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Abstract. We present a communication process in multi-agent system.
In the model agents have the knowledge model associated with a parti-
tion and he$/she$ makes decision by his$/her$ private information with the
knowledge model. Each agent sends not exact information on the deci-
sion value but approximate information with accuracy to $\epsilon$ . We show
t,hat, consensus on the decision values for an event among all agents can
still be guaranteed in the communication; i.e., all the decision values are
equal after long running coynmunication.
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1 Introduction

This article presents an extension of the communication system in Krasucki [6]
into the communication model under approximate information with accuracy
to $\epsilon$ . There are more than two agents and they interact in pairs with private
announcement: Each agent has the posterior of an event under his/her private
$infol\cdot lIlatio\iota)$ , and $hc/she$ privately announces it to the aiiother agent througli ro-
bust messages; i.e., there is a possibility losing a bit information when the agent
sends his message to the other agent. The recipient revises his$/her$ information
structure and recalculate the values of posterior under the approximate infor-
mation on the posterior. The agent sends the revised posterior to another agent
according to a coniinunication graph. $Tl_{1}e$ recipient revises his$/her$ posterior and
send it to another, and so on. In the circumstances we can show that

Theorem 1. $Snpp_{0}s$ , that all agents have a common prior $dist\dot{m}b\tau i$tion. Con-
sensus on the limiting values of the posteriors for an event under $his/her$ private
information $a7nong$ all agents can still be guaranteed in the $co$mmunication even
when each agent sends not exact information on the posterior value but approx-
imate information on it with accuracy to $\epsilon$ through robust messages.
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Recently researchers in such fields as economics, AI, and theoretical com-
puter science have becoine interested in reasoning of belief and knowledge. There
are pragmatic concerns about the relationship between knowledge (belief) and
actions. Of most interest to us is the emphasis on situations involving the knowl-
edge (belief) of a group of agents rather than that, of a single agent. At the heart
of any analysis of such situations as a conversation, a bargaining session or a
protocol run by processes is the interaction between agents. An agent in a group
must take into account not only events that have occurred in the world but also
the knowledge of the other agents in the group.

In some cases we need to consider the situation that the agents has common-
knowledge of an event; that is, simultaneously everyone knows the event, every-
one knows that everyone knows the event, and so on. This notion also turns out
to be a prerequisite for achieving agreement: In fact, Aumann $[1|$ showed the
famous agreement theorem; that is, if all posteriors of an event are common-
knowledge among the agents Chen the posteriors must be the same, even when
they have different private information. This is precisely what makes it a crucial
notion in the analysis of an interacting group of agents.1

Because the notion of common-knowledge is defined by the infinite regress
of all agents’ knowledge as above, common-knowledge is actually so unfeasible
a tool in helping us analyse complicated situations involving groups of agents.
Thus we would like to remove it from our modelling.

In this regard, Geanakoplos and Polemarchakis [5] investigated a communi-
cation process in which two agents announce their posteriors to each other. In
the process agents learn and revise their posteriors and they reach consensus
without common-knowledge of an event. Furthermore, Krasucki [6] introduced
the revision process mentioned in the above. He showed that in the process,
consensus on the posteriors can be guaranteed if the communication graph con-
tains no cycle. The result is an extension of the agreement theorem of Aumann
[1]. In the communication model of Krasucki [6], the agents sends $his/her$ exact
information on the posterior to the another agents. There is no possibility losing
information.

All of the information structures in the models of Aumann $[1|$ , of Geanakoplos
and Polemarchakis [5] and that of Krasucki [6] are given by partition on a state
space. Bacharach $[2|$ showed that the information partition model is equivalent
to his knowledge operator model with the three axioms about the operators: $T$

axiom of knowledge (what is known is true), 4 axiom of transparency (that we
know what we do know) and 5 axiom of wisdom (that we know what we do not
know.) He pointed out that the assumptions for the partition are problematic
in decision making, and hence the model of analysing complicated situations
should be also constructed without such strong assumptions.

Matsuhisa and Kamiyama [7] introduced the lattice structure of knowledge
for which the requirements such as the three axioms are not imposed, and they
succeeded in extending Aumann’s theorem to their model. However the extension

1 C.f.: Fagin et al [4].
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of agreement theorem are established under the common-knowledge (or common-
belief $)$ assumption.

The purpose of this article is to extend the communication model of Kra-
sucki [6] through robust messages. The emphasis is on that each agent sends not
exact information on the posterior value but robust information on it with accu-
racy to $\epsilon$ . Under the circumstances we show Theorem 1, which is an extension of
Krasucki [6], because the result of Krasucki [6] coincides with Theorem 1 when
$\underline{\sigma}\cdot=1$ .

2 The Model

Let $N$ be a set of finitely many agents and $i$ denote an agent. A state-space is a
finitely non-empty set, whose members are called states. An event is a subset of
the state-space. If $\Omega$ is a state-spacc, we denote by $2^{\Omega}$ the field of all subsets of
it. An event $E$ is said to occur in a state $\omega$ if $\omega\in E$ .

2.1 Information and Knowledge2

A partitio $r\iota$ information structure $\langle\Omega,$ $(\Pi_{i})_{i\in N}\rangle$ consists of a state space $\Omega$ and
a class of the mappings $\Pi_{i}$ of $\Omega$ into $2^{\Omega}$ such that

(i) $\{\Pi_{i}(\omega)|\omega\in\Omega\}$ is a partition of $\Omega$ ;

(ii) $\omega\in\Pi_{i}(\omega)$ for every $\omega\in\Omega$ .

Given our interpretation, an agent $i$ for whom $\Pi_{i}(\omega)\subseteq E$ knows, in the state
$\omega$ , that some state in the event $E$ has occurred. In this case we say that in the
state $\omega$ the agent $i$ knows $E$ .

Definition 1. The knowledge struct$nre\langle\Omega,$ $(\Pi_{i})_{i\in N},$ $(K_{i})_{i\in N})$ consists of a par-
tition information structure $\langle\Omega,$ $(\Pi_{i})_{i\in N}\rangle$ and a class of $i$ ’s knowledge operator
$K_{i}$ on $2^{f2}$ such that $K_{i}E$ is the set of states of $\Omega$ in which $i$ knows that $E$ has
occurred; that is,

$K_{i}E=\{\omega\in\Omega|\Pi_{i}(\omega)\subseteq E\}$ .

The set $\Pi_{i}(\omega)$ will be interpreted as the set of all the states of nature that
$i$ knows to be possible at $\omega$ , and $K_{i}E$ will be interpreted as the set of states of
nature for which $i$ knows $E$ to be possible. We will therefore call $\Pi_{i}i’ spossibil\iota ty$

operator on $\Omega$ and also will call $\Pi_{i}(\omega)i$ ’s information set at $\omega$ .
We record the properties of $i$ ’s knowledge $operator^{3}$ : For every $E,$ $F$ of $2^{\Omega}$ ,

$N$ $K_{i}\Omega=\Omega$ and $K_{i}\emptyset=\emptyset$ ; $K$ $K_{i}(E\cap F)=K_{i}E\cap K_{i}F$ ;

2 C.f.; Fagin et al [4], Binmore [3] for the information structure and the knowledge
operator.

3 According to these properties we can say the structure $\langle\Omega,$ $(K_{i})_{i\in N}\rangle$ is a model for
the multi-modal logic S5.

52



$T$ $K_{i}F\subseteq F$ ; 4 $K_{i}F\subseteq K_{i}K_{i}F$ ;

5 $\Omega\backslash K_{i}(E)\subseteq K_{i}(\Omega\backslash K_{i}(E))$ .

Remark 1. $i$ ’s possibility operator $\Pi_{i}$ is uniquely determined by $i$ ’s knowledge
operator $K_{i}$ satisfying the above five properties, because $\Pi_{i}(\omega)=\bigcap_{\omega\in K_{i}E}E$.

2.2 Decision function

By $i$ ’s decision function we mean a mapping $f_{i}$ of $2^{\Omega}$ into R. It is said to satisfy
the sure thrng principle if it is preserved under disjoint union; that is, for every
pair of disjoint events $S$ and $T$ such that if $f_{i}(S)=f_{i}(T)=d$ then $f_{i}(S\cup T)=d$ .
A decision function $f_{i}$ is said to be convex if for disjoint two events $E,$ $F$ , there
are positive numbers $\lambda,$ $\delta\in(\overline{0}, 1)$ such that $f_{i}(E\cup F)=\lambda f_{i}(E)+\delta f_{i}(F)$ with
$\lambda+\delta=1$ . It is preserved under difference if for all events $S$ and $T$ such that
$S\subseteq T,$ $.f_{?}(S)=f_{i}(T)=d$ then we have $f_{i}(T\backslash S)=d$ . All agents have the
common decision function $f$ if for every $i,$ $j\in N,$ $f=f_{i}=f_{j}$ .

If $f_{i}$ is intended to be a posterior probability, we assume given a probability
measure $\mu$ which is common for all agents and some event $X$ . Then $f_{i}$ is the
mapping of the domain of $\mu$ into the closed interval $[0,1]$ such that $f(E)=$
$\mu(X|E)$ , wherc $\mu(E)\neq 0$ . We plainly observe that this $f_{i}$ satisfies the sure thing
principle and is preserved under difference, and the agents have the common
decision function $f$ .

2.3 Protocol 4

We assume that the agents communicate by sending messages. Let $T$ be the time
horizontal line $\{0,1,2, \cdots t, \cdots\}$ . A protocol is a mapping $Pr$ : $Tarrow N\cross N,$ $t\mapsto$

$(s(t), r(t))$ such that $s(t)\neq r(t)$ . Here $t$ stands for time and $s(t)$ and $r(l)$ are,
respectively, the sender and the recipient of the communication which takes
place at time $t$ . We consider the protocol as the directed graph whose vertices
are the set of all agents $N$ and such that there is an edge (or an arc) from $i$ to
$j$ if and only if there are infinitely many $t$ such that $s(t)=i$ and $r(t)=j$ .

A protocol $i_{\iota}s$ said to be fair if the graph is strongly-connected; in words, every
agent in this protocol communicates directly or indirectly with every other agent
infinitely often. It is said to contain a cycle if there are at least agents $i_{1},$ $i_{2},$

$\ldots,$
$i_{k}$

with $k\geq 3$ such that for all $m<k,$ $i_{m}$ communicates directly with $i_{m+1}$ , and
such that $i_{k}$ communicates directly with $i_{1}$ . The communications is assumed to
proceed in rounds 5

4 C.f.: Parikh and Krasucki $\lceil 8]$

5 There exists a time $m$ such that for all $t_{\}}Pr(t)=Pr(t+m)$ . The period of the
protocol is the minimal number of all $m$ such that for every $t,$ $Pr(t+m)=Pr(t)$ .
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2.4 Communication through robust messages

Let $\epsilon$ be a real number with $0\leq\epsilon<1$ . An $\epsilon$ -robust communication system $\pi^{\epsilon}$

with revisions of agents’ decision $(f_{i}^{t})_{(i,t)\in N\cross T}$ according to a protocol is a tuple

$\pi^{\epsilon}=\langle\Omega,$ $Pr,$ $(\Pi_{i}^{t})_{i\in N},$ $(f_{i}^{t})_{(i,t)\in NxT}\rangle$

with the following structures: the agents have a common prior $\mu$ on $\Omega$ , the
protocol $Pr$ among $N,$ $Pr(t)=(s(t), r(t))$ , is fair and it satisfies the conditions
that $r(t)=s(t+1)$ for every $t$ and that the communications proceed in rounds.
The revised information structure $\Pi_{f}^{t}$ at time $t$ is the mapping of $\Omega$ into $2^{\Omega}$ for
agent $i$ . If $i=s(t)$ is a sender at $t$ , the message sent by $i$ to $j=r(t)$ is $M_{i}^{t}$ . An
n-tuple $(f_{i})_{i\in N}$ is a revision system of individual conjectures. These structures
are inductively defined as follows:

– Set $\Pi_{i}^{0}(\omega)=\Pi_{i}(\omega)$ .
-Assume that $\Pi_{i}^{t}$ is defiiied. It yields $is$ decision $d_{i}^{t}(\omega)=f_{i}(\Pi_{i}^{t}(\omega))$ . Whence

the niessage $M_{?:}^{t}$ : $\Omegaarrow 2^{\Omega}$ sent by the sender $i$ at time $t$ is defined as a
robust information:

$M_{i}^{t}(\omega)=\{\xi\in\Omega||d_{i}^{t}(\xi)-d_{i}^{t}(\omega)|\leq\epsilon\}$ .

Then:
-Thc revised partition $\Pi_{i}^{t.+1}$ at time $t+1$ is defined as follows:

$\bullet$ $\Pi_{i}\iota+1(\omega)=\Pi_{i}^{t}(\omega)\cap M_{s(t)}^{t}(\omega)$ if $i=r(t)|$

$\bullet$ $\Pi_{i}^{t+1}(\omega)=\Pi_{i}^{t}(\omega)$ otherwise,

The specification is that a sender $s(t)$ at time $t$ informs the recipient $r(t)$ his$/her$

decision as approximate information to an accuracy $\epsilon$ . The recipient revises
her$/his$ information structure under the information. $She/he$ revises her$/his$ de-
cision according the robust message, and $she/he$ informs $her/his$ the revised
decision to the other agent $r(t+1)$ .

We denote by $\infty$ a sufficient large $\tau\in T$ such that for all $\omega\in\Omega,$ $d_{i}^{\tau}$ $(. ; \omega)=$

$d_{i}^{\tau+1}$ $(. ; \omega)=d_{t}^{\tau+2}(\cdot ; \omega)=\cdots$ . Hence we can write $d_{i}^{\tau}$ by $d_{i}^{\infty}$ .

Remark 2. The message $M_{s(t)}^{t}(\omega)$ is called exact if $\epsilon=0$ . In his paper [6] Kra-
sucki treats the 0-robust communication system.

2.5 Consensus

We note that the limit $\Pi_{i}^{\infty}$ exists. 6 We denote $d_{i}^{\infty}(\omega)=f(\Pi_{i}^{\infty}(\omega))$ called the
limiting decision of $f$ at $\omega$ for $i$ . We say that consensus on the limiting decisions
can be guaranteed if $d_{l}^{\infty}’(\omega)=d_{j}^{\infty}(\omega)$ for each agent $i,$ $j$ and in all the states $\omega$ .

6 Because $\Omega$ is finite, the descending chain $\{\Pi_{?}^{t}(\omega)|t=0,1,2, \ldots\}$ is finite, and so it
must be stationary.
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3 Proof of Theorem 1

We can observe that Theorem 1 is a corollary of Theorem 2 on noting that the
protocol $Pr$ is fair,

Theorem 2. Let $\pi=\langle\grave{P}r,$ $(\Pi_{i}^{t}),$ $f)$ be a communication system with $f$ the $comarrow$

mon decision fnnction. Suppose th,at the common decision fnnction $fi_{\wedge}9$ pre-
served under difference, is convex and satisfies sure thing principle. Then Con-
sensus on the limiting values of the decision function can be guaranteed; i.e.,
$d_{i}^{\infty}(\omega)=d_{j}^{\infty}(\omega)$ for ever. $\omega$ and for all $i,$ $j$ .

Proof of Theorem 2 (Sketch) Let us consider the case that $(i,j)=(s(\infty), t(\infty))$ .
For each state $\omega$ we denote $M_{i}=M_{i}^{\infty}(\omega)$ . We can observe the two points: First
that $M_{i}$ can be decomposed into the disjoint union of $\Pi_{i}^{\infty}(\xi)$ for $\xi\in M_{i}$ , and
secondly that $f(M_{i})= \sum_{k=1}^{n}\lambda_{k}f(\Pi_{j}^{\infty}(\xi_{k}))$ for some $\lambda_{k}>0$ with $\sum_{k=1}^{m}\lambda_{k}=1$ .
It follows that for all $\omega\in\Omega$ , there is some $\xi_{\omega}\in\Pi_{i}^{\infty}(\omega)$ such that $f(M_{i})=$

$d_{7}^{\infty}(\omega)\leq d_{7}^{\infty}(\xi_{\omega})$ . Next we shall proceed in the general case. Continuing the
above system according to the fair protocol, we can verify the two facts: For
each $\omega\in\Omega$

1. For every $i\neq j,$ $d_{i}^{\infty}(\omega)\leq d_{j}^{\infty}(\xi)$ for some $\xi\in\Omega$ ; and
2. $d_{i}^{\infty}(\omega)\leq d_{i}^{\infty}l(\xi)\leq d_{i}^{\infty}(\zeta)\leq\cdots$ for some $\xi,$ $\zeta,$ $\cdots\in\Omega$ .

Hence it follows that $d_{i}^{\infty}(\omega)=d_{j}^{\infty}(\omega)$ for every $\omega$ and for all $i,j$ . $\square$

4 Concluding remarks

Our $re$al concern in this article is about relationship between agents’ beliefs and
their decision making, especially when and how the agents reach consensus about
their decisions. We focus on extending the agreeing theorem of Aumann $[1|$ to
$an\epsilon$-robust communication system in the line of Krasucki [6]. We have shown
that the natnre that consensus can be guaranteed in a communication system
is dependent not on exact information that each agent sends through messages,
but on the updating $his/her$ knowledge associated with information partition
when each agent receives robust information. Another emphasis is on that we
require none of the topological assumptions on the communication graph.
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