Completions of generalized inverse *-semigroups¹

島根大学総合理工学部 太田 開己 (Haruki Ohta) 今岡 輝男 (Teruo Imaoka)² Department of Mathematics, Shimane University Matsue, Shimane 690-8504, Japan

Abstract

It is well known that every inverse semigroup can be embedded both in a (join) complete inverse semigroup and a meet complete inverse semigroup (see [8]). The purpose of this paper is to obtain its generalization for generalized inverse *-semigroups. We succeed the former, that is, each generalized inverse *-semigroup S is embedded in a *-complete, infinetely distributive generalized inverse *-semigroup. Unfortunately, we can not answer for the later. However, we have that S is embedded in K(S) consisting of all cosets of S.

1 Preliminaries

A semigroup S with a unary operation $*: S \to S$ is called a *regular* *-*semigroup* if it satisfies

(i)
$$(x^*)^* = x$$
; (ii) $(xy)^* = y^*x^*$; (iii) $xx^*x = x$.

Let S be a regular *-semigroup. An idempotent e in S is called a projection if $e^* = e$. For a subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively.

Let S be a regular *-semigroup. If E(S) = P(S), S is called an *inverse semigroup*. If eSe is an inverse subsemigroup of S for any $e \in E(S)$, it is called a *locally inverse* *-semigroup. If E(S) forms a subsemigroup of S, it is called an *orthodox* *-semigroup. If S is orthodox and locally inverse, it is called a *generalized inverse* *-semigroup. It is well known that S is a generalized inverse *-semigroup if and only if E(S) satisfies the identity xyzw = xzyw.

Result 1.1. [4] Let S be a regular *-semigroup. Then we have

- (1) $E(S) = P(S)^2$.
- (2) For any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$.

¹This is an abstract and the paper will appear elsewhere.

²The author was partially supported by the Grant-in-Aid for Scientific Research (C) (No. 17540025), Japan Society for the Promotion of Science.

(3) Each \mathcal{L} -class and \mathcal{R} -class contains one and only one projection.

Let S be a regular *-semigroup. Define a relation \leq on S as follows:

 $a \leq b \iff a = eb = bf$ for some $e, f \in P(S)$.

Result 1.2. [5] Let a and b be elements of a regular *-semigroup S. Then the following statements are equivalent:

- (1) $a \leq b$,
- (2) $aa^* = ba^*$ and $a^*a = b^*a$,
- (3) $aa^* = ab^*$ and $a^*a = a^*b$,
- (4) $a = aa^*b = ba^*a$.

The relation \leq , defined above, is a partial order on S which preserves the *-operation. We call \leq the natural order on S. It is well known that S is a locally inverse *-semigroup if and only if \leq is compatible.

Proposition 1.3. Let S be a regular *-semigroup. Then S is a generalized inverse *-semigroup if and only if $xey \leq xy$ for any $x, y \in S$ and $e \in P(S)$

Let (P, \leq) be a partial order set. A subset Q of P is said to be an order ideal if $x \leq y \in Q$ implies $x \in Q$. For $x \in P$, $[x] = \{y \in P : y \leq x\}$ is the smallest order ideal of P containing x, which is called the principal order ideal of P containing x.

Proposition 1.4. Let S be a regular *-semigroup. Then P(S) is an order ideal of S. Moreover, if S is orthodox, then E(S) is an order ideal.

Let S and T be regular *-semigroups. A mapping $\theta : S \to T$ is called a *homomorphism if, for any $a, b \in S$,

$$heta(ab)= heta(a) heta(b) \ \ ext{and} \ \ heta(a^*)= heta(a)^*.$$

The following properties are well known.

Result 1.5. Let $\theta: S \to T$ be a *-homomorphism between regular *-semigroups.

- (1) If $e \in E(S)$, then $\theta(e) \in E(T)$.
- (2) If $e \in P(S)$, then $\theta(e) \in P(T)$.
- (3) If U is a regular *-subsemigroup of S, then $\theta(U)$ is a regular *-subsemigroup of T.
- (4) If V is a regular *-subsemigroup of T, then $\theta^{-1}(V)$ is a regular *-subsemigroup of S.
- (5) The mapping θ is order-preserving.

The notation and terminology are those of [7] and [8], unless otherwise stated.

2 *-Compatibility relations and infinitely distributive semigroups

Let S be a regular *-semigroup. For any $s, t \in S$, the left *-compatibility relation is defined by

$$s \sim_l^* t \Leftrightarrow st^* \in P(S),$$

the right *-compatibility relation is defined by

$$s \sim_r^* t \Leftrightarrow s^* t \in P(S),$$

and the compatibility relation is defined by

$$s \sim^* t \Leftrightarrow s^*t, st^* \in P(S).$$

A subset A of S is said to be *-compatible if $a \sim^* b$ for all $a, b \in A$.

Lemma 2.1. Let S be a regular *-semigroup and let $s, t \in S$. Then $s \sim^* t$ if and only if the greatest lower bound $s \wedge t$ of s and t exists and

$$s \wedge t = st^*t = ts^*t = ts^*s = st^*s = ss^*t = tt^*s.$$

Lemma 2.2. Let S be a locally inverse *-semigroup, and let $s, t, u, v \in S$. Then

(1) $s \leq t, u \leq v$ and $t \sim^* v$ implies that $s \sim^* u$.

(2) [s] is a *-compatible order ideal of S.

If S is a generalized inverse *-semigroup, then

(3) $s \sim^* t$ and $u \sim^* v$ implies that $su \sim^* tv$.

Lemma 2.3. Let S be a locally inverse *-semigroup and let A and B be non-empty subsets of projections and idempotents, respectively. Then we have the following:

(1) If $\bigwedge A$ exists, then it is a projection.

(2) If $\bigvee A$ exists, it is a projection.

Moreover, let S be a generalized inverse *-semigroup. Then

- (3) If $\bigwedge B$ exists, it is an idempotent.
- (4) If $\bigvee B$ exists, it is an idempotent.

Lemma 2.4. Let S be a locally inverse *-semigroup and let A be a non-empty subset of S such that $\bigvee A$ exists. Then any two elements of A are *-compatible.

A regular *-semigroup is said to be left infinitely distributive if, whenever A is a non-empty subset of S for which $\bigvee A$ exists, then $\bigvee sA$ exists for any element $s \in S$ and $s(\bigvee A) = \bigvee sA$. Right infinitely distributive is defined analogously. Also a semigroup which is both left and right infinitely distributive is called *infinitely distributive*. We say that a regular *-semigroup is *-complete if every its non-empty *-compatible subset has a join. **Proposition 2.5.** Let S be a locally inverse *-semigroup and $A = \{a_i : i \in I\}$ a nonempty subset of S.

(1) If $\bigvee a_i$ exists then $\bigvee a_i^*a_i$ exists and $(\bigvee a_i)^*(\bigvee a_i) = \bigvee a_i^*a_i$.

(2) If $\bigvee a_i$ exists then $\bigvee a_i a_i^*$ exists and $(\bigvee a_i)(\bigvee a_i)^* = \bigvee a_i a_i^*$.

Theorem 2.6. Let S be a infinitely distributive locally inverse *-semigroup. If A and B are non-empty subsets of S such that $\bigvee A$, $\bigvee B$ and $\bigvee AB$ exist, then $\bigvee AB = (\bigvee A)(\bigvee B)$.

3 Join completions

Let A be a subset of a regular *-semigroup S. It is said to be *-permissible if it is a *-compatible order ideal of S. The set of all *-permissible subsets of S is denoted by $C^*(S)$.

Lemma 3.1. Let S be a regular *-semigroup and A its *-permissible subset. Then

$$A^*A = \{a^*a : a \in A\} \text{ and } AA^* = \{aa^* : a \in A\}$$

are both order ideals.

Lemma 3.2. Let S be a regular *-semigroup. If A is a *-permissible subset of S which satisfies AA = A, then it is a subset of E(S). Moreover, A satisfies $A^* = A$, it is a subset of P(S).

Now, we have the main theorem.

Theorem 3.3. Let S be a generalized inverse *-semigroup. Then $C^*(S)$ is a *-complete, infinitely distributive generalized inverse *-semigroup. And the mapping $\iota : S \to C^*(S)$ ($s \mapsto [s]$) is an injective *-homomorphism. Moreover, every element of $C^*(S)$ is a join of nonempty subset of $\iota(S)$.

Theorem 3.4. If θ : $S \to T$ be a *-homomorphism to a *-complete, infinitely distributive generalized inverse *-semigroup, then there exists a unique join-preserving *homomorphism $\phi : C^*(S) \to T$ such that $\phi \iota = \theta$.

Now we can obtain that the category of *-complete, infinitely distributive generalized inverse *-semigroups together with join-preserving *-homomorphisms is a reflective subcategory of the category of generalized inverse *-semigroups and *-homomorphism.

Theorem 3.5. The function $S \mapsto C^*(S)$ is the object part of a functor from the category of generalized inverse *-semigroups and *-homomorphisms to the category of *complete, infinitely distributive generalized inverse *-semigroups and join-preserving *homomorphisms.

4 Cosets of generalized inverse *-semigroups

Let S be a regular \ast -semigroup and X its subset. We call

$$[X]^{\uparrow} = \{ s \in S : x \leq s \text{ for some } x \in X \}$$

the closure of X in S. If $X = \{x\}$ consists a single element, we denote it by $[x]^{\uparrow}$, which is called the principal closure containing x. A subset is said to be closed if it is equal to its closure.

Let S be a generalized inverse *-semigroup. A non-empty subset H of S is called a *coset* if HH^*H , and the set of all cosets of S is denoted by K(S). We first remark to justify the use of the term coset.

Proposition 4.1. Let A be a non-empty subset of a group G. Then $A = AA^*A$ (= $aa^{-1}A$) if and only if A is a coset of a subgroup of G.

A further justification for the term coset comes from the theory of representation of generalized inverse *-semigroups.

Proposition 4.2. Let $\theta : S \to \mathcal{GI}_{(X;\Omega)}$ be a representation of a generalized inverse *semigroup S. Let $x, y \in X$ and put $H_{x,y} = \{s \in S : \theta(s)(x) = y\}$. Then if $H_{x,y}$ is non-empty, it is a coset.

We give another characterization of cosets in the sense of Dubreil [1]. For non-empty subsets A and B of a semigroup S, define

$$A \cdot B = \{s \in S : Bs \subseteq A\}$$
 and $A \cdot B = \{s \in S : sB \subseteq A\}.$

If $B = \{b\}$, we denote each by $A \cdot B$ and $A \cdot B$.

Lemma 4.3. Let S be a generalized inverse *-semigroup. If A is a coset and $A \cdot B[A \cdot B]$ is a non-empty subset of S, then $A \cdot B[A \cdot B]$ is a coset.

Theorem 4.4. Let H be a non-empty subset of a generalized inverse *-semigroup S. Then the following statements are equivalent:

- (1) H is a coset,
- (2) $H \cdot s \cap H \cdot t \neq \emptyset \implies H \cdot s = H \cdot t$ for any $s, t \in S^1$,
- (3) $H \cdot s \cap H \cdot t \neq \emptyset \implies H \cdot s = H \cdot t$ for any $s, t \in S^1$,
- (4) $xu, vu, vy \in H \implies xy \in H$ for any $x, y \in S$ and $u, v \in S^1$.

Let S be a generalized inverse *-semigroup. We now introduce a new binary operation on K(S) and it becomes a generalized inverse *-semigroup with respect to the operation. It is clear that the intersection of any non-empty set of cosets is either empty or a coset. For a non-empty subset X of S, we define j(X) to be the intersection of all cosets containing X, that is, the smallest coset containing X. Define a binary operation \otimes and a unary operation * on S as follows:

$$A \otimes B = j(AB)$$
 and $(A)^* = A^*$.

Theorem 4.5. Let S be a generalized inverse *-semigroup. Then $K(S)(\otimes, *)$ is a generalized inverse *-semigroup.

Proposition 4.6. Let S be a generalized inverse *-semigroup and $s \in S$. Then $[s]^{\uparrow}$ is a coset.

Proposition 4.7. Let S be a generalized inverse *-semigroup. Then, for any $A, B \in K(S)$,

$$A \leq B \quad \Rightarrow \quad A \supseteq B.$$

Now, we can immediately obtain the following theorem.

Theorem 4.8. Let S be a generalized inverse *-semigroup. Then the mapping $\iota: S \to K(S)$ $(s \mapsto [s]^{\uparrow})$ is an injective *-homomorphism, and each element of K(S) is the union of a non-empty subset of $\iota(S)$.

Remark. We showed that, for $A, B \in K(S)$, $A \leq B$ implies $A \supseteq B$ in Proposition 4.7. However, we do not know where the converse is true or not. If it is true, we can change "the union " to "the meet" in Theorem 4.8.

References

- Dubreil, P., Contribution a la theorie des demi-groupes, Mem. Acad. Sci. Math. (2) 72(1941), 52.
- [2] Hall, T. E. and T. Imaoka, Representations and amalgamation of generalized inverse *-semigroups, Semigroup Forum 58(1999), 126-141.
- [3] Howie, J. M., An introduction to semigroup theory, Academic Press, 1976.
- [4] Imaoka, T., On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14(1980), 19-23.
- [5] Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fc. Sci. Shimane Univ. 15 (1981), 23-27.
- [6] Imaoka, T., Prehomomorphisms on locally inverse *-semigroups, in: Words, Semigroups and transductions, edited by M. Ito, G. Paun and S. Yu, world Scientific, Singapore, 2001, 203-210.
- [7] Imaoka, T. and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
- [8] Lawson, M. V., Inverse semigroups, World Scientific, Singapre, 1998.
- [9] Schein, B. M., Semigroups of strong subsets, Volzhskii Matem. Sbornik 4(1966), 180-186.
- [10] Schein, B. M., Cosets in groups and semigroups, Proc. Conf. on Semigroups with Appl. (Oberwolfach, 1991), World Scientific, 1992, 205-221.