
One-dimensional Schr\"odinger Equations and
Renormalization Groups of Wegner-Houghton-Aoki

type

Keiichi R. Ito *

Department of Mathematics and Physics
Setsunan University, Neyagawa

Osaka 572-8508, Japan
and

Miyuki Kuze \dagger

Fumio Hiroshima \ddagger

Faculty of Mathematics, Kyushu University,
Hakozaki 6-10-1, Fukuoka 812-8581, Japan

April 8, 2008

Abstract
We consider the low-lying spectrum of the Schr\"odinger equation

$[- \frac{1}{2}\frac{d^{2}}{dx^{2}}+V(x)]\phi_{n}(x)=E_{n}\phi_{n}(x)$

where $V(x)=(1/2)a_{0}x^{2}+\lambda_{0}x^{4}$ and show that the low-lying spectrum of the above
equation is derived by the renormalization group methods. Taking the infinites-
imal form of the transformation, the non-linear evolution equation of Houghton-
Wegner-Aoki type is derived:

$V_{t}(t,x)= \frac{1}{2\pi t^{2}}$ log $(1+t^{2}V_{xx}(t,x))$

where $V(O, x)=V(x),$ $E_{1}\leq E_{2}\leq E_{3}\leq\cdots$ and $E_{1}$ is the ground energy. We
discuss low-lying spectrum by using renormalization group methods.
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1 Introduction
We consider the low-lying spectrum of the one-dimensional Schr\"odinger equation

$[- \frac{1}{2}\frac{d^{2}}{dx^{2}}+V(x)]\phi_{n}(x)$ $=$ $E_{n}\phi_{n}(x)$ (1.1)

(1.2)

where $V(x)$ is a positive function such that $V(x)=0$ for finitely many points $x_{1}<x_{2}<$
$\ldots$ In this paper we explicitly consider the following potential $V(x)$

$V(x)= \frac{1}{2}a_{0}x^{2}+\lambda_{0}x^{4}$

where $\lambda_{0}>0$ and $a_{0}$ may be negative. It is not difficult to extend our arguments to
general $V(x)$ . We are interested in describing $E_{i}\cdot-E_{1}$ by some explicit formula and
we show that the difference $E_{2}-E_{1}$ ls given by the mass term of the renormalized
Schroedinger operator which is obtained from the original Schroedinger operator by
applications of block spin transformation.

We discuss two approaches in this paper. The first one is

(i) direct applications of the block spin transformations to the Schroedinger operators,

and the second one is

(ii) analysis of non-linear partial differential equation derived from the infinitesimal
form of the block spin transformation.

If one applies the block spin transformation to the Schr\"odinger operator, the resultant
renormalized Schr\"odinger equation takes the form

$[- \frac{1}{2L^{n}}\frac{d^{2}}{dx^{2}}+L^{n}(\frac{\tau_{2}}{2}x^{2}+\tau_{4}x^{4})]\phi_{n}(x)=E_{n}\phi_{n}(x)$ (1.3)

neglecting higher order terms, where $L>1$ is an integer (size of blocks) and $n$ is the
number of the iteration of the block spin transformations. Moreover $\tau_{2}$ and $\tau_{4}$ are strictly
positive numbers obtained by the block spin transformations.

We then take the limit $narrow\infty$ . This is the classical limit discussed in $[11, 12]$ , and
by setting $\zeta=L^{n/2}x$ we obtain

$[- \frac{1}{2}\frac{d^{2}}{d\zeta^{2}}+\frac{1}{2}\tau_{2}\zeta^{2}+\frac{1}{L^{n}}\tau_{4}\zeta^{4}]\phi_{n}(\zeta)=E_{n}\phi_{n}(\zeta)$ (1.4)

This implies that the low-lying spectrum is given by that of the harmonic oscillator:

$E_{1}-E_{0}=\sqrt{\tau_{2}}$ (15)
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The second purpose of this paper is the derivation of the $Larrow 1$ limit of the block
spin transformation. The resultant equation is a no-linear partial differential equation
(PDE) called Wegner-Houghton-Aoki (WHA) equation:

$V_{t}(t, x)= \frac{1}{2\pi t^{2}}\log(1+t^{2}V_{xx}(t, x))$ (1.6)

where $t=L^{\mathfrak{n}}$ . We derive this equation by taking the $Larrow 1$ limit of the block spin
transformation, and discuss if the limit $\lim_{tarrow\infty}V_{xx}=\tau_{2}$ exists or not. But so far our
analysis in this direction is not yet completed.

We organize our paper as follows: in section 2, we briefly revisit block spin transfor-
mations, and discuss hierarchical approximations of it. We also derive WHA equation
by taking $Larrow 1limit$ in the hierarchical approximation.

In section 3, we apply the BST (of hierarchical approximation) to the one dimensional
Schodinger equations and we show that they converge to the equations of harmonic
oscillators

$(- \frac{1}{2}\frac{d^{2}}{dx^{2}}+\frac{1}{2}\sigma^{2}x^{2})\psi=E\psi$ (1.7)

after BST and a scaling, where $\sigma^{2}>0$ is the fixed point.
In section 4, we discuss the relation between the number of iterations to bring $a_{0}<0$

to $a_{n}>0$ and Simon’s formula to describe $E_{2}-E_{1}$ by Agmon’s metric. We also discuss
about solutions of WHA equations.

Remarks 1 (1) Similar non-linear equations are considered $in/10J$ which correspond
to $D=2$ and differ from ours by the non-linear $te7m(V_{x})^{2}$ . It is shown that the system

. exhibits transitions of Kosterlitz-Thouless type.
(2) This statement must be taken with a grain of salt. This is obtained as the renormal-
ized Gibbs measure and the decay rate of correlation functions.

2 Block Spin Transformations Revisited
We put the system in the periodic box $\Lambda\subset Z^{1}$ of size $L^{N},$ $L>1,$ $N>>1$ . We also set
$\Lambda_{n}=L^{-\mathfrak{n}}\Lambda\cap Z$ and introduoe the set of $L$ points centered at the origin: $\square =\{-(L-$

$1)/2,$ $-(L-1)/2+1,$ $\cdots(L-1)/2-1$ } for odd $L$ or $\square =\{-L/2, -L/2+1, \cdots , L/2-1\}$

for even $L$ . Moreover we denote by $[x/L]$ the integer closest to $x/L$ .
We then consider the Gibbs measure $d\mu=d\mu_{\Lambda}$ defined by

$<\phi(0)\phi(x)>$ $\equiv$ $\int\phi(0)\phi(x)d\mu$ (2.1a)

$=$ $\frac{1}{N}\int\phi(0)\phi(x)\exp[-\mathcal{H}(\phi)]\prod d\phi(x)$ (2.1b)

$\mathcal{H}(\phi)$ $=$ $\frac{1}{2}<\phi,$ $(- \Delta+m_{0}^{2})\phi>+\sum V(\phi(x))$ (2.1c)

$V(\phi(x))$ $=$ $\frac{1}{2}a_{0}\phi^{2}(x)+\lambda_{0}\phi^{4}(x)$ (2.1d)
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where $\Delta$ is the lattice Laplacian

$(-\Delta f)(x)=2f(x)-f(x+1)-f(x-1)$ (2.2)

and we take $m_{0}^{2}>0$ arbitrarily small and take the limit $m_{0}arrow 0$ after all calculations.
We consider how $<\phi(0)\phi(x)>$ decreases as $|x|arrow\infty$ whose decay rate is nothing

but $E_{1}-E_{0}$ . To obtain the long-range behavior, it is a standard technique [14] to
integrate out redundant degrees of freedom of $\{\phi(x);x\in\Lambda\}$ by introducing block spins
[4] :

$\phi_{\mathfrak{n}+1}(x)$ $=$ $(C\phi_{n})(x)$

$\frac{1}{L^{\alpha}}\sum_{\zeta\in\square }\phi_{n}(Lx+\zeta)$ (2.3)

To start with we set $V(x)=0$ and the covariance of $\phi_{\mathfrak{n}}$ is given by

$<\phi_{n}(x)\phi_{n}(y)>=G_{n}(x-y)$ (2.4)

where

$G(x, y)$ $=$ $\frac{1}{-\Delta+m_{0}^{2}}(x, y)$ (2.5a)

$G_{n}(x, y)$ $=$
$(C^{n}G(C^{+})^{n})(x, y)=L^{-2n\alpha} \sum_{\zeta,\xi}G(L^{n}x+\zeta, L^{n}y+\xi)$

$=$ $\frac{1}{L^{2n\alpha}}\sum_{\zeta,\xi}\int\frac{\exp[iL^{n}p(x-y)+\grave{l}p(\zeta-\xi)]}{m_{0}^{2}+2(1-\cos p)}\frac{dp}{2\pi}$

$\frac{1}{L^{2\mathfrak{n}\alpha}}\int\frac{\exp[iL^{n}p(x-y)]}{m_{0}^{2}+(1-\cos p)}x\frac{\sin^{2}(L^{\mathfrak{n}}p/2)dp}{\sin^{2}(p/2)2\pi}$ (2.5b)

By rewriting $p\in(-\pi, \pi$] as $(p+2k\pi)/L^{\mathfrak{n}}$ with $p\in(-\pi, \pi$] and $k=0,1,$ $\cdots$ , $L^{n}-1$ , we
get

$G_{\mathfrak{n}}(x, y)$ $=$ $\frac{L^{2n}}{L^{2na}}\sum_{k}\int_{-\pi}^{\pi}\frac{\exp[ip(x-y)]}{L^{2n}m_{0}^{2}+4L^{2n}\sin^{2}(p+2k\pi)/2L^{n}}$

$\cross\frac{\sin^{2}(p/2)}{\sin^{2}((p+2\pi k)/2L^{n})}\frac{dp}{2\pi L^{n}}$

$\sim$ $\frac{L^{3n}}{L^{2n\alpha}}\sum_{k}\int_{-\pi}^{\pi}\frac{\exp[ip(x-y)]}{L^{2n}m_{0}^{2}+(p+2k\pi)^{2}}\frac{4\sin^{2}(p/2)}{(p+2\pi k)^{2}}\frac{dp}{2\pi}$ (2.6)

which implies that
$G_{n}^{-1}\sim L^{2\mathfrak{n}\alpha-3n}(-\Delta+L^{2\mathfrak{n}}m_{0}^{2})$ (2.7)

The choice of $\alpha\geq 0$ is arbitrary, but $\alpha\geq 0$ should be chosen so that the analysis
becomes easy. The choice $\alpha=3/2$ leaves $\Delta$ invariant and the choice $\alpha=1/2$ leaves $m_{0}^{2}$

invariant. We first leave $\alpha\geq 0$ as a free parameter.
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Let
$A_{n}=(G_{n}C^{+}G_{n+1}^{-1})$ (2.8)

and introduce $Q:R^{\Lambda\backslash LZ}arrow R^{\Lambda}$ such that

$(Qf)(x)=\{\begin{array}{ll}f(x) if x\not\in LZ-\sum_{x\in\square }f(x) if x\in LZ\end{array}$

where it is understood that $f(x)=0$ for $x\in LZ$ .
Then

$(CQ)=0$, $CA_{n}=1$ (2.9)

and we conversely have

$\phi_{\mathfrak{n}}(x)=\sum_{\zeta}A_{n}(x, \zeta)\phi_{n+1}(\zeta)+\sum_{\xi\in Z\backslash LZ}Q(x, \xi)z_{n}(\xi)$
(2.10)

This yields the following decomposition of the Gaussian variables:

$<\phi_{n},$ $G_{n}^{-1}\phi_{n}>=<\phi_{\mathfrak{n}+1},$ $G_{n+1}^{-1}\phi_{n+1}>+<z,$ $\Gamma_{n}^{-1}z>$ (2.11)

where
$G_{\mathfrak{n}+1}^{-1}=A_{n+1}^{+}G_{n}^{-1}A_{n+1}$ , $\Gamma_{n}^{-1}=Q^{+}G_{n}^{-1}Q$ (2.12)

2.1 Hierarchical Approximation
Since $CA_{n}=1$ and $CQ=0$, the relation (2.10) is approximately written

$\phi_{n}(x)$ $=$ $\frac{L^{\alpha}}{L}\phi_{n+1}([\frac{x}{L}])+(Qz_{n})(x)$ (2.13a)

$\sum(Qz_{n})(Lx+\zeta)$ $=$ $0$ (2.13b)
\mbox{\boldmath $\zeta$}\in 口

See $[3, 5]$ and references cited therein. Then

$\sum_{x\in\Lambda_{n}}\phi_{n}^{2}(x)$
$=$

$L^{2\alpha-1} \sum_{x\in\Lambda_{\mathfrak{n}+1}}\phi_{n+1}^{2}(x)+\sum_{x\in\Lambda_{n}}(Qz_{n})^{2}(x)$
(2.14a)

$\sum_{x\in\Lambda_{n}}\phi_{n}^{4}(x)$
$=$

$L^{4\alpha-3} \sum_{x\in\Lambda_{n+1}}\phi_{n+1}^{4}(x)+6\sum_{\in x\Lambda_{\mathfrak{n}+1}}L^{2\alpha-2}\phi_{n+1}^{2}(x)(\sum_{\zeta\in\square }(Qz_{n})^{2}(Lx+\zeta))$

$+3 \sum_{x\in\Lambda_{n+1}}L^{\alpha-1}\phi_{n+1}(x)(\sum_{\zeta\in\square }(Qz_{n})^{3}(Lx+\zeta))+\sum(Qz_{n})^{4}(x)$ (2.14b)

This approximation is caUed the hierarchical approximation, which means that we em-
ploy an artificial (hierarchical) Laplacian $\Delta_{hd}$ given by

$<\phi,$ $(- \Delta_{hd})\phi>=\sum_{n}L^{-(3-2\alpha)n}(\sum_{[x/L]=[y/L]}(\phi_{n}(x)-\phi_{\mathfrak{n}}(y))^{2})$ (2.15)
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That is, if $L=2$ then

$<\phi,$ $(-\Delta_{hd})\phi>$ $=$ $\sum_{n}2^{-(3-2\alpha)n}(\sum_{x}(\phi_{n}(2x+1)-\phi_{n}(2x))^{2})$

$= \sum_{n}2^{-(3-2\alpha)n}(\sum_{x}4z_{\mathfrak{n}}^{2}(2x+1))$

(Note that $z_{n}(2x)$ is absent.) For general $L$ , we may put

$<\phi_{n},$ $(-\Delta_{\hslash d})\phi_{n}>$

$L^{-(3-2\alpha)}<\phi_{n+1},$

$(- \Delta_{hd})\phi_{n+1}>+L^{-(3-2\alpha)n}\sum_{x\in\Lambda_{n}\backslash Lx}z_{n}(x)^{2}$ (2.16)

2.2 Derivation of the WHA equation
We derive a non-linear PDE as an infinitesimal form [1] of the Block Spin ‘Ilransformation
$[14, 4]$ where the treatment is accurate in the small field region (of x) and seems to be
reasonable in the large filed region, but high-momentum parts (say non-local parts) are
completely neglected. We discuss about this shortly:

We apply the BST to $\mathcal{H}_{n}$ to obtain $\mathcal{H}_{n+1}$ the effective Hamiltonian at the distance
scale $t=L^{-n}$ . To recover PDE of WHA type, we choose $\alpha=1/2$ so that the fluctuation
fleld $z$ at the distance scale at $L^{n}$ has the coefficient $L^{-n}$ . Thus we start from

$\mathcal{H}_{n}=\frac{1}{2}L^{-2n}<\phi_{n},$

$( \cdot-\Delta_{hcl})\phi_{n}>+\sum_{x}V_{\mathfrak{n}}(\phi_{\mathfrak{n}}(x))$ (2.17)

Then we have

$V_{n+1}(\phi_{n+1})$ $=$ $- \log[\int\exp[-\sum_{x}V_{n}(L^{-1/2}\phi_{n+1}([x/L])+z(x))]d\mu(z)]$

$L \sum_{x}V_{n}(L^{-1/2}\phi_{n+1}(x))$

$- \log[\int\exp[-\sum_{x}\delta V_{n}(L^{-1/2}\phi, z(x)]d\mu(z)]$ (2.18a)

where (denoting $V_{\mathfrak{n}}$ by $V$ for simplicity)

$\delta V(L^{\alpha-1}\phi, z(x))$ $=$ $V_{\phi}(L^{\alpha-1} \phi)z(x)+\frac{1}{2}V_{\phi\phi}(L^{\alpha-1}\phi)z^{2}(x)+O(z^{3})$ (2.19a)

$d\mu(z)$ $=$ const. $\prod_{x\in\Lambda_{n}\backslash L\Lambda_{n+1}}\exp[-\frac{1}{2}L^{-2n}z^{2}(x)]dz(x)$ (2.19b)
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The infinitesimal form of the BST is derived by setting $Larrow 1$ and $narrow\infty$ keeping
$L^{n}\equiv t$ fixed. Thus the $z$ variables carries a very thin momentum between $t^{-1}=L^{-n}$

and $(tL)^{-1}=L^{-n-1}$ . Then the integral can be carried out and we have

$\det^{-1/2}(L^{-2\mathfrak{n}}+V_{\phi\phi})$

Therefore regarding $LV_{n}(L^{-1/2}\phi_{n+1})$ as $V_{n}(\phi_{n+1})$ as $Larrow 1$ , we have

$- \frac{V_{n+1}(\phi_{n+1})-V_{n}(\phi_{n+1})}{L^{-n-1}-L^{-n}}=-\frac{\partial}{\partial t^{-1}}V(\phi, t)=\frac{1}{2}$ log $(1+t^{2}V_{\phi\phi})$ (2.20)

where we set $V_{n}(\phi_{n})=V(\phi, t)$ . We then have (1.6).

Remark 2 Th飴飴 rather heuristic, and can be done in a more consistent way in mo-
mentum space, see [$JOJ$. Similar non-linear equations are considered $in/JOJ$ which cor-
respond to $D=2$ and differ jfhom ours by the non-linear term $(V_{x})^{2}$ . It is shown that
the system exhibits tmnsitions of Kosterlitz- Thouless type.

3 Study by the Hierarchical BST
We apply the BST to $\mathcal{H}$ to obtain $\mathcal{H}_{n}$ the effective Hamiltonian at the distance scale
$L^{n}$ . The use of the parameter $\alpha=3/2$ is not adequate though $z$ variables always have
the same strength $O(1)$ . In fact the system is always massive, we soon get a non-zero
mass term from the interaction. Put

$\mathcal{H}_{0}=\frac{1}{2}<\phi,$
$G_{0}^{-1} \phi>+\sum_{x}V_{0}(\phi(x))$ (3.1)

Then we have

$\mathcal{H}_{1}$ $=$ $\frac{1}{2}<\phi_{1},$ $G_{1}^{-1} \phi_{1}>-\log[\int\exp[-\sum_{x}V_{0}(L^{\alpha-1}\phi_{1}([x/L])+z(x))]d\mu(z)]$

$=$ $\frac{1}{2}<\phi_{1},$

$G_{1}^{-1} \phi_{1}>+L\sum_{x}V_{0}(L^{\alpha-1}\phi_{1}(x))$

$- \log[\int\exp[-\sum_{x}\delta V_{0}(L^{\alpha-1}\phi_{1}, z(x)]d\mu(z)]$ (3.2a)

We take

$V_{0}(\phi)$ $=$ $\frac{1}{2}a_{0}\phi^{2}+\lambda_{0}\phi^{4}$ (3.3a)

$d\mu_{0}(z)$ $= \prod\frac{1}{\sqrt{\pi}}\exp[-\frac{1}{2}z^{2}(x)]dz(x)$ (3.3b)
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where $\lambda_{0}>0$ and $a_{0}\in R$ may be negative (in the case of double-well potential). Then

$\mathcal{H}_{1}$ $=$ $\frac{1}{2}<\phi^{1},$
$G_{1}^{-1} \phi_{1}>+\sum_{x}(\frac{1}{2}L^{2\alpha-1}a_{0}\phi_{1}^{2}(x)+L^{4\alpha-3}\lambda_{0}\phi_{1}^{4}(x))+\delta V_{1}(3.4a)$

$\delta V_{1}$ $=$ $- \log[\int\exp[-\sum_{x}(\frac{1}{2}a_{0}z^{2}(x)+\lambda_{0}z^{4}(x))$

$-6 \lambda_{0}L^{2\alpha-1}\sum_{x}\phi_{1}^{2}(x)(\sum z(\zeta)^{2})]d\mu(z)]$ (3.4b)

3.1 case of $a_{0}>0$

Since $a_{0}$ and $\lambda_{0}$ are both positive, these positivity is kept through the iterations of the
renormalization recursion formula, and $a_{\mathfrak{n}}$ and $\lambda_{n}$ converge to some values after suitable
rescaling.

It is convenient to put $\alpha=1$ in this case since $a_{0}\phi^{2}+\lambda_{0}\phi^{4}$ yields $O(1)z^{2}$ which is
large enough for the convergence of the integral. Then

$G_{n}^{-1}=L^{-n}(-\Delta+L^{2n}m_{0}^{2})$ (3.5)

Thus the hierarchical approximatIon means the substitution

$\phi_{n}(x)=\phi_{n+1}([\frac{x}{L}])+(Qz_{n})(x)$

and then

$\sum_{x\in\Lambda_{n}}\phi_{n}(x)$ $= \sum_{x\in\Lambda_{n+1}}L\phi_{n+1}(x)$

$\sum_{x\in\Lambda_{\mathfrak{n}}}\phi_{n}^{2}(x)$ $= \sum_{x\in\Lambda_{n+1}}L\phi_{n+1}^{2}(x)+\sum_{x}(Qz_{n})^{2}(x)$

$\sum_{x\in\Lambda_{n}}\phi_{n}^{4}(x)$ $= \sum_{x\in\Lambda_{n+1}}L\phi_{n+1}^{4}(x)+\sum_{x\in\Lambda_{n+1}}6\phi_{n+1}^{2}(x)(\sum_{\zeta\in\square (Lx)}(Qz_{n})^{2}(x))+\sum_{x}(Qz_{n})^{4}(x)$

$d\mu(z)$ $= \prod_{x\in\Lambda_{n}\backslash LZ}\frac{L^{-n/2}}{\sqrt{\pi}}\exp[-L^{-n}z^{2}(x)/2]dz(x)$

and estimate $(\alpha=1)$

$\exp[-\delta V_{1}]$ $=$ $\int\exp[-(\frac{1}{2}a_{0}z^{2}+\lambda_{0}z^{4})-6\lambda_{0}\phi_{1}^{2}z^{2}]d\mu(z)$

$=$ $\int\exp[-\frac{1}{2}((a_{0}+1)+12\lambda_{0}\phi_{1}^{2}+2\lambda_{0}z^{2})z^{2}]dz$

$=$ const. $(a_{0}+1+O(\lambda_{0})+12\lambda_{0}\phi_{1}^{2})^{-1/2}$

$=$ const. exp $[- \frac{12\lambda_{0}\phi_{1}^{2}(x)}{a_{0}+O(1)+O(\lambda_{0})}]$
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Therefore

$a_{0}arrow a_{1}$ $=$ $La_{0}+ \frac{12\lambda_{0}}{a_{0}+O(1)}$

$\lambda_{0}arrow\lambda_{1}$ $=$ $L\lambda_{0}$

where we neglected higher order terms. In general we get

$a_{n}arrow a_{n+1}$ $=$ $La_{n}+ \frac{12\lambda_{n}}{a_{n}+O(1)}>La_{n}$

$\lambda_{n}arrow\lambda_{n+1}$ $=$ $L\lambda_{n}$

Then $\lambda_{n}=L^{n}\lambda_{0}$ and
$a_{n+1}=La_{n}+ \frac{12L^{n}\lambda_{0}}{a_{n}+O(1)}$

or
$\frac{a_{n+1}}{L^{n+1}}=\frac{a_{\mathfrak{n}}}{L^{n}}+\frac{12\lambda_{0}}{La_{n}+O(1)}$

Then $a_{\mathfrak{n}+1}\geq L^{n+1}a_{0}$ and

$\frac{a_{n+1}}{L^{n+1}}=a_{0}+\sum_{h=0}^{n}\frac{12\lambda_{0}}{La_{k}+O(1)}$

converges:
$\tau_{2}\equiv\lim\frac{a_{n}}{L^{n}}$ , and $\tau_{4}\equiv\lim\frac{\lambda_{n}}{L^{n}}$

exist. Thus our effective Hamiltonian is written
$\frac{1}{2L^{n}}<\phi_{n},$ $(-\Delta)\phi_{n}>+L^{n}(\tau_{2}\phi_{n}^{2}+\tau_{4}\phi_{n}^{4})$

neglecting higher order terms. This corresponds to the Schroedinger equation

$\frac{1}{2L^{n}}(-\frac{d^{2}}{d^{2}x})+L^{n}(\tau_{2}x^{2}+\tau_{4}x^{4})$ (3.6)

We set $\zeta=L^{n/2}x$ . Then the above equation is unitarily equivalent to

$\frac{1}{2}(-\frac{d^{2}}{d^{2}\zeta})+(\tau_{2}\zeta^{2}+L^{-n}\tau_{4}\zeta^{4})$ (3.7)

Thus as $L^{n}arrow\infty$ , only the mass term $\zeta^{2}$ survives with the coefficients $\tau_{2}$ obtained as
the fixed point. This argument goes back to $[11, 12]$ .

The spectrum of the harmonic oscillator

$- \frac{1}{2}\frac{d^{2}}{d^{2}\zeta}+\frac{\omega^{2}}{2}\zeta^{2}$ (3.8)

is $\{(n+1/2)w;n\in N\}$ . Thus we see that
$E_{2}-E_{1}=\sqrt{2\tau_{2}}$ (3.9)

Remark 3 Our result may be take with a gmin of salt, since only the second $(E_{2})$

energy $sun$)$ives$ in this scaling limit and the higher states vanish in this limit. Then the
excited energies $(n>2)$ of the harmonic oscillator is not reliable.
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3.2 case of $a_{0}<0$

If $a_{0}<0$ , the integration over $z_{n}(x)$ depends on the magnItude of $\phi_{n}^{2}(x)$ . For large
$|\phi_{n}(x)|$ for which the coefficient of $z^{2}$ is negative, we still set $\alpha=1$ . We later consider
optimal value of $\alpha$ after calculations.

We again start with

$\mathcal{H}_{1}$ $=$ $\frac{1}{2}<\phi^{1},$
$G_{1}^{-1} \phi_{1}>+\sum_{x}(\frac{1}{2}La_{0}\phi_{1}^{2}(x)+L\lambda_{0}\phi_{1}^{4}(x))+\delta V_{1}$ (3.10)

where

$\exp[-\delta V_{1}]$ $=$ $\int\exp[-\sum_{x}\frac{1}{2}(a_{0}+1+12\lambda_{0}\phi_{1}^{2}(x)+2\lambda_{0}z^{2}(x))z^{2}(x)]dz$

$=$ $\int\exp[-\sum_{x}6\lambda_{0}(\phi_{1}^{2}(x)-K_{0}+\frac{1}{6}z^{2}(x))z^{2}(x)]dz$ (3.11a)

$K_{0}$ $=$ $\frac{-a_{0}-1}{12\lambda_{0}}>0$ (3.11b)

and 1 in $a_{0}+1$ comes $homd\mu(z)$ . The $z$ integration may be separated into three regions:
(i) $hom$ the bottom of the wine bottle to large filed region:

$L_{1}$ $\equiv$ $\{\phi_{1}(x);a_{0}+1+12\lambda_{0}\phi_{1}^{2}(x)\geq 0\}$

$\equiv$ $\{\phi_{1}(x);\phi_{1}(x)^{2}\geq K_{1}+1\}$ (3.12)

(ii) transition region:
$T_{1}=\{\phi(x);\lambda_{0}|\phi_{1}^{2}-K_{0}|\leq 1\}$ (3.13)

(iii) small filed region:

$S_{1}$ $\equiv$ $\{\phi_{1}(x);a_{0}+1+12\lambda_{0}\phi_{1}^{2}(x)\leq 0\}$

$\equiv$ $\{\phi_{1}(x);\phi_{1}(x)^{2}\leq K_{0}\}$ (3.14)

3.2.1 from the bottom to the large field region

First we consider the region $\phi_{1}\in L_{1}$ , namely the region $\sqrt{\lambda_{0}}(\phi_{1}^{2}-K_{0})>1$ which
contains the bottom of the wine bottle $\phi^{2}=\mu_{0}^{2}\equiv-a_{0}/4\lambda_{0}$. In this region, we have

$\exp[-\delta V_{1}(\phi_{1})]$ $= \int_{-\infty}^{\infty}$ exp $[-(6( \phi_{1}^{2}-K_{0})+\frac{z^{2}}{\lambda_{0}})_{Z^{2}}]dz$

$=$ $\frac{c}{\sqrt{\phi_{1}^{2}-K_{0}}}\int\exp[-z^{2}-\frac{z^{4}}{36\lambda_{0}(\phi_{1}^{2}-K_{0})^{2}}]dz$

Thus after suitable normalization, we obtain

$e^{-\delta V_{1}}$

$=$ $\frac{c}{\sqrt{\phi_{1}^{2}-K_{0}}}\{1-\frac{c_{1}}{\lambda_{0}(\phi_{1}^{2}-K_{0})^{2}}+\frac{c_{2}}{\lambda_{0}^{2}(\phi_{1}^{2}-K_{0})^{4}}+O(\frac{1}{\lambda_{0}^{3}(\phi_{1}^{2}-K_{0})^{6}})\}$
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where
$c_{1}= \frac{1}{48}$ , $c_{2}= \frac{35}{6\cdot 16\cdot 24}$

These terms have no effects in the large field region, but exhibit a significant effect near
the bottom of the potential $\phi_{1}^{2}\sim\mu_{0}^{2}\equiv-a_{0}/4\lambda_{0}$ .

Set $X=\phi_{1}^{2}-\mu_{0}^{2}(\mu_{0}^{2}=3K_{0}=a_{0}/4\lambda_{0})$ and expand $\delta V_{1}$ in termv of $X$ :

$\frac{1}{\sqrt{\phi_{1}^{2}-K_{0}}}$ $=$ $\frac{1}{\sqrt{2K_{0}+X}}=\exp[-\frac{1}{2}\log(1+\frac{X}{2K_{0}})]$

$=$ exp $[- \frac{X}{4K_{0}}+\frac{X^{2}}{16K_{0}^{2}}]$

In the same way,

$1- \frac{c_{1}}{\lambda_{0}(\phi_{1}^{2}-K_{0})^{2}}+\frac{c_{2}}{\lambda_{0}^{2}(\phi_{1}^{2}-K_{0})^{4}}=d_{0}[1-d_{1}X-d_{2}X^{2}+O(X^{3})]$ (3.15)

where
$d_{1}= \frac{1}{16\lambda_{0}K_{0}^{2}}-O(\lambda^{-2}K_{0}^{-3})$ , $d_{2}= \frac{1}{32\lambda_{0}K_{0}^{3}}-O(\lambda^{-2}K_{0}^{-4})$ (3.16)

Then in the neighborhood of the bottom of the potential, we see that
$V_{1}(\phi_{1})$ $=$ $LV_{0}(\phi_{0})+\delta V_{1}$

$=$ $L \lambda_{0}X^{2}+(\frac{1}{4K_{0}}-d_{1})X-(\frac{1}{8K_{0}^{2}}+d_{2}-\frac{1}{2}d_{1}^{2})X^{2}+O(X^{3})$

$=$ $(L \lambda_{0}-\frac{1}{8K_{0}^{2}}+d_{2}-\frac{1}{2}d_{1}^{2})(\phi_{1}^{2}-\mu_{0}^{2}+\delta m_{0}^{2})^{2}+O(X^{3})$ (3.17)

where
$\delta m_{0}^{2}=\frac{(4K_{0})^{-1}-d_{1}}{2L\lambda_{0}+(8K_{0}^{2})^{-1}+d_{2}-d_{1}^{2}/2}$ (3.18)

is a strictly positive constant, and we put

$\mu_{1}^{2}=\mu_{0}^{2}-\delta m_{0}^{2}$ (3.19)

3.2.2 transition region

For $\phi_{1}$ such that $\sqrt{\lambda_{0}}|\phi_{1}^{2}-K_{0}|\leq 1$ , we use convergent perturbative calculation to obtain

$\exp[-\delta V_{1}(\phi_{1})]$ $= \int_{-\infty}^{\infty}$ exp $[-(6\sqrt{\lambda_{0}}(\phi_{1}^{2}-K_{0})+z^{2})z^{2}]dz$

$\mathcal{N}\frac{\int e^{-z^{4}}(1-6\sqrt{\lambda_{0}}(\phi_{1}^{2}-K_{0})z^{2}+\cdots)dz}{\int e^{-z^{4}}dz}$

$\mathcal{N}(1-\tilde{c}_{1}\sqrt{\lambda_{0}}(\phi_{1}^{2}-K_{0})+\overline{c}_{2}\lambda_{0}(\phi_{1}^{2}-K_{0})^{2}+\cdots)$

$=$ exp $[-( \tilde{c}_{1}\sqrt{\lambda_{0}}+(2\tilde{c}_{2}-\tilde{c}_{1}^{2})\lambda_{0}K_{0})\phi_{1}^{2}+(\tilde{c}_{2}\lambda_{0}-\frac{1}{2}\tilde{c}_{1}^{2}\lambda_{0})\phi_{1}^{4}]$
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where we have neglected $O(\lambda_{0}^{3/2}|\phi^{2}-K_{0}|^{3})$ and

$\tilde{c}_{1}=6\frac{\int e^{-z^{4}}z^{2}dz}{\int e^{-z^{4}}dz}=2.028$, $\tilde{c}_{2}=18\frac{\int e^{-z^{4}}z^{4}dz}{\int e^{-z^{4}}dz}=4.5$ .

Then we have the following approximate recursions which hold for $\phi_{1}$ in the inter-
mediate region, i.e., $\sqrt{\lambda_{0}}|\phi_{1}^{2}-K_{0}|<<1$

$\lambda_{0}arrow\lambda_{1}=(L-\tilde{c}_{2}+\frac{1}{2}\tilde{c}_{1}^{2})\lambda_{0}$ (3.20a)

$a_{0}arrow a_{1}=La_{0}+2\tilde{c}_{1}\sqrt{\lambda_{0}}+2(2\tilde{c}_{2}-\tilde{c}_{1}^{2})\lambda_{0}K_{1}$

$=La_{0}- \frac{1}{6}(2\tilde{c}_{2}-\tilde{c}_{1}^{2})a_{0}+2\tilde{c}_{1}\sqrt{\lambda_{0}}$ (3.20b)

$=(L- \frac{1}{6}(2\tilde{c}_{2}-\tilde{c}_{1}^{2}))a_{0}+2\tilde{c}_{1}\sqrt{\lambda_{0}}$ (3.20c)

$K_{0} arrow K_{1}=\frac{-La_{0}(1-(2\tilde{c}_{2}-\tilde{c}_{1}^{2})/6L)-2c_{1}\sqrt{\lambda_{0}}}{12L\lambda_{0}(1-(2\tilde{c}_{2}-\tilde{c}_{1}^{2})/2L)}$ (3.20d)

$K_{0}[1+ \frac{1}{3L}(2\tilde{c}_{2}-\tilde{c}_{1}^{2})]-\frac{\tilde{c}_{1}}{12\sqrt{\lambda_{0}}(L-(2\tilde{c}_{2}-\tilde{c}_{1}^{2})/2)}$ (3.20e)

where 2$\tilde{c}_{2}-\tilde{c}_{1}^{2}\sim 4.88$ .

3.2.3 small fleld region

In the same way, for $\phi_{1}\in S_{1}$ , using $a_{0}+12\lambda_{0}\phi_{0}^{2}=12\lambda_{0}(\phi_{0}^{2}-K_{1})<0$, we have

$\exp[-\delta V_{1}(\phi_{1})]$ $=$ exp $[ \frac{(a_{0}+12\lambda_{0}\phi_{1}^{2})^{2}}{16\lambda_{0}}]$

$x\int$ exp $[- \lambda_{0}(z^{2}(x)+\frac{a_{0}+12\lambda_{0}\phi_{1}^{2}}{4\lambda_{0}})^{2}]d\mu(z)$

$=$ exp $[ \frac{(a_{0}+12\lambda_{0}\phi_{1}^{2})^{2}}{16\lambda_{0}}]$

$\cross\int\exp[-\lambda_{0}(z^{2}(x)-3(K_{1}-\phi_{1}^{2}))^{2}]d\mu(z)$

$=$ $\exp[\frac{(a_{0}+12\lambda_{0}\phi_{1}^{2})^{2}}{16\lambda_{0}}-\log(K_{1}-\phi_{1}^{2}(x)+O(1))]$

$\lambda_{0}$ $arrow$ $\lambda_{1}=(L-9)\lambda_{0}$ (3.21a)

$a_{0}$ $arrow$ $a_{1}=(L- \frac{3}{2})a_{0}$ (3.21b)

The result depends on $L$ . For the reasonable choice of $L$ , e.g. for $1<L\leq 5/2$ , we
see $|L-3/2|\leq 1$ and $L-9<-13/2$ . Then $\lambda_{1}<0,$ $|a_{1}|<|a_{0}|$ for $L\in(1,5/2)$ and
the function $V_{n}(\phi)$ may exhiblt vibration in the small field region. (Namely $V_{\mathfrak{n}}$ may
possesses many minima.)
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3.3 Iterations and Global Flow
We then iterate the renormalization group transformation, taking the forms of (3.17),
(3.18) and (3.20e) as inductive assumptions.

Though our previous recursion relations are crude, we can see from (3.17),(3.18) and
(3.20e) that (though the result depends on $L$ ) for a reasonable choice of $L(L=2\sim 3)$ ,
the potential $V_{n}$ becomes tame in the neighborhood of $\phi_{n}^{2}\sim\mu_{n}^{2}$ and $\mu_{n}^{2}$ tends to $0$ (no
double-well potential) as $n$ increases if initial $\mu_{0}^{2}=-a_{0}/4\lambda_{0}(=3K_{0})_{\bm{t}}d-a_{0}$ are small,
where $\mu_{n}^{2}$ is the value of $\phi_{n}^{2}$ at the minimum point of the double-well potential [7].

Theorem 4 For small $\mu_{0}^{2}=-a_{0}/4\lambda_{0}>0$ and for $small-a_{0}>0$ , the value $\mu_{\mathfrak{n}}^{2}$ tends to
a negative value at some $n=n_{0}>0$ . $v_{n}(\phi^{2})$ is a single-well potential for $n>n_{0}$ .

On the other hand, from the general theory of one-dimensional spin systems of short
range interactions, we know that the potential $V_{n}(x)$ tends to the high-temperature fixed
point as $narrow\infty$ . Even so, the intermediate $V_{\mathfrak{n}}$ exhibit complicated behaviors and $V_{n}$

possesses many local minima if $K_{0}$ is large. Moreover the hierarchical approximation
$and/or$ WHA type approximation may spoil this simple fact.

Theorem 5 For any $\lambda_{0}>0$ and $a_{0}$ , the value $\mu_{n}^{2}$ tends to a negative value at some
$n>0$ . $v_{n}(\phi^{2})$ is a single-well potential for $n>n_{0}$ .

But we could not prove this theorem by our explicit estimates of the flow $v_{n}$ since
the intermediate states exhibit vibrations for small $\phi^{2}$ , see [9] for a method to avoid this
phenomena.

4 $E_{2}-E_{1}$ and Discussions
We could not see how many Iterations we need to bring $a_{0}<0$ to $a_{n}>0$ . If it takes $n_{0}$

steps, we then expect that $L^{no}(E_{2}-E_{1})=O(1)$ or $E_{2}-E_{1}=O(L^{-no})$ .
Though we cannot say anything conclusive at this level, it seems that we need more

than $\mu_{0}^{2}$ iterations to drive $a_{0}<0$ to $a_{\mathfrak{n}}>0(n\sim\mu_{0}^{2})$ for large $\mu_{0}$ and $\lambda_{0}$ . Thus we
expect $E_{2}-E_{1}=O(L^{-\mu_{0}^{2}})$ (or much less).

On the other hand, if we use $O(N)$ invariant $\phi^{4}$ model with very large $N[6]$ , then
the flow $v_{n}(\phi)$ is easily controlled and we find $\mu_{n}^{2}\sim-L^{-1}+\mu_{0}^{2}/L^{n}$ . This means that it
takes $n=\log\mu_{0}$ steps to bring $a_{0}<0$ to $a_{\mathfrak{n}}>0$ . But this is only for $O(N)\phi^{4}$ model
with large $N$ and it is quite plausible that $N$ model with $N>>1$ is different ffom
$N=1$ model.

Let $\alpha_{i}$ be the points which minimize the double well potential $V(x)$ , min $V(x)=$
$V(\alpha_{1})=V(\alpha_{2})$ . Consider the spectrum of $H=-(1/2)\Delta+\lambda V(x),$ $\lambda>0$ . Then in [12],
it is shown that $(E_{2}-E_{1})/\lambda\sim\exp[-\rho(\alpha_{1}, \alpha_{2})]$ for large $\lambda$ , where

$\rho(\alpha_{1}, \alpha_{2})$ $=$ $\inf_{T,\gamma}\int_{0}^{T}(\frac{1}{2}|\gamma^{o}(s)|^{2}+V((\gamma(s))))ds$

$\inf_{\gamma}\int_{0}^{1}(\sqrt{2V(\gamma(s))}|\gamma^{o}(s)|)ds$
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$\{\gamma(0)=\alpha_{1}, \gamma(T)=\alpha_{2}\}$ in the first equation and $\{\gamma(0)=\alpha_{1}, \gamma(1)=\alpha_{2}\}$ in the second
equation. See [12]. This is the instanton solution and translated into our language in
terms of $\lambda_{0}$ and $a_{0}<0$ . It is interesting to make our calculation more precise.

Remark 6 For $0(N)$ invariant models, the analysis of [$J2J$ does not work, and it is
reasonable that our result obtained for large $N$ is different from the above analysis.

So there are several open problems. The first one is to solve recursion relations not
only for hierarchical models but also (of course) for the full model [7]. But the latter is
certainly difficult.

Therefore it is interesting to solve the non-linear renormalization evolution equation
of WHA type [8]:

$V_{t}(t, x)$ $=$ $\frac{1}{2\pi t^{2}}\log(1+t^{2}V_{xx})$ (4.1)

which is obtained by applying BST to the Schrodinger operator $- \frac{1}{2}\Delta+V(x)$ , where
$V(x)arrow\infty$ as $|x|arrow\infty$ . Does it really converge to a harmonic oscillator system? To
what extent, does the mass term approximate $E_{2}-E_{1}$ ?

So far, we cannot answer to these questions. We studied if the limit

$v(x)=V_{eff}(x)= \lim_{tarrow\infty}V(t, x)$ (4.2)

exists. Though computer simulations show the answer is posItive [1], we could not prove
the existence of $v(x)$ . We just mention that If $V(x)=m^{2}x^{2}/2$ , then the equation has a
non-trivial solution

$V(t, x)$ $=$ $\frac{m^{2}}{2}x^{2}+a(t)$ (4.3a)

$a(t)$ $= \int_{0}^{t}\frac{1}{2\pi s^{2}}\log(1+m^{2}s^{2})ds$

$- \frac{1}{2\pi t}\log(1+m^{2}t^{2})+\frac{m}{\pi}T\bm{t}^{-1}mt$ (4.3b)

which corresponds to the harmonic oscillator.
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