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1 Introduction
This report is based on my talk at RIMS International Conference on “ Geom-
etry Related to Integrable Systems) organized by Reiko Miyaoka. In my talk
I showed many interesting pictures of one-dimensional Teichm\"uller spaces
and related spaces created by Yasushi Yamashita (Nara Women’s Univ.)
which were already appeared in [3]. In this report I would like to explain the
background of these pictures, which are explained more extensively in [2].
I would like to thank Yasushi Yamashita for his kind assistance with com-
puter graphics, and Yoshihiro Ohnita for his constant encouragement for me
to write this report.

2 Definition of $T(X)$

Let $X$ be a Riemanm surface of genus $g$ with $n$ punctures. Here we assume
that $X$ is uniformized by the upper half plane $\mathbb{H}$ in $\mathbb{C}$ , which implies the
inequality $2g-2+n>0$ . The Teichmuller space $T(X)$ of $X$ is the set
of equivalent classes of quasi-conformal homeomorphisms from $X$ to other
Riemann surface $Y,$ $f$ : $Xarrow Y$ : two maps $f_{1}$ : $Xarrow Y_{1}$ and $f_{2}$ : $Xarrow Y_{2}$

are equivalent if $f_{2}\circ f_{1}^{-1}$ : $Y_{1}arrow Y_{2}$ is homotopic to a conformal map. If we
assume $f$ : $Xarrow Y$ as a quasi-conformal deformation of $X,$ $T(X)$ can be
considered as the space of quasi-conformal deformations of $X$ .

We will consider a complex manifold structure on $T(X)$ , embed it holo-
morphically into complex affine space and try to draw its figure. For this
purpose, we give another characterization of $T(X)$ due to Ahlfors and Bers
in the next section.
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3 Complex structure on $T(X)$

Let $\Gamma\subset PSL_{2}(\mathbb{R})$ be a Fuchsiaii group uniforniizing $X=\mathbb{H}/\Gamma$ . A measurable
function $\nu(z)$ on the Riemann sphere $\mathbb{C}P^{1}$ whose essential $\sup$ norm is less
than 1 is called a Beltrami differential for $\Gamma$ if $\mu$ is equal to $0$ on the lower
half plane $\mathbb{L}$ in $\mathbb{C}$ and satisfies

$\mu(\gamma(z))\cdot\overline{\frac{\gamma’(z)}{\gamma’(z)}}=\mu(z)$

for all $z\in \mathbb{C}P^{1}$ and $\gamma\in\Gamma$ . This functional equality implies that $\mu$ on $\mathbb{H}$

is a lift of $(-1,1)$ form on X. We denote the set of Beltrami differentials by
$B_{1}(\Gamma, \mathbb{H})$ which has a structure of a unit $b\mathfrak{N}$ of complex Banach space. The
measurable Riemann’s mapping theorem due to Ahlfors and Bers guarantees
that for any $\mu\in B_{1}(\Gamma, \mathbb{H})$ there exists a quasi-conformal map $f^{\mu}$ : $\mathbb{C}P^{1}arrow$

$\mathbb{C}P^{1}$ such that $f^{\mu}$ satisfies the Beltrami equation

$\frac{\partial f^{\mu}}{\partial\overline{z}}(z)=\mu(z)\frac{\partial f^{\mu}}{\partial z}(z)$ .

Also $f^{\mu}$ is unique up to post-composition by M\"obius transformations.
Here we have two remarks: (i) $f^{\mu}$ is conformal on $\mathbb{L}$ . (ii) The quasi-

conformal conjugation of $\Gamma$ by $f^{\mu},$ $\Gamma^{\mu}=f^{\mu}\Gamma(f^{\mu})^{-1}$ is also a discrete subgroup
of $PSL_{2}(\mathbb{C})$ acting conformally on $f^{\mu}(\mathbb{H})$ .

Now we say $\mu_{1}\sim\mu 2$ for $\mu_{1},$ $\mu_{2}\in B_{1}(\Gamma, \mathbb{H})$ if $\Gamma^{\mu 1}=\Gamma^{\mu 2}$ . Then $T(X)$

can be identified with the quotient space $B_{1}(\Gamma,\mathbb{H})/\sim$ as follows: For any
$[\mu]\in B_{1}(\Gamma, \mathbb{H})/\sim$ , we have a quasi-conformal deformation of $X$

$f^{\mu}:X=\mathbb{H}/\Gammaarrow f^{\mu}(\mathbb{H})/\Gamma^{\mu}$

which defines a point of $T(X)$ . $T(X)$ becomes a complex manifold of $dim_{C}T(X)=$

$3g-3+n$ through the complex structure of $B_{1}(\Gamma, \mathbb{H})$ . We will embed $T(X)$

holomorpliically into the complex linear space by means of complex projec-
tive structures on $\overline{X}$ , the mirror image of $X$ which will be explained in the
next section.

4 Complex projective structures on $\overline{X}$

Let $S$ be a surface. A complex projective structure, so called $\mathbb{C}P^{1}$-structure
on $S$ is a maximal system of charts with transition maps in $PSL_{2}(\mathbb{C})$ . Since
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elements of $PSL_{2}(\mathbb{C})$ are holomorphic, any $\mathbb{C}P^{1}$-structure on $S$ determines its
underlying complex structure. Suppose we consider a $\mathbb{C}P^{1}$-structure whose
underlying complex structure is equal to $\overline{X}=\mathbb{L}/\Gamma$, the mirror image of
X. For a local coordinate fumction of this $\mathbb{C}P^{1}$ -structure, we can take its
analytic continuation along any curve on $\overline{X}$ and have a multi-valued locally
univalent holomorphic map from $\overline{X}$ to $\mathbb{C}P^{1}$ . This map is lifted to $\mathbb{L}$ a locally
uiiivalent meromorphic function $W:\mathbb{L}arrow \mathbb{C}P^{1}$ called the developing map of
this $\mathbb{C}P^{1}$-structure. It is uniquely determined by the $\mathbb{C}P^{1}$-structure up to
post-composition by M\"obius transformations.

When we take an analytic continuation of a local coordinate function
along a closed curve on $\overline{X}$ and come back to the initial point, it differs
from the previous one by a M\"obius transformation since the transition maps
are in $PSL_{2}(\mathbb{C})$ . Consequently we have a homomorphism $\chi$ : $\Gamma\cong\pi_{1}(\overline{X})arrow$

$PSL_{2}(\mathbb{C})$ wliich is called the holonomy representation and satisfies $\chi(\gamma)oW=$

$W\circ\gamma$ for all $\gamma\in\Gamma$ . Therefore the $\mathbb{C}P^{1}$-structure on $\overline{X}$ determines the
pair $(W, \chi)$ up to the action of $PSL_{2}(\mathbb{C})$ and vice versa. Here we show the
most basic example of $\mathbb{C}P^{1}$ -structures on $\overline{X}$ : Let $W$ be the identity map
$W:\mathbb{L}\hookrightarrow \mathbb{C}P^{1}$ and $\chi$ also be the identity homomorphism $\chi$ : $\Gammaarrow\rangle PSL_{2}(\mathbb{R})$

which induces a local coordinate function as a local inverse of the universal
covering map $\mathbb{L}arrow\overline{X}$ . We call this $\mathbb{C}P^{1}$ -structure the standard $\mathbb{C}P^{1}$ -structure
on $\overline{X}$ .

Let $P(\overline{X})=\{(W, \chi)\}/PSL_{2}(\mathbb{C})$ be the set of $\mathbb{C}P^{1}$ -structures on $\overline{X}$ . We
will parametrize $P(\overline{X})$ by holomorphic quadratic differentials on $\overline{X}$ as follows:
A holomorphic fumction $\varphi$ on $\mathbb{L}$ is called a holomorphic quadratic differential
for $\Gamma$ if it satisfies

$\varphi(\gamma(z))\gamma’(z)^{2}=\varphi(z)$

for all $z\in \mathbb{L}$ and $\gamma\in\Gamma$ . It is a lift of holomorphic quadratic differentials
on $\overline{X}=\mathbb{L}/\Gamma$ . Let $Q(\overline{X})$ be the set of holomorphic quadratic differentials for
$\Gamma$ whose hyperbolic $\sup$ norm $|| \varphi||=\sup_{z\in L}|\Im z|^{2}|\varphi(z)|$ is bounded. $Q(\overline{X})$

has a structure of complex linear space of $dim_{C}Q(\overline{C})=3g-3+n$ which is
equal to the dimension of $T(X)$ . We show that there is a canonical bijection
between $P(\overline{X})$ and $Q(\overline{X})$ which maps the standard $\mathbb{C}P^{1}$-structure to the
origin: Given a $\mathbb{C}P^{1}$-structures on $\overline{X}$ , take the Schwarzian derivative of $W$

$S_{W}:=(f’’/f’)’- \frac{1}{2}(f’’/f’)^{2}$

which is an element of $Q(\overline{X})$ . Conversely given a holomorphic quadratic
differential $\varphi$ for $\Gamma$ , solve the differential equation $S_{f}=\varphi$ on $\mathbb{L}$ . In practice
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to find the solution $f$ , we consider the following linear homogeneous ordinary
differential equation of the second order

$2\eta’’+\varphi\eta=0$

on $\mathbb{L}$ . Since $\mathbb{L}$ is simply connected, a unique solution $\eta$ exists on $\mathbb{L}$ for the
given initial data $\eta(-i)=a$ and $\eta’(-i)=b$ . Let $\eta_{1}$ and $\eta_{2}$ be the solution
defined by the conditions $\eta_{1}(-i)=0$ and $\eta_{1}’(-i)=1$ , and $\eta_{2}(-i)=1$ and
$\eta_{2}’(-i)=0$ . Then the ratio $f_{\varphi}=\eta_{1}/\eta 2$ is a locally univalent meromorphic
$f\iota mction$ on $\mathbb{L}_{7}$ the developing map associated with $\varphi$ . A direct computation
shows that $\eta(\gamma(z))(\gamma’(z))^{-\frac{1}{2}}$ also satisfies the above equation hence there is
a matrix of $SL_{2}(\mathbb{C})$ such that

$(\begin{array}{l}\eta 1(\gamma(z))(\gamma^{/}(z))^{-\frac{1}{2}}\eta 2(\gamma(z))(\gamma^{/}(z))^{-\frac{l}{2}}\end{array})=(\begin{array}{ll}a bc d\end{array})(\begin{array}{l}\eta_{1}\eta_{2}\end{array})$

for all $\gamma\in\Gamma$ . As a result we have a homomorphism $\chi_{\varphi}$ : $\Gammaarrow PSL_{2}(\mathbb{C})\}$ the
holonomy representation associated with $\varphi$ . We can also consider $\chi_{\varphi}$ as the
monodromy representation of the above differential equation.

5 Bers embedding of $T(X)$

Now we embed $T(X)$ into $Q(\overline{X})\cong \mathbb{C}^{3g-3+n}$ by means of the identification
$P(\overline{X})\cong Q(\overline{\lambda’}\cdot)$ . For each element $[\mu]\in T(X)=B_{1}(\Gamma, \mathbb{H})/\sim,$ $f^{\mu}|_{L}$ is confor-
mal and $\Gamma^{\mu}=f^{\mu}\Gamma(f^{\mu})^{-1}$ is a quasi-fuchsian group. Therefore it determines
a $\mathbb{C}\mathbb{P}^{1}$-structure on $\mathbb{L}/\Gamma$ where the developing map is $W=f^{\mu}|_{L}$ and the
holonomy representation $\chi$ : $\Gammaarrow\Gamma^{\mu}$ is defined by $\chi(\gamma)=f^{\mu}\gamma(f^{\mu})^{-1}$ . After
the identification $P(\overline{X})\cong Q(\overline{X}),$ $T(X)$ can be embedded into $Q(\overline{X})$ , which
is called the Bers embedding of $T(X)$ .

We will show not only the picture of $T(X)$ but also other $\mathbb{C}P^{1}$-structures
on $\overline{X}$ : Let $K(\overline{X})$ be the set of $\mathbb{C}P^{1}$ -structures on $\overline{X}$ whose holonomy groups
are Kleinian groups, discrete subgroups of $PSL_{2}(\mathbb{C})$ . Shiga [4] showed that
the connected component of the interior of $K(\overline{X})$ containing the origin co-
incides with $T(X)$ . Shiga and Tanigawa [5] proved that any $\mathbb{C}P^{1}$-structure
of the interior of $K(\overline{X})$ has a quasi-fuchsian holonomy representation. Ne-
hari showed that $T(X)$ is bounded in $Q(\overline{X})$ with respect to the hyperbolic
$\sup$ norm $|| \varphi||=\sup_{z\in L}|\Im z|^{2}|\varphi(z)|$ , while Tanigawa proved that $K(\overline{X})$ is
unbounded.
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6 Pictures of $T(X)$ and $K(X)$

We will show pictures of $T(X)$ and $K(X)_{7}$ all of which depends on the under-
lying complex structure of $\overline{X}$ . All picture were drawn by Yasushi Yamashita.
Figrrre 1 and figure 2 are the case that $\overline{X}$ has a hexagonal symmetry. Figure
3 and figure 4 are the case that $\overline{X}$ has a square symmetry. Black colored
region consists of $\varphi$ whose holonomy representation has an indiscrete image.
For both cases, $T(X)$ looks like an isolated planet, wliile $K(X)$ itself looks
like the galaxy: Some planets seem to bump each other... Wlien we take
$\overline{X}$ anti$- s$)$mmetric,$ $T(X)$ and $K(X)$ become distorted, which we can see in
figure 5 and $fig\iota ire6$ .

To draw these pictures we need

1. to calculate the holonomy representation $\chi_{\varphi}$ for $\varphi\in Q(\overline{X})$ , and

2. to check whether $\chi_{\varphi}(\Gamma)$ is discrete or not.

First we will explain (1). To deterinine $\chi_{\varphi}$ , we must solve $S_{f}=\varphi$ on $\mathbb{L}$ .
In general $\varphi\in Q(\overline{X})$ is highly transcendental function on $\mathbb{L}$ and it is very
difficult for us to handle it. Here is an idea: If dimcT$(X)=3g-3+n=1$ ,
then $(g, n)=(O, 4)$ or (1, 1). Take $\overline{X}=\mathbb{C}\mathbb{P}^{1}-\{0,1, \infty, \lambda\}$ , then we can find
a basis of $Q(\overline{X})$ like $Q( \overline{X})=\mathbb{C}\cdot\pi^{*}(\frac{1}{w(w-1)(w-\lambda)})$ . Even in this case, it is still
difficult to solve

$S_{f}= \pi^{*}(\frac{t}{w(w-1)(w-\lambda)})$

where $\pi$ : $\mathbb{L}arrow \mathbb{C}\mathbb{P}^{1}-\{0,1, \infty, \lambda\}$ and $t\in \mathbb{C}\cong Q(\overline{X})$ . But we can push down
the above equation onto $\overline{X}=\mathbb{C}\mathbb{P}^{1}-\{0,1, \infty, \lambda\}$

$S_{f\circ\pi^{-1}}= \frac{t}{w(w-1)(w-\lambda)}+(\frac{1}{2w^{2}(w-1)^{2}}+\frac{1}{2(w-\lambda)^{2}}+\frac{c(\lambda)}{w(w-1)(w-\lambda)})$

where $c(\lambda)$ is called the accessory parameter of $\pi:\mathbb{L}arrow\overline{X}$ .
To get the solution we take the ratio of two linearly independent solution

of
$2y”+( \frac{1}{2w^{2}(w-1)^{2}}+\frac{1}{2(w-\lambda)^{2}}+\frac{t+c(\lambda)}{w(w-1)(w-\lambda)})y=0$

and calculate the monodromy group of this equation with respect to closed
paths of $\pi_{1}(\overline{X})\cong F_{3}$ . Since the above ordinary differential equation has
rational coefficients on $\mathbb{C}P^{1}$ , we can use computer to get the image of 3
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generators of $\pi_{1}(\overline{X})$ in $PSL_{2}(\mathbb{C})$ numerically. Here we remark that to draw
the picture of $K(X)$ up to parallel translation, we don’t need to determine
the accessory paraineter $c(\lambda)$ in practice.

For (2), we apply Shimizu lemma to check whether $\chi_{\varphi}(\Gamma)$ is indiscrete,
and Poincar\’e theorem to construct the Ford fumdamental domain to check
whether $\chi_{\varphi}(\Gamma)$ is discrete. This part is so called Jorgensen theory and has
been proved recently by Akiyoshi, Sakuma, Wada and Yamashita $[1|$ .
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Figure 1: $T(X)$ for hexagonal symmetry

Figure 2: $K(X)$ for hexagonal symmetry
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Figure 3: $T(X)$ for square syimnetry

Figure 4: $K(X)$ for square symmetry
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$Fi_{b^{1}}i_{-}ire5$ : distorted $T(X)$

$Fi_{b^{J}}iire6$ : distorted $K(X)$
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