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Abstract

In this paper, we present discrete fixed point theorems. They are based on mono-

tonicity of the mapping. We apply them to a non-cooperative n-person game and give

an existence theorem of a Nash equilibrium of pure strategies. As a special case, we

consider bimatrix games.

1 Introduction

Fixed point theorems are powerful tools not only in mathematics but also in economics.

Existence theorem of Nash equilibrium is one of the most important applications of fixed

point theorems. The aims of this paper are to provide discrete fixed point theorems and to

apply them to a non-cooperative n-person game.

There are three types of discrete fixed point theorems. In 1955, Tarski [9] proved a lattice-

theoretical fixed point theorem. It asserts that any increasing mapping defined on a complete

lattice has a fixed point. Recently, Shih and Dong [4] proved that a mapping from the n-

dimensional hypercube $\{0,1\}^{n}$ to itself has the property that all the Boolean eigenvalues of

the discrete Jacobian matrix of each element of the hypercube are zero, then it has a unique

fixed point. Their result is an answer to a combinatorial version of the Jacobian conjecture.

Further, Richard [8] extended Shih-Dong’s fixed point theorem to the product of $n$ finite

intervals of integers of cardinality $\geq 2$ . On the other hand, Iimura-Murota-Tamura [2] gave

a fixed point on an integrally convex set by using Brower’s fixed point theorem, and Yang

[10] obtained some extensions, see Section 4 for details. Our discrete fixed point theorems

are of the first type, and based on the following two ideas. (a) The base set $V$ is finite. (b)

The mapping $f$ : $Varrow V$ reduces the area of candidates for fixed points. Our theorems need

no convexity assumption.
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This paper is organized as follows. In Section 2, we give discrete fixed point theorems. In

Section 3, we apply our fixed point theorems to a class of non-cooperative games and obtain

some existence theorems of a Nash equilibrium of pure strategies. In Section 4, we compare

our discrete fixed point theorems to conventional ones.

Throughout this paper, $(V, =\prec)$ is a partially ordered set and $f$ : $Varrow V$ is a nonempty

set-valued mapping. The symbol $x\preceq y$ means $x=\prec y$ and $x\neq y$ . For any $x\in \mathbb{Z}^{n},$ $x_{i}$ denotes

the i-th component of $x$ . We denote the component-wise order by $\leqq$ . Further, $x\leq y$ means

$x\leqq y$ and $x\neq y$ .

2 Discrete fixed point theorems

Theorem 2.1 Assume that there exist $x^{0}\in V$ and $x^{1}\in f(x^{0})$ such that $x^{0}=\prec x^{1}$ and

$\{x\in V;x^{0}=\prec x\}$ is finite. Further assume that for any $x\in V$ and $y\in f(x)$ ,

(1) $x\preceq y\Rightarrow\exists z\in f(y)s.t$. $y=\prec z$ .

Then, $f$ has a fixed point $x^{*}$ , that is, $x^{*}\in f(x^{*})$ .

We can easily weaken the assumptions of Theorem 2.1 as follows.

Theorem 2.2 Assume that there vists a sequence $\{x^{m}\}_{m\geq 0}$ in $V$ such that $x^{m}\prec x^{m+1}=\in$

$f(x^{m})$ for any $m\geq 0$ and $\{x\in V;x^{0\prec}=x\}$ is finite. Then, $f$ has a fixed point $x^{*}\in f(x^{*})$ .

Theorem 2.3 below shows a way to find $x^{0}$ and $x^{1}$ such that $x^{0}\prec x^{1}=\in f(x^{0})$ in the case

where $=\prec$ is the component-wise order $\leqq$ or $\geqq$ and $V$ is a finite set.

Deflnition 2.1 For any $k\in\{1, \ldots, n\}$ and $x\in \mathbb{Z}^{n}$ , we denote $K:=\{1, \ldots, k\},$ $XK;=$

$(x_{i})_{i\in K},$ $K+1$ $:=\{1, \ldots, k+1\}$ , and $x_{K+1}$ $:=(x_{i})_{i\in K+1}$ . We call $x\in V$ a fiaed point of $f$

$w.r.t$. $\mathbb{Z}^{k}$ if $x_{K}\in f_{K}(x):=\{yK;y\in f(x)\}$ .

Theorem 2.3 Let $V$ be a finite set in $\mathbb{Z}^{n}$ , and assume that for any $k\in\{1, \ldots,n\},$ $x\in V$

and $y\in f(x),$ $x_{K}\leq(resp. \geq)yK\Rightarrow\exists z\in f(y)s.t$ . $yK\leqq(resp. \geqq)zK$ . Then, $f$ has a fixed
point $x^{*}\in f(x^{*})$ .
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3 Nash equilibrium of pure strategies

As an application of our discrete fixed point theorems, we shall present a class of non-

cooperative games that have a Nash equilibrium of pure strategies. We consider the following

non-cooperative n-person game $G=(N, \{S_{i}\}_{i\in N}, \{p_{i}\}_{i\in N});N$ $:=\{1, \ldots, n\}$ is the set of all

players. For any $i\in N$ , Si denotes the set of player $i$ ’s strategies. Its element is denoted by

si. We assume that each Si is a finite subset of $\mathbb{Z}$ . $pi$ : $S:= \prod_{j=1}^{n}S_{j}arrow \mathbb{R}$ denotes the payoff

function of player $i$ .

Furthermore, we use the following notation in this section. $s_{-i}$ $:=$ $(s_{1},$
$\ldots$ , Si-l, $s_{i+1},$ $\ldots,$

$s_{n})$ .

$S$ is equipped with a signed component-wise order, that is, $N$ is divided into two subsets

(possibly empty) $N_{+}$ and $N_{-},$ $\epsilon_{j}=\pm 1$ are allocated to $j\in N_{+}$ and $j\in N_{-}$ , respectively,

and $s\prec=t$ is defined by $\epsilon_{j}s_{j}\leqq\epsilon_{j}t_{j}$ for any $j\in N.$ $S_{-i}= \prod_{j\neq i}S_{j}$ is also equipped with

the signed component-wise order. For any given $s_{-i}\in S_{-i}$ , we denote by $f_{i}(s_{-i})$ the set

of best responses of player $i$ , that is, $f_{i}(s_{-i})$ $:= \{s_{i}\in S_{i};pt(s_{\{}, s_{-\iota})=\max_{t_{i}\in S\iota}p_{i}(t_{i}, s_{-i})\}$ .

$f(s)=f_{1}(s_{-1})x\cdots\cross f_{n}(s_{-n})$ for any $s=(s_{1}, \ldots, s_{n})$ .

AJJ n-tuple $s^{*}\in S$ is called a Nash equilibrium if $s^{*}\in f(s^{*})$ . As is well-known, Nash’s

theorem asserts that $G$ has a Nash equilibrium if we allow mixed strategies. However pure

strategies are not enough to guarantee a Nash equilibrium. We have to impose an additional

assumption to get a Nash equilibriuun of pure strategies. Our assumption is monotonicity.

Deflnition 3.1 We say a game $G$ monotone if, for any $i\in N,$ $s_{-i}^{0},$ $s_{-i}^{1}\in S_{-i}$ with $s_{-i}^{0}\preceq s_{-i}^{1}$

and for any $t_{i}^{1}\in f_{i}(s_{-i}^{0})$ , there enists $t_{i}^{2}\in f_{i}(s_{-i}^{1})$ such that $\epsilon_{i}t_{\iota}i\leqq\epsilon_{i}t_{i}^{2}$ .

Theorem 3.1 Any monotone game $G$ has a Nash equilibrium of pure strategies.

As a special case, let us consider the following bimatrix game. $A=(a_{ij})$ is a payoff

matrix of player 1 (Pl), that is, $p_{i}(i,j)=a_{ij}$ . $B=(b_{ij})$ is a payoff matrix of player 2

(P2), that is, $p_{2}(i,j)=b_{\dot{*}j}$ . $S_{1}$ $:=\{1, \ldots,m_{1}\}$ is the set of pure strategies of Pl, where

$m_{1}\in \mathbb{N}$ . $S_{2}$ $:=\{1, \ldots, m_{2}\}$ is the set of pure strategies of P2, where $m_{2}\in \mathbb{N}$ . For any $j\in S_{2}$ ,

$I(j)$ $:= \{i^{*}\in S_{1};a_{ij}=\max_{i\in S_{1}}a_{ij}\}$ is the set of best responses of Pl. For any $i\in Si,$

$J(i)$ $:= \{j^{*}\in S_{2};b_{ij^{r}}=\max_{j\in S_{2}}b_{ij}\}$ is the set of best responses of P2. $f(i,j)$ $:=I(j)xJ(i)$

denotes the set of best responses of $(i,j)\in S_{1}\cross S_{2}$ . A pair $(i^{*},j^{*})$ is a Nash equilibrium of

pure strategies if $(i^{*},j^{*})\in f(i", j^{*})$ .
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Then Definition 3.1 reduces to Definition 3.2 below.

Definition 3.2 We say payoff matrix A monotone if for any $j^{0},j^{1}\in S_{2}$ such that $\epsilon_{2}j^{0}<$

$\epsilon_{2}j^{1}$ and for any $i^{1}\in I(j^{0})$ , there exists $i^{2}\in I(j^{1})$ such that $\epsilon_{1}i^{1}\leqq\epsilon_{1}i^{2}$ . Also, we say payoff

matrix $B$ monotone if for any $i^{0},$ $i^{1}$ such that $\epsilon_{1}i^{0}<\epsilon_{1}i^{1}$ and for any $j^{1}\in J(i^{0})$ , there $e$ vists

$j^{2}\in J(i^{1})$ such that $\epsilon_{2}j^{1}\leqq\epsilon_{2}j^{2}$ . When both $A$ and $B$ are monotone, we say the bimatriz

game monotone.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.1 Any monotone bimatrix game has a Nash equilibrium of pure strategies.

Example 3.1 The following matrices are monotone for $(\epsilon_{1}, \epsilon_{2})=(1,1)$ , where framed num-

bers correspond to best responses, and circled numbers correspond to the Nash equilibrium.

$A=($ , $B^{s^{l}}.=(_{\frac{\fbox{ }263\fbox{ }6\fbox{}53\fbox{ }54}{1\fbox{}\fbox{ }2}}^{\frac} \frac)$ .

Moreover, since $(i,j)=(3,3)$ belongs to the set of best responses to itself, (3, 3) is a Nash

equilibrium of pure strategies.

Remark 3.1 Suppose that both players test whether each payoff matrix is monotone, re-

spectively. If they answer “yes”, then the matrix game has a Nash equilibrium of pure

strategies. They don’t need to answer the set of their best responses. This is an advantage

of Theorem 3.1.

Example 3.2 The following matrices are monotone for $(\epsilon_{1}, \epsilon_{2})=(1, -1)$ .

$A=($ , $B=( \frac\frac{45\fbox{}23\fbox{}}{7\fbox{}6}1$

Therefore, the matrix game has a Nash equilibrium of pure strategies (2, 3).
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We can weaken monotonicity so that we can deal with Example 3.3 below.

Deflnition 3.3 We say payoff $mat\dot{m}$ A sequentially monotone if there eststs a sequence of
best responses $j^{k}\in J(k)$ such that $\epsilon_{2}j^{k}\leqq\epsilon_{2}j^{k+1}$ for any $k=1,$ $\ldots,$ $m_{1}-1$ . We say payoff

matrix $B$ sequentially monotone if there ecists a sequence of best responses $i^{k}\in I(k)$ such

that $\epsilon_{1}i^{k}\leqq\epsilon_{1}i^{k+1}$ for any $k=1,$ $\ldots,$ $m_{2}-1$ . When both $A$ and $B$ are sequentidly monotone,

we say the bimatrix game sequentidly monotone.

It is clear that any monotone bimatrix game is sequentially monotone.

Corollary 3.2 Any sequentially monotone bimatrix game has a Nash equdibrium of pure

$st$rategies.

Example 3.3 Although matrix $A$ below is not monotone for $(\epsilon_{1}, \epsilon_{2})=(1,1)$ , it is sequen-

tially monotone. In fact, asterisked numbers give a sequence of best responses in Definition

33.

$A=($ $26$

1

� $*$

3

2

$85)$ , $B=(_{\frac{\fbox{ }23\fbox{ }6\fbox{}535\bigotimes_{8^{*}}^{6}\fbox{}4}{1\fbox{ }\fbox{ }2}}^{\frac} \frac)$ .

4 Concluding remarks

In this section, we compare our results to others. Throughout this section, $V$ is a subset of

$\mathbb{Z}^{n}$ and $f$ : $Varrow V$ is a nonempty set-valued mapping. $N(y)$ $:=\{z\in \mathbb{Z}^{n};\lfloor y\rfloor\leqq z\leqq\lceil y\rceil\}$

for all $y\in \mathbb{R}^{n}$ , where $\lceil\cdot\rceil$ and $\lfloor\cdot\rfloor$ are rounding up and rounding down to the nearest integer,

respectively. It is called the integral neighbourhood. $||y||_{2}$ $:=( \sum_{i=1}^{n}y_{i}^{2})^{1/2}$ and $||y||_{\infty}$ $;=$

$\max\{|y_{i}|;i\in N\}$ for $y\in \mathbb{R}^{n}$ . For $x^{1},x^{2}\in \mathbb{Z}^{n},$ $x^{1}\simeq x^{2}$ is defined by $||x^{1}-x^{2}||_{\infty}\leqq 1$ . We

say $V$ integrally convex if $y\in$ co $V$ implies $y\in$ co$(V\cap N(y))$ , where co $V$ denotes the convex

hull of $V$ , see e.g. [2] [3]. For each $x\in V,$ $\pi_{f}(x)$ denotes the projection of $x$ onto co $f(x)$ , that

is, $|| \pi_{f}(x)-x||_{2}=\min_{y\in c\circ f(x)}||y-x||_{2}$ . We say $f$ direction preserving if for any $x,$ $y\in V$

with $x\simeq y$

(2) $x_{i}<(\pi f(x))_{i}\Rightarrow yi\leqq(\pi f(y))_{i}$ $\forall i=1,2,$ $\ldots,n$ .
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Theorem 4.1 ([2, Theorem 2]) Let $V$ be a nonempty finite integmlly convex set. If $f$ is a

nonempty- and discretely convex-valued direction preserving set-valued mapping, then $f$ has

a fixed point.

For the sake of simplicity, we consider the case where $f$ is single-valued. Then, since

$\pi_{f}(x)=f(x),$ (2) reduces to

(3) $x_{i}<f_{i}(x)\Rightarrow y_{i}\leqq f_{i}(y)$ $\forall i=1,2,$
$\ldots,$

$n$ $\forall y\simeq x$ .

On the other hand, (.1) in Theorem 2.1 reduces to

(4) $x\leq f(x)\Rightarrow f(x)\leqq f(f(x))$ .

For example, when $V$ consists of sixteen points as in Figures 1 and 2, it is integrally convex.

In order to apply Theorem 4.1, we have to test (3) for eight solid points in Figure 1. On the

other hands, when we apply our results, it suffices to test (4) only for one point in Figure 2.

$\circ$ $O$ $O$ $O$ $O$ $\circ$ $O$ $O$

$\bullet$ $0$

$\bullet$ $O$

$\bullet$ $\bullet$ $\bullet$ $O$ $O$ $\circ$ $\circ$ $O$

Figure 1: Figure 2:

Another advantage is that we don’t need any convexity assumption on $V$ . Yang [10] extended

Theorem 4.1 by introducing a local gross direction preserving correspondence, which is weaker

than direction preserving correspondence. However, his theorems also need information on

eight points and convexity assumption, see [10, Definition 4.6, Theorem 3.12] for details.

Tarski gave an excellent fixed point theorem on a complete lattice, that is, every subset

of the lattice has a least upper bound and a greatest lower bound.

Theorem 4.2 ([9, Theorem 1]) Let $f$ be an increasing mapping on a complete lattice to

itsdf, that is, $x=\prec y$ implies $f(y)=\prec f(y)$ . Then $f$ has a fixed point.
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Its advantage is that $V$ can be infinite. However, when $V$ is finite, the assumption on the

lattice seems restrictive. For example, when $V$ is equipped with the component-wise order

and has a hole as in Figure 3, it is not a complete lattice. Indeed, since gray points are upper

bounds of set $U$ in Figure 3, $U$ has no least upper bound. Further, since $f$ is not a set-valued

O $O$ $\circ$ $O$

$0$ $0$

$\circ$ $O$

Figure 3: This set is not a complete lattice since $U$ has no least upper bound.

mapping, even if one applies Theorem 4.2 to non-cooperative games, Examples 3.1, 3.2, and

3.3 are outside of his scope.

Shih-Dong’s fixed point theorem is a remarkable result. Since the base set of their theorem

is the Boolean algebra $\{0,1\}^{n}$ , there seems no direct relationship between their fixed point

theorem and ours. Finally, we close this paper with introducing Shih-Lee’s formulation [5] [6].

They provided Lefschetz type fixed points theorem for simplex mapping on some simplex not

using homology theory, see [5, Theorem 2]. Moreover, they apply similar idea of $[5|$ to prove

existenoe of discretized economic equilibrium, see $[$6, Theorem 5$]$ .
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