}):1>B’,B$

$\equiv E[\{\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1\}_{r}(:\phi(g_{1})\cdots\phi(g_{r}):1)]$ , (2.4)

where $E[\cdot]$ denotes the generalized expectation of the Hida distributions and

$t^{\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1}\}_{r}$

is the r-th Hida Chaos of $\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1$ , i.e.

$\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1\equiv\oplus_{r=0}^{\infty}\{\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1I_{r}$.

Next, we modify the definition of the space $E’$ as follows:

$E’$ $\equiv$ the finite linear combinations of $\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1$ , (2.5)
$f_{1},$

$\ldots,$
$f_{k}\in S(\Psiarrow \mathbb{C})$ , $k\in Z+\cdot$

Finally, we define a norm $||\cdot||_{B’}$ on $E’$ to make its completion a Banach space:

$||\phi_{\lambda V}(f_{1})\cdots\phi_{\lambda V}(f_{k})1||_{B’}$

$\equiv\sup_{g_{1},\ldots,g_{r}\in S,r\in \mathbb{Z}+}\ovalbox{\tt\small REJECT}|<\phi_{\lambda V}(f_{1})\cdot\cdot\cdot\cdot\phi_{\lambda V}(f_{k})1,.\cdot.\cdot\phi(g_{1})\cdots\phi(g_{r}):1>B’,B|||:\phi(g_{1})\cdot\phi(g_{r}):1||_{k}$ (2.6)

where

$||$ : $\phi(g_{1})\cdots\phi(g_{r}):1||_{k}$

$\equiv\sum_{j=0}^{\infty}|A_{j}(2^{h})^{1}|\overline{2}^{F}+\cdots+\sum_{j=0}^{\infty}|A_{j}(2^{l})^{1}|\overline{z}^{\Gamma}+\cdots+\sum_{j=0}^{\infty}|A_{j}^{(1)}|^{\frac{1}{2}}+1$ , (2.7)

with $A_{j}^{(2^{l})}$ being the each term appareing in the explicit expression of the generalized expectation

$E[(e^{-\lambda<:\phi_{0}^{2p}:,B^{d-1}>})_{\mathcal{H}}\{:\phi(g_{1})\cdots\phi(g_{r}):1\}^{2^{l}}])$

nrnely

$\sum_{j=0}^{\infty}A_{j}^{(\#)}$ $\equiv$ $\{(e^{-\lambda<:\phi_{0}^{p}:,R^{d-1}>})_{\mathcal{H}}x_{\mathcal{H}}\{:\phi(g_{1})\cdots\phi(g_{r}):1\}^{2^{l}}\}_{0}$

$=$ O-th Hida chaos of $(e^{-\lambda<:\phi_{0}^{lp}:,B^{d-1}>})_{\mathcal{H}}\{:\phi(g_{1})\cdots\phi(g_{r})$ : $1\}^{2^{l}}$ . (2.8)

The following is the main result:
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Proposition 2.1 By completing $E’$ with respect to the norm defined by (2.6), the completion
$\overline{E’}$ becomes a Banach space. On the Banach space zr the opemtors $\phi_{\lambda V}(f)$ defined by (Z.3)
resp. and the time translation operator resp. play the corresponding role of the field operator
resp. and time translation operator resp. in the Wightman $(\Phi_{d})^{p}$ field theory with a Hilbert
space framework. In fact, $\phi_{\lambda V}(f)(f\in S(\mathbb{R}^{d}arrow \mathbb{C}))$ satisfy the property of local commutativity
in the spacelike separated region and admit the invariance property with respect to the Poincar\’e
group.

口
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