ON INJECTIVITY OF TAME MAPPINGS

TOSHIZUMI FUKUI, KRZYSZTOF KURDYKA AND LAURENTIU PAUNESCU

In this short note, we give a criterion for the injectivity of tame mappings. This was part of the talk given by the third named author at the second Australian-Japanese meeting on real and complex singularities, held in Kyoto in November 2007. For a more comprehensive study and also for a list of relevant articles on this topic, we send the reader to our paper [1].

Let U be a convex open set of \mathbb{R}^m and $f: U \to \mathbb{R}^n$ a tame map. Let B denote the set where f is not C^1 , and let \widehat{B} denote the set where f is not a C^1 -immersion. For a subset V of U we put

 $\mathcal{C}(f,V) = ext{the convex hull of } \{df(x) : x \in V - B\}.$

We denote its closure by $\overline{\mathcal{C}}(f, V)$, and define $\mathcal{CC}(f, V)$ by

 $\mathcal{CC}(f, V) =$ the cone of $\mathcal{C}(f, V)$ with vertex 0.

We denote its closure by $\overline{\mathcal{CC}}(f, V)$. We will also use the following notations, $\mathcal{C}(f) = \mathcal{C}(f, U)$, $\mathcal{CC}(f) = \mathcal{CC}(f, U)$, etc., for shortness.

Take $x, x' \in U$, $x \neq x'$, and put $v = \frac{x'-x}{|x'-x|}$. We denote the segment connecting x and x' by [x, x']. If f is tame, then we have the following well known facts,

- $[x, x'] \cap \widehat{B}$ is a finite set, or
- a sub-segment of [x, x'] is subset of \widehat{B} .

Setting g(t) = f(t + tv), we have

$$g'(t) = df(x + tv)v, \quad \text{whenever } x + tv
ot\in B.$$

Let Σ denote the set of singular matrices and Σ_v denote the set of singular matrices annihilating v.

Theorem. A tame map $f: U \to \mathbb{R}^n$ is injective, if the following conditions hold:

- $\mathcal{C}(f, U \widehat{B})$ does not contain singular matrices.
- If \widehat{B} contains a segment with direction v, then f is not constant on this segment, and Σ_v is an extremal set of $\overline{CC}(f)$.

It is not hard to see that the theorem follows from Lemmas 1 and 3 below. Lemma 1. Assume that $[x, x'] \cap \widehat{B}$ is a finite set. If $\mathcal{C}(f, U - \widehat{B})$ does not contain singular matrices, then $f(x) \neq f(x')$.

Proof. By supposition, the set $\widehat{C} = \{t \in [0,1] : x + tv \in \widehat{B}\}$ is finite. If $\mathcal{C}(f, U - \widehat{B}) \cap \Sigma = \emptyset$, then $\mathcal{C}(f, [x, x'] - \widehat{B}) \cap \Sigma_v = \emptyset$. Then we obtain that

$$\mathcal{C}(g,[0,1]-\widehat{C})=\mathcal{C}(f,[x,x']-\widehat{B})\cdot v\not\supseteq 0.$$

We employ the following lemma to complete the proof.

Lemma 2. Let $g: [a, b] \to \mathbb{R}^n$ be a tame map and let \widehat{C} be a finite subset of [a, b]. If $\mathcal{C}(g, [a, b] - \widehat{C})$ does not contain 0, then $g(a) \neq g(b)$.

Proof. The proof is similar to the proof of Lemma 5.3, in [1], and we omit it. **Lemma 3.** Assume that $[x, x'] \cap \widehat{B}$ contains a sub-segment with direction v. If Σ_v is an extremal set of the closure of $\mathcal{CC}(f)$, then $f(x) \neq f(x')$, or $f|_{[x,x']}$ is constant. *Proof.* Since f is tame, we may choose a vector u such that

$$C_s = \{t \in [0,1] : x + tv + su \in B\}$$

are finite sets when $0 < s < \varepsilon$. Set $g_s(t) = f(x + tv + su)$. We remark that

$$g'_s(t) \in \mathcal{C}(g_s, [0, 1] - C_s) = \mathcal{C}(f, [x + su, x' + su] - B) \cdot v \subset \mathcal{C}(f) \cdot v.$$

We assume that $g_0(t)$ is not constant. This means that $g'_0(t)$ is not zero on some subinterval of [0, 1]. We then obtain that $g_s(t)$ is not constant for sufficiently small s > 0, and $\langle w, g'_s(t) \rangle > 0$ for some $t \in [0, 1]$. We thus have

$$\langle w, g_s(1)
angle - \langle w, g_s(0)
angle = \int_0^1 \langle w, g_s'(t)
angle dt > 0.$$

When $s \to 0$, we obtain

$$\langle w, g_0(1) \rangle - \langle w, g_0(0) \rangle = \int_0^1 \langle w, g_0'(t) \rangle dt \ge 0.$$

Assuming that the equality holds, we will have that $\langle w, g'_0(t) \rangle = 0$ for almost all t. We will conclude that $g'_0(t) = 0$, which is a contradiction. By Lemma 4.3 in [1], we have

(*)
$$g'_0(t) = \lim_{s \to 0} g'_s(t) = \lim_{s \to 0} df(x + tv + su) \cdot v$$

and this is in the closure of $C(f) \cdot v$. Remark that df(x + tv + su) goes to infinity, even though the right hand side of (*) stays in a compact set.

We now remark that the closure of $\mathcal{C}(f) \cdot v$ is the image of the closure of the cone of $\mathcal{C}(f)$ by the map defined by $A \mapsto Av$, that is,

$$\overline{\mathcal{C}(f)\cdot v} = \overline{\mathcal{C}\mathcal{C}}(f)\cdot v.$$

Since Σ_v is an extremal set of $\overline{CC}(f)$, 0 is an extremal point of $\overline{C(f)} \cdot v$. This means that $\langle w, z \rangle \geq 0$ for any $z \in \overline{C}(f) \cdot v$ and the equality holds only if z = 0. Since $\langle w, g'_0(t) \rangle = 0$ for almost all t, we conclude that $g'_0(t) = 0$ for almost all t. \Box **Remark.** If f is locally Lipschitz, one can replace the assumption in Lemma 3 by the following condition:

 Σ_v is an extremal set of the closure of $\mathcal{CC}(f)$ (since $\mathcal{C}(f)$ is a bounded set).

REFERENCES

[1] T. Fukui, K. Kurdyka and L. Paunescu, Tame nonsmooth inverse mapping theorems, http://front.math.ucdavis.edu/0712.2476. DEPARTMENT OF MATHEMATICS, SAITAMA UNIVERSITY, SAITAMA, JAPAN E-mail address: tfukui@rimath.saitama.u-ac.jp

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE SAVOIE, CHAMBERY, FRANCE E-mail address: kurdyka@univ-savoie.fr

School of Mathematics and Statistics, The University of Sydney, Sydney, Australia

E-mail address: laurent@maths.usyd.edu.au