Drawing the complex projective structures on once－punctured tori

Yohei Komori（Osaka City Univ．）

1 Introduction

This report is based on my talk at RIMS International Conference on＂Geom－ etry Related to Integrable Systems＂organized by Reiko Miyaoka．In my talk I showed many interesting pictures of one－dimensional Teichmüller spaces and related spaces created by Yasushi Yamashita（Nara Women＇s Univ．） which were already appeared in［3］．In this report I would like to explain the background of these pictures，which are explained more extensively in［2］． I would like to thank Yasushi Yamashita for his kind assistance with com－ puter graphics，and Yoshihiro Ohnita for his constant encouragement for me to write this report．

2 Definition of $T(X)$

Let X be a Riemann surface of genus g with n punctures．Here we assume that X is uniformized by the upper half plane \mathbb{H} in \mathbb{C} ，which implies the inequality $2 g-2+n>0$ ．The Teichmüller space $T(X)$ of X is the set of equivalent classes of quasi－conformal homeomorphisms from X to other Riemann surface $Y, f: X \rightarrow Y$ ：two maps $f_{1}: X \rightarrow Y_{1}$ and $f_{2}: X \rightarrow Y_{2}$ are equivalent if $f_{2} \circ f_{1}^{-1}: Y_{1} \rightarrow Y_{2}$ is homotopic to a conformal map．If we assume $f: X \rightarrow Y$ as a quasi－conformal deformation of $X, T(X)$ can be considered as the space of quasi－conformal deformations of X ．

We will consider a complex manifold structure on $T(X)$ ，embed it holo－ morphically into complex affine space and try to draw its figure．For this purpose，we give another characterization of $T(X)$ due to Ahlfors and Bers in the next section．

3 Complex structure on $T(X)$

Let $\Gamma \subset P S L_{2}(\mathbb{R})$ be a Fuchsian group uniformizing $X=\mathbb{H} / \Gamma$. A measurable function $\nu(z)$ on the Riemann sphere $\mathbb{C} P^{1}$ whose essential sup norm is less than 1 is called a Beltrami differential for Γ if μ is equal to 0 on the lower half plane \mathbb{L} in \mathbb{C} and satisfies

$$
\mu(\gamma(z)) \cdot \overline{\frac{\gamma^{\prime}(z)}{\gamma^{\prime}(z)}}=\mu(z)
$$

for all $z \in \mathbb{C} P^{1}$ and $\gamma \in \Gamma$. This functional equality implies that μ on \mathbb{H} is a lift of $(-1,1)$ form on X . We denote the set of Beltrami differentials by $B_{1}(\Gamma, \mathbb{H})$ which has a structure of a unit ball of complex Banach space. The measurable Riemann's mapping theorem due to Ahlfors and Bers guarantees that for any $\mu \in B_{1}(\Gamma, \mathbb{H})$ there exists a quasi-conformal map $f^{\mu}: \mathbb{C} P^{1} \rightarrow$ $\mathbb{C} P^{1}$ such that f^{μ} satisfies the Beltrami equation

$$
\frac{\partial f^{\mu}}{\partial \bar{z}}(z)=\mu(z) \frac{\partial f^{\mu}}{\partial z}(z) .
$$

Also f^{μ} is unique up to post-composition by Möbius transformations.
Here we have two remarks: (i) f^{μ} is conformal on \mathbb{L}. (ii) The quasiconformal conjugation of Γ by $f^{\mu}, \Gamma^{\mu}=f^{\mu} \Gamma\left(f^{\mu}\right)^{-1}$ is also a discrete subgroup of $P S L_{2}(\mathbb{C})$ acting conformally on $f^{\mu}(\mathbb{H})$.

Now we say $\mu_{1} \sim \mu_{2}$ for $\mu_{1}, \mu_{2} \in B_{1}(\Gamma, \mathbb{H})$ if $\Gamma^{\mu_{1}}=\Gamma^{\mu_{2}}$. Then $T(X)$ can be identified with the quotient space $B_{1}(\Gamma, \mathbb{H}) / \sim$ as follows: For any $[\mu] \in B_{1}(\Gamma, \mathbb{H}) / \sim$, we have a quasi-conformal deformation of X

$$
f^{\mu}: X=\mathbb{H} / \Gamma \rightarrow f^{\mu}(\mathbb{H}) / \Gamma^{\mu}
$$

which defines a point of $T(X) . T(X)$ becomes a complex manifold of $\operatorname{dim}_{\mathrm{C}} T(X)=$ $3 g-3+n$ through the complex structure of $B_{1}(\Gamma, \mathbb{H})$. We will embed $T(X)$ holomorphically into the complex linear space by means of complex projective structures on \bar{X}, the mirror image of X which will be explained in the next section.

4 Complex projective structures on \bar{X}

Let S be a surface. A complex projective structure, so called $\mathbb{C} P^{1}$-structure on S is a maximal system of charts with transition maps in $P S L_{2}(\mathbb{C})$. Since
elements of $P S L_{2}(\mathbb{C})$ are holomorphic, any $\mathbb{C} P^{1}$-structure on S determines its underlying complex structure. Suppose we consider a $\mathbb{C} P^{1}$-structure whose underlying complex structure is equal to $\bar{X}=\mathbb{L} / \Gamma$, the mirror image of X. For a local coordinate function of this $\mathbb{C} P^{1}$-structure, we can take its analytic continuation along any curve on \bar{X} and have a multi-valued locally univalent holomorphic map from \bar{X} to $\mathbb{C} P^{1}$. This map is lifted to \mathbb{L} a locally univalent meromorphic function $W: \mathbb{L} \rightarrow \mathbb{C} P^{1}$ called the developing map of this $\mathbb{C} P^{1}$-structure. It is uniquely determined by the $\mathbb{C} P^{1}$-structure up to post-composition by Möbius transformations.

When we take an analytic continuation of a local coordinate function along a closed curve on \bar{X} and come back to the initial point, it differs from the previous one by a Möbius transformation since the transition maps are in $P S L_{2}(\mathbb{C})$. Consequently we have a homomorphism $\chi: \Gamma \cong \pi_{1}(\bar{X}) \rightarrow$ $P S L_{2}(\mathbb{C})$ which is called the holonomy representation and satisfies $\chi(\gamma) \circ W=$ $W \circ \gamma$ for all $\gamma \in \Gamma$. Therefore the $\mathbb{C} P^{1}$-structure on \bar{X} determines the pair (W, χ) up to the action of $P S L_{2}(\mathbb{C})$ and vice versa. Here we show the most basic example of $\mathbb{C} P^{1}$-structures on \bar{X} : Let W be the identity map $W: \mathbb{L} \hookrightarrow \mathbb{C} P^{1}$ and χ also be the identity homomorphism $\chi: \Gamma \hookrightarrow P S L_{2}(\mathbb{R})$ which induces a local coordinate function as a local inverse of the universal covering map $\mathbb{L} \rightarrow \bar{X}$. We call this $\mathbb{C} P^{1}$-structure the standard $\mathbb{C} P^{1}$-structure on \bar{X}.

Let $P(\bar{X})=\{(W, \chi)\} / P S L_{2}(\mathbb{C})$ be the set of $\mathbb{C} P^{1}$-structures on \bar{X}. We will parametrize $P(\bar{X})$ by holomorphic quadratic differentials on \bar{X} as follows: A holomorphic function φ on \mathbb{L} is called a holomorphic quadratic differential for Γ if it satisfies

$$
\varphi(\gamma(z)) \gamma^{\prime}(z)^{2}=\varphi(z)
$$

for all $z \in \mathbb{L}$ and $\gamma \in \Gamma$. It is a lift of holomorphic quadratic differentials on $\bar{X}=\mathbb{L} / \Gamma$. Let $Q(\bar{X})$ be the set of holomorphic quadratic differentials for Γ whose hyperbolic sup norm $\|\varphi\|=\sup _{z \in \mathbb{L}}|\Im z|^{2}|\varphi(z)|$ is bounded. $Q(\bar{X})$ has a structure of complex linear space of $\operatorname{dim}_{\mathbb{C}} Q(\bar{C})=3 g-3+n$ which is equal to the dimension of $T(X)$. We show that there is a canonical bijection between $P(\bar{X})$ and $Q(\bar{X})$ which maps the standard $\mathbb{C} P^{1}$-structure to the origin: Given a $\mathbb{C} P^{1}$-structures on \bar{X}, take the Schwarzian derivative of W

$$
S_{W}:=\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\frac{1}{2}\left(f^{\prime \prime} / f^{\prime}\right)^{2}
$$

which is an element of $Q(\bar{X})$. Conversely given a holomorphic quadratic differential φ for Γ, solve the differential equation $S_{f}=\varphi$ on \mathbb{L}. In practice
to find the solution f, we consider the following linear homogeneous ordinary differential equation of the second order

$$
2 \eta^{\prime \prime}+\varphi \eta=0
$$

on \mathbb{L}. Since \mathbb{L} is simply connected, a unique solution η exists on \mathbb{L} for the given initial data $\eta(-i)=a$ and $\eta^{\prime}(-i)=b$. Let η_{1} and η_{2} be the solution defined by the conditions $\eta_{1}(-i)=0$ and $\eta_{1}^{\prime}(-i)=1$, and $\eta_{2}(-i)=1$ and $\eta_{2}^{\prime}(-i)=0$. Then the ratio $f_{\varphi}=\eta_{1} / \eta_{2}$ is a locally univalent meromorphic function on \mathbb{L}, the developing map associated with φ. A direct computation shows that $\eta(\gamma(z))\left(\gamma^{\prime}(z)\right)^{-\frac{1}{2}}$ also satisfies the above equation hence there is a matrix of $S L_{2}(\mathbb{C})$ such that

$$
\binom{\eta_{1}(\gamma(z))\left(\gamma^{\prime}(z)\right)^{-\frac{1}{2}}}{\eta_{2}(\gamma(z))\left(\gamma^{\prime}(z)\right)^{-\frac{1}{2}}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}
$$

for all $\gamma \in \Gamma$. As a result we have a homomorphism $\chi_{\varphi}: \Gamma \rightarrow P S L_{2}(\mathbb{C})$, the holonomy representation associated with φ. We can also consider χ_{φ} as the monodromy representation of the above differential equation.

5 Bers embedding of $T(X)$

Now we embed $T(X)$ into $Q(\bar{X}) \cong \mathbb{C}^{3 g-3+n}$ by means of the identification $P(\bar{X}) \cong Q(\bar{X})$. For each element $[\mu] \in T(X)=B_{1}(\Gamma, \mathbb{H}) / \sim,\left.f^{\mu}\right|_{\mathbb{L}}$ is conformal and $\Gamma^{\mu}=f^{\mu} \Gamma\left(f^{\mu}\right)^{-1}$ is a quasi-fuchsian group. Therefore it determines a $\mathbb{C P}^{1}$-structure on \mathbb{L} / Γ where the developing map is $W=\left.f^{\mu}\right|_{\mathbb{L}}$ and the holonomy representation $\chi: \Gamma \rightarrow \Gamma^{\mu}$ is defined by $\chi(\gamma)=f^{\mu} \gamma\left(f^{\mu}\right)^{-1}$. After the identification $P(\bar{X}) \cong Q(\bar{X}), T(X)$ can be embedded into $Q(\bar{X})$, which is called the Bers embedding of $T(X)$.

We will show not only the picture of $T(X)$ but also other $\mathbb{C} P^{1}$-structures on \bar{X} : Let $K(\bar{X})$ be the set of $\mathbb{C} P^{1}$-structures on \bar{X} whose holonomy groups are Kleinian groups, discrete subgroups of $P S L_{2}(\mathbb{C})$. Shiga [4] showed that the connected component of the interior of $K(\bar{X})$ containing the origin coincides with $T(X)$. Shiga and Tanigawa [5] proved that any $\mathbb{C} P^{1}$-structure of the interior of $K(\bar{X})$ has a quasi-fuchsian holonomy representation. Nehari showed that $T(X)$ is bounded in $Q(\bar{X})$ with respect to the hyperbolic sup norm $\|\varphi\|=\sup _{z \in \mathbb{L}}|\Im z|^{2}|\varphi(z)|$, while Tanigawa proved that $K(\bar{X})$ is unbounded.

6 Pictures of $T(X)$ and $K(X)$

We will show pictures of $T(X)$ and $K(X)$, all of which depends on the underlying complex structure of \bar{X}. All picture were drawn by Yasushi Yamashita. Figure 1 and figure 2 are the case that \bar{X} has a hexagonal symmetry. Figure 3 and figure 4 are the case that \bar{X} has a square symmetry. Black colored region consists of φ whose holonomy representation has an indiscrete image. For both cases, $T(X)$ looks like an isolated planet, while $K(X)$ itself looks like the galaxy: Some planets seem to bump each other... When we take \bar{X} anti-symmetric, $T(X)$ and $K(X)$ become distorted, which we can see in figure 5 and figure 6.

To draw these pictures we need

1. to calculate the holonomy representation χ_{φ} for $\varphi \in Q(\bar{X})$, and
2. to check whether $\chi_{\varphi}(\Gamma)$ is discrete or not.

First we will explain (1). To determine χ_{φ}, we must solve $\mathcal{S}_{f}=\varphi$ on \mathbb{L}. In general $\varphi \in Q(\bar{X})$ is highly transcendental function on \mathbb{L} and it is very difficult for us to handle it. Here is an idea: If $\operatorname{dim}_{\mathbf{C}} T(X)=3 g-3+n=1$, then $(g, n)=(0,4)$ or $(1,1)$. Take $\bar{X}=\mathbb{C P}^{1}-\{0,1, \infty, \lambda\}$, then we can find a basis of $Q(\bar{X})$ like $Q(\bar{X})=\mathbb{C} \cdot \pi^{*}\left(\frac{1}{w(w-1)(w-\lambda)}\right)$. Even in this case, it is still difficult to solve

$$
\mathcal{S}_{f}=\pi^{*}\left(\frac{t}{w(w-1)(w-\lambda)}\right)
$$

where $\pi: \mathbb{L} \rightarrow \mathbb{C P}^{1}-\{0,1, \infty, \lambda\}$ and $t \in \mathbb{C} \cong Q(\bar{X})$. But we can push down the above equation onto $\bar{X}=\mathbb{C} \mathbb{P}^{1}-\{0,1, \infty, \lambda\}$

$$
\mathcal{S}_{f \circ \pi-1}=\frac{t}{w(w-1)(w-\lambda)}+\left(\frac{1}{2 w^{2}(w-1)^{2}}+\frac{1}{2(w-\lambda)^{2}}+\frac{c(\lambda)}{w(w-1)(w-\lambda)}\right)
$$

where $c(\lambda)$ is called the accessory parameter of $\pi: \mathbb{L} \rightarrow \bar{X}$.
To get the solution we take the ratio of two linearly independent solution of

$$
2 y^{\prime \prime}+\left(\frac{1}{2 w^{2}(w-1)^{2}}+\frac{1}{2(w-\lambda)^{2}}+\frac{t+c(\lambda)}{w(w-1)(w-\lambda)}\right) y=0
$$

and calculate the monodromy group of this equation with respect to closed paths of $\pi_{1}(\bar{X}) \cong F_{3}$. Since the above ordinary differential equation has rational coefficients on $\mathbb{C} P^{1}$, we can use computer to get the image of 3
generators of $\pi_{1}(\bar{X})$ in $P S L_{2}(\mathbb{C})$ numerically. Here we remark that to draw the picture of $K(X)$ up to parallel translation, we don't need to determine the accessory parameter $c(\lambda)$ in practice.

For (2), we apply Shimizu lemma to check whether $\chi_{\varphi}(\Gamma)$ is indiscrete, and Poincaré theorem to construct the Ford fundamental domain to check whether $\chi_{\varphi}(\Gamma)$ is discrete. This part is so called Jorgensen theory and has been proved recently by Akiyoshi, Sakuma, Wada and Yamashita [1].

References

[1] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, Punctured Torus Groups and 2-Bridge Knot Groups I, Springer LNS. 1909.
[2] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer (1999).
[3] Y. Komori, T. Sugawa, M. Wada and Y. Yamashita, Drawing Bers embeddings of the Teichmüller space of once-punctured tori, Experimental Mathematics, Vol. 15 (2006), 51-60.
[4] H. Shiga, Projective structures on Riemann surfaces and Kleinian groups, J. Math. Kyoto. Univ. 27:3(1987), 433-438.
[5] H. Shiga and H. Tanigawa, Projective structures with discrete holonomy representations, Trans. Amer. Math. Soc. 351 (1999), 813-823.

Figure 1: $T(X)$ for hexagonal symmetry

Figure 2: $K(X)$ for hexagonal symmetry

Figure 3: $T(X)$ for square symmetry

Figure 4: $K(X)$ for square symmetry

Figure 5: distorted $T(X)$

Figure 6: distorted $K(X)$

