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Abstract

We show that if $K$ is closed under quasi-substructures then tp$(B/C)$

does not fork over $B\cap C$ if and only if $B$ and $C$ are free over $B\cap C$

and $BC$ is closed for any closed $B,$ $C\in K$ .

Our notations and definitions are standard (see [1], [5] for reference).
Let $L=\{R_{0}, R_{1}, \ldots\}$ be a countable relational language, where each $R_{\dot{\eta}}$ is

symmetric and irreflexive, i.e., if $\models\hslash(\overline{a})$ then the elements of $\overline{a}$ are without
repetition and $\models R(\sigma(\overline{a}))$ for any permutation $\sigma$ . Thus, for any L-structure
$A$ and $R_{\eta}$. with arity $n,$ $R_{i}^{A}$ can be thought of as a set of n-element subsets
of $A$ .

For a finite L-structure $A$ , a predimension of $\mathcal{A}$ is defined by $\delta(A)=$

$|A|- \sum_{i}\alpha_{i}|R_{i}^{A}|$ , where $0<\alpha_{i}\leq 1$ . Let $\delta(B/A)$ denote $\delta(BA)-\delta(A)$ .
For $A\subset B,$ $A$ is closed in $B$ (write $A\leq B$ ), if $\delta(X/A\cap X)\geq 0$ for any

finite $X\subset B$ . The closure $A$ in $B$ is defined by $c1_{B}(A)=\cap\{C : A\leq C\leq B\}$ .
Let $K^{*}$ be the class of all finite L-structures $A$ with $\delta(B)\geq 0$ for any

$B\subset A$ . Fix a subclass $K$ of $K^{*}$ that is closed under substructures. A
countable L-structure $M$ is K-generic, if (i) any finite $A\subset M$ belongs to $K$ ;
(ii) for any $A\leq B\in K$ with $A\leq M$ there is $B‘\cong_{A}B$ with $B’\leq M$ .

Let $\mathcal{M}$ be a big model of a K-generic structure. Note that if K-generic
structure $M$ is saturated then $\mathcal{M}$ also satisfies (i) and (ii). We abbreviate
$c1_{\mathcal{M}}(*)$ to cl $(*)$ . $K$ has finite closures, if there is no chain $A_{0}\subset A_{1}\subset\cdots$ of
$A_{i}\in K$ with $\delta(A_{i+1}/A_{i})<0$ for each $i\in\omega$ . Note that $K$ has finite closures
if and only if cl $(A)$ is finite for any finite $A\subset \mathcal{M}$ .
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For $A,$ $B,$ $C$ with $B\cap C\subset A,$ $B$ and $C$ are free over $A$ (write $B\perp {}_{A}C$ ),
if $R^{ABC}=R^{AB}\cup R^{AC}$ for every $R\in L$ . Note that $B\perp {}_{A}C$ if and only if
$\delta(\overline{b}/\overline{c}\overline{a})=\delta(\overline{b}/\overline{a})$ for any $\overline{b}\in B-A,,\overline{c}\in C-A$ and $\overline{a}\in A$ .

Assumption $L$ is a countable relational language. $K$ is a class of finite
L-structure $A$ with $\delta(B)\geq 0$ for any $B\subset A$ . Moreover $K$ is closed under
substructures and has finite closures. $\mathcal{M}$ is a big model of a saturated K-
generic structure.

Definition Let $A$ and $B$ be L-structures. Then $A$ is said to be a quasi-
substructure of $B$ , if the universe of $A$ is contained in that of $B$ , and $R^{A}$ is
contained in $R^{B}$ for every $R\in L$ . If $L$ is a language of a graph, then the
notion of quasi-substructures coincides with that of subgraphs.

For $A,$ $B\subset \mathcal{M}$ , we denote $B^{Aut(\mathcal{M}/A)}=\{\sigma(b)$ : $b\in B,$ $\sigma\in$ Aut $(\mathcal{M}/A)\}$ .

Lemma 1 Let $B,$ $C\leq \mathcal{M}$ with $A=B\cap C$ . Then $B^{Aut(\mathcal{M}/A)}=B$ implies
$B\perp {}_{A}C$ and $BC\leq \mathcal{M}$ .

Proof Since $K$ is closed under quasi-substructures, there is $B‘\cong_{A}B$ with
$B’\perp {}_{A}C$ and $B’C\in K$ . By genericity, we can assume that $(B’\leq)B’C\leq \mathcal{M}$ .
So we have $tp(B/A)=tp(B’/A)$ . By $B^{Aut(\mathcal{M}/A)}=B$ , we have $B=B’$ as a
set. Hence $B\perp {}_{A}C$ and $BC\leq \mathcal{M}$ .

For $A\leq B,$ $B$ is said to be minimal over $A$ , if $C=A$ or $C=B$ for any
$A\subset C\leq B$ .

Lemma 2 Let $B,$ $C\leq \mathcal{M}$ with $A=B\cap C$ . If tp $(B/A)$ is algebraic then
$B\perp {}_{A}C$ and $BC\leq \mathcal{M}$ .

Proof We can assume that $B$ is minimal over $A$ . Since tp$(B/A)$ is alge-
braic, we can take a maximal set $(B=)B_{1},$

$,$ $,$ $,$

$.B_{n}$ of conjugates of $B$ over $\mathcal{A}$

satisfying $B_{i}\neq B_{j}$ as a set for each $i,j$ with $1\leq i<j\leq n$ . By minimality,
we have $B_{i}\cap B_{j}=A$ .
Claim: $\perp\{B_{i}\}_{i}$ and $B_{1}\ldots B_{n}\leq \mathcal{M}$ .
Proof: Since $K$ is closed under quasi-substructures, for each $i$ there is a copy
$B_{i}^{l}$ of $B_{i}$ over $A$ with $\perp\{B_{i}^{l}\}_{i}$ and $(A\leq)B_{1}^{l}\ldots B_{n}^{l}\in$ K. We can assume that
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$B_{1}’\ldots B_{n}^{l}\leq \mathcal{M}$ . By maximality of $n$ , we have $B_{1}\ldots B_{n}=B_{1}^{l}\ldots B_{n}’$ as a set.
Hence $\perp\{B_{i}\}_{i}$ and $B_{1}\ldots B_{n}\leq \mathcal{M}$ .

We devide into two cases.
Case: There is $i$ with $B_{i}\subset C$ . By claim, $BB_{i}\leq \mathcal{M}$ . By induction hypothesis,
we have $B\perp B_{i}C$ and $BB_{i}C=BC\leq \mathcal{M}$ . Again, by claim, $B\perp B$ , and hence
$B\perp {}_{A}C$ .
Case: For any $i,$ $B_{i}\not\subset C$ . By minimality, we have $B_{i}\cap C=A$ . Let $B^{*}=$

$B_{1}\ldots B_{n}$ . Then $B^{*Aut(\mathcal{M}/A)}=B^{*}$ . By lemma, $B1_{A}B_{i}$ , and hence $B1_{A}C$ .

The following fact is due to Wagner [5]. Recently, Tsuboi [4] gave a short
proof of this fact.

Fact 3 Let $B,$ $C\leq \mathcal{M}$ with $A=B\cap C$ algebraically closed. Then $B\downarrow_{A}C$

iff $B1_{A}C$ and $BC\leq \mathcal{M}$ .

The following theorem is a generalization of results obtained in [1] and
[3].

Theorem Let $K$ be closed under quasi-substructures. Let $B,$ $C\leq \mathcal{M}$ with
$A=B\cap C$ . Then $B\downarrow_{A}C$ if and only if $B\perp {}_{A}C$ and $BC\leq \mathcal{M}$ .

Proof $(\Rightarrow)$ Suppose that $B\downarrow_{A}C$ . First we show $B\perp {}_{A}C$ . Let $B^{l}=$ acl $(A)\cap B$

and $C’=$ acl $(A)\cap C$ . By lemma 2, $B\cup ac1(A),$ $C\cup$ acl $(A)\leq \mathcal{M}$ . So,
by fact 3, $B1_{ac1(A)}C$ . By lemma 2, $B1_{B’}$ acl $(C)$ . So $B1_{B’}C$ . Again, by
lemma 2, $B’\perp {}_{A}C$ . Hence $B\perp {}_{A}C$ . Next we show $BC\leq \mathcal{M}$ . By lemma 2,
$BC\cup ac1(A)\leq \mathcal{M}$ . So it is enough to show that $BC\cap X\leq X$ for any
finite $X\leq BC\cup$ acl $(A)$ . For $D\subset \mathcal{M}$ let $X_{D}$ denote $X\cap D$ . Take any
$\overline{e}\in X-X_{B}X_{C}$ . By lemma 2, we have $B^{l}C\leq \mathcal{M}$ , and so $X_{B’}X_{C}\leq \mathcal{M}$ . By
lemma 2 and fact 3, we have $B\perp B’$ acl $(A)$ and $B\perp ac1(A)C$ , and so $X_{B}\perp x_{B},\overline{e}X_{C’}$

and $X_{B}\perp ex.,x_{C}^{X_{C}}$ . Therefore

$\delta(\overline{e}/X_{B}X_{C})$ $=$ $\delta(\overline{e}/X_{B^{l}}X_{C})+\delta(X_{B}/\overline{e}X_{B}X_{C})-\delta(X_{B}/X_{B}X_{C})$

$\geq$ $\delta(X_{B}/\overline{e}X_{B}/X_{C})-\delta(X_{B}/X_{B’}X_{C})$

$=$ $\delta(X_{B}/\overline{e}X_{B^{l}}X_{C’})-\delta(X_{B}/X_{B}/X_{C’})$

$=$ $\delta(X_{B}/X_{B’}X_{C^{l}})-\delta(X_{B}/X_{B}X_{C^{l}})=0$ .

Hence $X_{B}X_{C}\leq X$ .
$(\Leftarrow)$ Suppose that $B\perp {}_{A}C$ and $BC\leq \mathcal{M}$ . Take $B’$ with $B^{l}\downarrow_{A}C$ and tp$(B^{l}/A)=$
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tp$(B/A)$ . By the only-if part of this theorem, we have $B^{l}\perp {}_{A}C$ and $B’C\leq \mathcal{M}$ .
Thus we have tp $(B’/C)=$ tp$(B/C)$ and hence $B\downarrow_{A}C$ .
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