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We shall study Koenderink type theorems for surfaces with singularities.
We state theia on the terminology of wave fronts and singular curvature
measure of cuspidal cdges.

1 Introduction

In 1984 and 1990, J. J. Koenderink showed theorems that relates to how one
actually sees a surface. Let $f$ : $M^{2}arrow R^{3}$ be a non-singular smooth surface in
Euclidean three-space $R^{3},$ $let|\pi$ : $R^{3}arrow P$ be the orthogonal projection onto a
plane $i^{2}$ and let $\pi_{o}$ : $R^{3}arrow S$ be the central projection onto a unit sphere centcrcd
$at_{T}o$ . We call $f(S(\pi\circ f))$ $($ resp. $f(S(\pi_{o}\circ f)))$ the rim of $n_{J’}I$ as viewed by $\pi$ (resp.
$\pi_{o})$ and $\pi\circ f(S(\pi\circ f))$ $($ resp. $\pi\circ f(S(\pi_{o}\circ f)))$ apparent contour of $f(M)$ as viewed
by $\pi$ (resp. $\pi_{o}$ ). Koenderink showed the following:

Theorem 1.1 ([8]). Suppose $p\in S(\pi\circ f)$ . Let $\kappa_{1}$ be the curvature of the plane
curve $\pi(S(\pi of))f$ let $/\{;_{2}$ be the curvature of the normal section of $f(M)$ at $p$ by
the plane that contains the kemel of $\pi$ and let $K$ be the Gaussian curvature of
$f(A/I)$ . Then

$K=\kappa_{1}\kappa_{2}$

holds at $p$ .
Let $\kappa_{3}$ be the geodesic curvature of the $cu7’ UC\pi_{\rho}(S(\pi_{p}\circ f))$ and let $d$ be the

distance of $pf_{7}\cdot omo$ . Then
$K=\kappa_{3}\kappa_{2}/d$

holds at $p$ .

Quite independently this was considered by T. GafTney and M. Ruas [4]. For
a unified approach, see J. W. Bruce and P. J. Giblin [2]. See also [7]. If $f$ has a
singular point, generically the Gaussian curvature is unbounded. Thus this type
theorem does not hold at the singular point of $f$ . Recently, the author, M. Ume-
hara and K. Yamada showed if $f$ be a front, then the Gaussian curvature form
Kd\^A is bounded and introduce the singular $cun$)$ature$ function on cuspidal edge
singularities of fronts [9]. Using these notions, wc can extend the above theorem
と火 S follows:
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Theorem 1.2. $Lctf$ : $Marrow R^{3}$ be a smooth map, $\gamma$ : $Iarrow M$ be a cuspidal
edge, $\acute{\gamma}=f\circ\gamma$ and $p\in{\rm Im}\gamma$ . Set $\xi_{p}=\nu_{p}\cross\hat{\gamma}’/|\hat{\gamma}’|$ and $v_{\theta}=\cos\theta\xi_{p}+\sin\theta\nu_{p}$ .

Let $\pi_{\theta}$ be the orthonormal projection with respect to $v_{\theta}$ Suppose that $P$ is a plane
normal to $\hat{\gamma}’/|\hat{\gamma}^{l}|$ and $\pi$ : $R^{3}arrow P$ is the orthonormal projection. Let $\kappa_{1}$ be the
curvature of the plane curve $\pi\circ\hat{\gamma}$ , let $\kappa_{2}$ be the curvature of the normal section of
$f(11f)$ at $p$ by the plane P. If. $\theta\neq 0$ then

$Kd \text{\’{A}}=\frac{1}{\cos\theta}(\sin\theta\kappa_{s}-\kappa_{1})\kappa_{2}du\wedge dv$ (1)

holds at $p$ , where $\kappa_{s}$ is the singular curvature of cuspidal edge defined in Section 2.

Figure 1: Projection of a front into the plane

We also have the following Koenderink type theorem:

Corollary 1.3. In the above setting,

$Kd \text{\^{A}}=\frac{1}{\cos\theta}(\sin\theta\kappa_{s}-\kappa_{g}/d)\kappa_{2}du\wedge dv$ (2)

holds at $p$ ,

2 Cuspidal edges and the singular curvature

In this section, we review the notion of singular curvature given in [9]. A map
$f$ : $R^{2}arrow R^{3}$ is called a $(\uparrow l)ave)$ front if it is the projection of a Legendrian
immersion

$L_{f}:R^{2}arrow T_{1}^{*}R^{3}$
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into the unit cotangcrit bundlc and $f$ : $R^{2}arrow R^{3}$ is called a frontal if it is thc
projection of an isotropic map into the unit cotangent bundle. Cuspidal cross cap
is not a front but a frontal.

Let $(U;u, v)$ be a domain in $R^{2}$ and $f$ : $Uarrow R^{3}$ a front. Identifying the unit
cotangent bundle with the unit tangent bundle $T_{1}R^{3}\sim R^{3}\cross S^{2}$ , there exists a unit
vector field $\nu$ : $Uarrow S^{2}$ such that the Legendrian lift $L_{f}$ is expressed as $(f, \nu)$ .
Since $L_{f}=(f, \nu)$ is Legendrian,

$\langle df,$ $\nu\rangle=0$ and $\langle\nu,$ $\nu\rangle=1$

hold, where $\langle,$ $\rangle$ is the $st_{c}^{r}\iota nd_{c}\backslash rd$ Euclidcan inner product. Then there exists a
function $\lambda$ such that

$f_{u}(u, v)\cross f_{v}(u, v)=\lambda(u, v)\nu(u, v)$

where $\cross$ denotes the exterior product in $R^{3}$ and $f_{u}=\partial f/\partial u$ , for example. Obvi-
ously, $(u, v)\in U$ is a singular point of $f$ if and only if $\lambda(u, v)=0$ .

Definition 2.1. A singular point $p\in R^{2}$ of a front $f$ : $R^{2}arrow R^{3}$ is non-degenerate
if $d\lambda\neq 0$ holds $at_{1}p$ .

By the implicit function theorem, for a non-degenerate singular point $p$ , the sin-
gular set is parameterized by a smooth curve $c:(–\vee\wedge, \epsilon)arrow R^{2}$ in a neighborhood
of $p$ . Since $p$ is non-degenerate, any $c(t)$ is non-degenerate for sufficiently small
$t$ . Then there exists a unique direction $\eta(t)\in T_{c(t)}U$ up to scalar multiplication
such that $df(\eta(t))=0$ for each $t$ . We call $c’(t)$ the singular direction and $\eta(t)$ the
null-direction. For further details in these notation, see [9].

It ha.$s$ been known the generic singularitics of fronts $\int:R^{2}arrow R^{3}$ arc cuspidal
edges arid swallowtails [1]. In [6] it has been shown the following useful criteria for
cuspidal edges:

Proposition 2.2 ([6],Proposition 1.3). For a non-degenerate front $f$ : $R^{2}arrow$

$R^{3}$ with singularity at $0$ . $f$ at $0$ is $\mathcal{A}$ -equivalent to the cuspidal edge if and only if
dct $(c‘$ (0) $, \eta(0))\neq 0$ .

The generic singularities of one-parameter fronts are cuspidaJ lips, cuspidal
beaks, butterfly and $D_{4}^{\pm}$ singularities([1]). Useful criteria for cuspidal lips and
cuspidal beaks are given in [5].

Moreover, a useful criteria of cuspidal cross cap is given in [3]. Using this
criteria, singularities of $m_{C}^{r}1xima1$ surfaces in the Minkowski space and constant
mean curvature surfaces in tlte de Sitter space $al\cdot e$ investigated([3]).
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Figure 2: Cuspidal edge and swallowtail

Figure 3: Cuspidal lips and cuspidal beaks

Recently, criteria for $\mathcal{A}_{k}$-sirigularities of fronts in general dimensions are ob-
tained ([10]).

In [9], we define the singular curvature on cuspidal edge. We suppose that a
singular curve $\gamma(/,)$ (Il $R^{2}$ consists of cuspidal edges. Then we can choose the null
vector fields $\eta(t)$ such that $(\gamma’(t),$ $\eta(t))$ is a positively oriented frame field along $\gamma$ .
We then define the singular curvature function along $\gamma(t)$ as follows:

$\kappa_{s}(t):=sgn(d\lambda(\eta))\frac{\det(\hat{\gamma}’(t),\hat{\gamma}^{l/}(t),\nu)}{|\hat{\gamma}’(t)|^{3}}$ . (3)

Here, we denote $\hat{\gamma}(t)=f(\gamma(t))$ . For later computation, it is convenient to take a
local coordinate system $(u, v)$ centered at a given non-degenerate singular poiiit
$p\in M^{2}$ as follows:

$\bullet$ thc coordinate system $(u_{t}v)$ is compatible with the orientation of $M^{2_{J}}$

$\bullet$ the u-axis is the singular curve, and

$\bullet$ $tIiere$ are no singular poirits other than the u-axis.
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Figure 4: Cuspidal cross cap

We call such a coordinate system $(u, v)$ an adopted coordinate system with respect
to $p$ . We take an adopted coordinate system $(u, v)$ and write the null vector field
$\eta(t)$ as

$\eta(t)=a(t)\frac{\partial}{\partial u}+e(t)\frac{\partial}{\partial v}$ , (4)

where $a(t)$ and $e(t)$ are $C^{\infty}$-functions. Since $(\gamma’, \eta)$ is a positive frame, we have
$e(t)>0$ . Here,

$\lambda_{\tau\iota}=0$ and $\lambda_{v}\neq 0$ (on the u-axis) (5)

hold, and then $d\lambda(\eta(t))=e(t)\lambda_{v}$ . In particular, we have

sgn $(d\lambda(\eta))=$ sgn $(\lambda_{v})=\{\begin{array}{ll}+1 if the left- hand side of \gamma is M_{+},-1 if the left- hand side of \gamma is M_{-}.\end{array}$ (6)

So we have the following expression: in an adopted coordinate system $(u, v)$ ,

$\kappa_{s}(u):=$ sgn $( \lambda_{v})\frac{\mu_{g}(f_{u}.f_{uu},\nu)}{|f_{u}|^{3}}$ , (7)

where $f_{uu}=\partial^{2}f/\partial u^{2}$ . Difference between positivity and negativity of the singular
curvature relates the following two types of cuspidal edges. The left-hand figure in
Figure 5 is positively curved and the right-hand figure is negatively curved.

Now we set

$d\hat{A}$
$:=f^{*}(\iota_{\nu}\mu_{g})=\lambda(u, v)du\wedge dv$ (S)

called the signed area form.
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Figure 5: Positively and negatively curved cuspidal edges.

Proposition 2.3 ([9]). Let $f:R^{2}arrow R^{3}$ be a front, and $K$ the Gaussian cur-
vature of $f$ which is defined on the set of regular points of $f$ . Then $Kd\hat{A}$ can be
continuously extended as a globally defined 2-form on $R^{2}$ , where $d\hat{A}$ is the signed
area form as in (8).

This also holds for plane curves. Let $c$ : $Iarrow R^{2}$ be a front, and $\kappa$ the
curvature of $c$ . By the same method one can show that $\kappa ds$ can be continuously
extend as a globally defined l-form on $I$ , where $ds$ is the arclength measure. Using
(7) and direct calculations, we have Theorem 1.2 and Corollary 1.3. To investigate
singularities on projections of fronts arid their curvatures and topologies are our
future problems.
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