
A SURVEY ON FIXED POINT THEOREMS
IN GENERALIZED CONVEX SPACES, II

SEHIE PARK

ABSTRACT. In our previous survey $[P12|$ , we reviewed some fixed point theorems which
have appeared in our previous works. We follow this line of survey on various types of
generalized convex spaces and on recently obtained results in [P14] and others. We add a
new unified fixed point theorem.

1. Introduction

Since we introduced the concept of generalized convex spaces (simply, G-convex
spaces) in 1993, there have appeared a large number of works contributing mainly
to the KKM theory and equilibria theory on those spaces. In our previous survey [P12],
which will be called Part I, we reviewed some fixed point theorems which have appeared
mainly in our previous works on G-convex spaces.

In a recent work $[P14|$ , we introduced new concepts of admissibility (in the sense of
Klee) and of Klee approximability for subsets of G-convex uniform spaces and showed
that any compact closed multimap in the class $\mathfrak{B}$ from an admissible G-convex space
into itself has a fixed point. This new theorem contains a large number of known results
on topological vector spaces or on various subclasses of the class of admissible G-convex
spaces.

In the present survey, we review the contents of [P14] and other new results. In fact,
we review various types of G-convex uniform spaces such as LG-spaces, locally G-convex
spaces, spaces of the Zima-Had\v{z}i6 type, G-convex $\Phi$-spaces, and admissible G-convex
spaces. Moreover, we obtain a new general fixed point theorem which extends the main
result of [P14] and its various consequences. Consequently, many known fixed point
theorems for multimaps on topological vector spaces are extended to corresponding
ones on G-convex spaces.

We follow the terminology and notations in Part I. Especially, all topological spaces
are not necessarily Hausdorff unless explicitly stated otherwise, a t.v.$s$ . means a topo-
logical vector space, and co denotes the convex hull. Multimaps are called simply maps.
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2. Generalized convex spaces

Definition. A generalized convex space or a G-convex space $(X, D;\Gamma)$ consists of a topo-
logical space $X$ and a nonempty set $D$ such that for each $A\in\langle D\rangle$ with the cardinality
$|A|=n+1$ , there exist a subset $\Gamma(A)$ of $X$ and a continuous function $\phi_{A}$ : $\Delta_{n}arrow\Gamma(A)$

such that $J\in\langle A\rangle$ implies $\phi_{A}(\Delta_{J})\subset\Gamma(J)$ .
Here, $\langle D\rangle$ denotes the set of all nonempty finite subsets of $D,$ $\Delta_{n}$ the standard n-

simplex with vertices $\{e_{i}\}_{i=0}^{n}$ , and $\Delta_{J}$ the face of $\Delta_{n}$ corresponding to $J\in\langle A\rangle$ ; that is,
if $A=\{a_{0}, a_{1}, \ldots, a_{n}\}$ and $J=\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{k}}\}\subset A$ , then $\Delta_{J}=$ co$\{e_{i_{0}}, e_{i_{1}}, \ldots , e_{i_{k}}\}$ .
We may write $\Gamma_{A}$ $:=\Gamma(A)$ . A G-convex space $(X, D;\Gamma)$ with $X\supset D$ is denoted by
$(X\supset D;\Gamma)$ and $(X; \Gamma)$ $:=(X,X;\Gamma)$ . For a G-convex space $(X\supset D;\Gamma)$ , a subset $Y\subset X$

is said to be $\Gamma$-convex if for each $N\in\langle D),$ $N\subset Y$ implies $\Gamma_{N}\subset Y$ .
For details on G-convex spaces, see the references of [P6,14] and Part I.

Examples 2.1. The following are typical examples of G-convex spaces:
(1) Any nonempty convex subset of a t.v. $s$ .
(2) A convex space due to Lassonde [L].
(3) A C-space (or an H-space) due to Horvath [Hol,2].
(4) An L-space due to Ben-El-Mechaiekh et al. $[B,BC|$ . The so-called FC-spaces are

particular forms of L-spaces.

Examples 2.2. A $\phi_{A}$-space $(X, D;\{\phi_{A}\}_{A\in\langle D)})$ consisting of a topological space $X$ , a
nonempty set $D$ , and a family of continuous functions $\phi_{A}$ : $\Delta_{n}arrow X$ for $A\in\langle D\rangle$ with
$|A|=n+1$ , can be made into a G-convex space [P16].

Definition. A G-convex uniform space $(X, D;\Gamma;\mathcal{U})$ is a G-convex space such that
$(X,\mathcal{U})$ is a uniform space with a basis $\mathcal{U}$ of the uniformity consisting of symmetric
entourages. For each $U\in \mathcal{U}$ , let

$U[x]$ $:=\{x’\in X|(x,x’)\in U\}$

be the U-ball around a given element $x\in X$ .

3. The Class $\mathfrak{B}$ of multimaps

Definition. Let $(E, D;\Gamma)$ be a G-convex space, $X$ a nonempty subset of $E$ , and $Y$ a
topological space. We define the better admissible class $\mathfrak{B}$ of multimaps from $X$ into $Y$

as follows:
$F\in \mathfrak{B}(X, Y)\Leftrightarrow F:Xarrow Y$ is a map such that, for any $\Gamma_{N}\subset X$ , where $N\in\langle D\rangle$

with the cardinality $|N|=n+1$ , and for any continuous function $p:F(\Gamma_{N})arrow\Delta_{n}$ , the
composition

$\Delta_{n}arrow r_{N^{arrow}}^{F|_{\Gamma_{N}}}F(\Gamma_{N})\phi_{N}arrow^{p}\Delta_{n}$

has a fixed point. Note that $\Gamma_{N}$ can be replaced by the compact set $\phi_{N}(\Delta_{n})\subset X$ .
We give some subclasses of $\mathfrak{B}$ as follows:

77



A SURVEY ON FIXED POINT THEOREMS IN GENERALIZED CONVEX SPACES, II

Examples 3.1. For topological spaces $X$ and $Y$ , an admissible class $\mathfrak{A}_{c}^{\kappa}(X, Y)$ of maps
$F:Xarrow Y$ is now well-known; see Part I.

Note that for a G-convex space $(E, D;\Gamma),$ $X\subset E$ , and any space $Y$ , an admissible
class $\mathfrak{A}_{c}^{\kappa}(X, Y)$ is a subclass of $\mathfrak{B}(X, Y)$ . An example of maps in $\mathfrak{B}$ not belonging to
$\mathfrak{A}_{c}^{\kappa}$ is the connectivity map due to Nash and Girolo; see [P3].

Examples 3.2. For a convex space $(X\supset D;\Gamma)$ , where $\Gamma=$ co and $\phi_{N}$ is a homeomor-
phism, the class $\mathfrak{B}(X, Y)$ is originally given in [P2] and investigated in [P2,3].

Examples 3.3. Let $X$ and $Y$ be uniform spaces (with respective bases $\mathcal{U}$ and $\mathcal{V}$ of
symmetric entourages). A map $T:X-\circ Y$ is said to be approachable [B] whenever $T$

adnuts a continuous W-approximative selection $s:Xarrow Y$ for each $W$ in the basis $\mathcal{W}$

of the product uniformity on $XxY$ ; that is, Gr$(s)\subset W[Gr(F)|$ . A map $T$ : $Xarrow Y$

is said to be approximable [B] if its restriction $T|_{K}$ to any compact subset $K$ of $X$ is
approachable.

It is known that if $(X \supset D;\Gamma)$ is a G-convex uniform space and $Y$ is a uniform
space, then any compact closed approachable map $F:X-\circ Y$ belongs to $\mathfrak{B}(X,Y)$ ; see
Part I.

Examples 3.4. An important subclass of $\mathfrak{B}$ is the class of $\Phi$-maps (or Fan-Browder
maps) as follows:

Definition. Let $Y$ be a topological space and $(X, D;\Gamma)$ a G-convex space. Then a map
$T$ : $Yarrow X$ is called a $\Phi$-map (or a Fan-Browder map) if there is a map $S$ : $Yarrow D$

such that
(i) for each $y\in Y,$ $M\in(S(y)\rangle$ implies $\Gamma_{M}\subset T(y)$ ; and
(ii) $Y=\cup\{1ntS^{-}(z)|z\in D\}$ .

Recall that Horvath $[Ho1|$ first defined a $\Phi$-map for a C-space $(X; \Gamma)$ .
It is well-known that every $\Phi$-map $T:Yarrow X$ belongs to $\mathbb{C}_{c}^{\kappa}(Y, X)\subset \mathfrak{U}_{c}^{\kappa}(Y, X)$.

Therefore, if $X=Y$, then a $\Phi$-map $T:Xarrow X$ belongs to $\mathfrak{B}(X, X)$ .

4. LG-spaces

In this section, we introduce a particular subclass of G-convex uniform spaces:

Definition. A G-convex uniform space $(X\supset D;\Gamma;\mathcal{U})$ is called an LG-space [P7] if $D$

is dense in $X$ and, for each $U\in \mathcal{U}$ , the U-neighborhood

$U[A]=\{x\in X|A\cap U[x]\neq\emptyset\}$

around a given $\Gamma$-convex subset $A\subset X$ is $\Gamma$-convex.
Note that a singleton is not necessarily $\Gamma$-convex in an LG-space.

Examples 4.1. For a C-space $(X; \Gamma)$ , an LG-space reduces to an LC-space [Hol,2].
Any nonempty convex subset $X$ of a locally convex t.v. $s$ . $E$ is an obvious example of
an LC-space $(X; \Gamma)$ with $\Gamma_{A}=$ co $A$ for $A\in\langle X\rangle$ . For other examples, see [Hol].
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Examples 4.2. A G-convex space $(X \supset D;\Gamma)$ is called an LG-metric space if $X$ is
equipped with a metric $d$ such that (1) $D$ is dense in $X,$ (2) for any $\epsilon>0$ , the set
$\{x\in X|d(x, C)<\epsilon\}$ is $\Gamma$-convex whenever $C\subset X$ is $\Gamma$-convex, and (3) open balls are
$\Gamma$-convex. This concept generalizes that of LC-metric spaces due to Horvath [Hol].

Examples 4.3. Horvath [Ho2] showed that any hyperconvex metric space $(H, d)$ is a
complete metric LC-space $(H;\Gamma)$ .

We give a general definition of Kakutani maps as follows:

Definition. Let $Y$ be a topological space and $(X\supset D;\Gamma)$ a G-convex space. A map
$F$ : $Yarrow X$ is called a Kakutani map if it is u.s. $c$ . and has nonempty compact $\Gamma$-convex
values.

Theorem 4.1. Let $(X\supset D;\Gamma;\mathcal{U})$ be an LG-space and $T:Xarrow X$ a compact Kakutani
map. If $X$ is Hausdorff, then $T$ has a fixed point.

This is the main result of [P9].

5. Locally G-convex spaces

This section deals with another subclass of the class of G-convex uniform spaces.

Definition. A G-convex uniform space $(X \supset D;\Gamma;\mathcal{U})$ is said to be locally G-convex
if $D$ is dense in $X$ and, for each $U\in \mathcal{U}$ , there exists a $V\in \mathcal{U}$ such that $V\subset U$ and, for
each $x\in X$ ,

$N\in\langle V[x|\cap D)\Rightarrow\Gamma_{N}\subset U[x]$ .

In particular, if the U-ball $U[x|$ itself is $\Gamma$-convex for each $x\in X$ , then (X $\supset$

$D;\Gamma;\mathcal{U})$ is locally G-convex. If $X$ is Hausdorff, every singleton is $\Gamma$-convex since
$\{x\}=\bigcap_{U\in \mathcal{U}}U[x|$ and the intersection of $\Gamma$-convex subsets is $\Gamma$-convex.
Examples 5.1. Any convex subset of a locally convex Hausdorff t.v. $s$ . is a locally
G-convex space.

Examples 5.2. Every LG-space is locally G-convex if every singleton is $\Gamma$-convex (that
is, $\Gamma_{\{x\}}=\{x\}$ for each $x\in D$).

Theorem 5.1. Let $X$ be a convex subset of a locally convex $t.v.s$ . E. Then any compact
acyc$lic$ map $F:Xarrow X$ has a fixed point.

This was first obtained in [Pl] as a generalization of the Himmelberg theorem and
applied to abstract variational inequalities, minimax inequalities, geometric properties
of convex sets, and other problems. This has been generalized step by step in a number
of works of the author and, finally, to Theorem 9.1 which is the most general form we
have; see [P10-14].

6. G-convex spaces of the Zima type

From the KKM principle, we deduced the following almost fixed point theorem [P14]:
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Theorem 6.1. Let $(X \supset D;\Gamma;\mathcal{U})$ be a G-convex uniform space, and $K$ a totally
bounded subset of $X$ such that $D\cap K$ is dense in K. Let $T:Xarrow X$ be a $u.s.c$ . [resp.,
an $l.s.c.]$ map such that $T(x)\cap K\neq\emptyset$ for each $x\in X.$ Suppose that for each $x\in X$

and each $U\in \mathcal{U}_{2}$ there exists $V\in \mathcal{U}$ such that

$N\in\langle\{y\in D|T(x)\cap V[y|\neq\emptyset\}\rangle\Rightarrow\Gamma_{N}\subset\{y\in X|T(x)\cap U[y]\neq\emptyset\}$.

Then $T$ has the almost fixed point property (that is, for each $U\in \mathcal{U},$ $F$ has a U-fixed
point $x_{U}\in X$ satisfying $F(x_{U})\cap U[x_{U}|\neq\emptyset)$ .

Note that, if $\Gamma_{N}\subset D$ for each $N\in\langle D\rangle$ , it is sufficient to assume that, for each $x\in D$

and each $U\in \mathcal{U}$ , the set $\{y\in D|T(x)\cap U[y]\neq\emptyset\}$ is $\Gamma$-convex.

Theorem 6.2. Under the hypothesis of Theorem 6.1, further if $X$ is Hausdorff and if
$T$ is closed and compact, then $T$ has a fixed point.

Motivated by Theorems 6.1 and 6.2, we introduce the following:

Definition. For a G-convex uniform space $(X\supset D;\Gamma;\mathcal{U})$ , a subset $Y$ of $X$ is said to
be of the Zima type (or of the Zima-Had\v{z}i\v{c} type) if $D\cap Y$ is dense in $Y$ and for each
$U\in \mathcal{U}$ there exists a $V\in \mathcal{U}$ such that, for each $N\in\langle D\cap Y\rangle$ and any $\Gamma$-convex subset
$A$ of $Y$ , we have

$A\cap V[z]\neq\emptyset\forall z\in N\Rightarrow A\cap U[x]\neq\emptyset\forall x\in\Gamma_{N}$.

Examples 6.1. (1) Had\v{z}i\v{c} [Hl] defined that a nonempty subset $K$ of a t.v. $s$ . $E$ is of the
Zima type whenever for any $U\in \mathcal{V}$ , there exists a $V\in \mathcal{V}$ satisfying co$(V\cap(K-K))\subset U$ ,
where $\mathcal{V}$ is a neighborhood system of the origin of $E$ .

Note that any nonempty subset of a locally convex t.v. $s$ . is of the Zima type, and
that there exists a subset of the Zima type in a non-locally convex topological vector
space; see Had\v{z}i\v{c} [H2,3].

(2) For a C-space, our definition reduces to that of Had\v{z}i\v{c} [H3].

Examples 6.2. For an LG-space $(X\supset D;\Gamma;\mathcal{U})$ , any nonempty subset $Y$ of $X$ is of
the Zima type.

$\mathbb{R}om$ Theorems 6.1 and 6.2, we have the following:

Theorem 6.3. Let $(X \supset D;\Gamma;\mathcal{U})$ be a G-convex uniform space. Let $T$ : $Xarrow X$ be
a $u.s.c$ . [resp., an $l.s.c.|$ map with nonempty $\Gamma$ -convex values such that $T(X)$ is totally
bounded and of the Zima type. Then $T$ has the almost fixed point property.

In Theorem 6.3, $X$ is not necessarily Hausdorff. From Theorem 6.3, we have the
following fixed point theorem for Kakutani maps:

Theorem 6.4. Let $(X \supset D;\Gamma;\mathcal{U})$ be a Hausdorff G-convex uniform space. Let $T$ :
$Xarrow X$ be a $\omega mpact$ Kakutani map such that $T(X)$ is of the Zima type. Then $T$ has
a fixed point.

For more results on the Zima type in t.v. $s.$ , see [KP] and references therein.
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7. G-convex $\Phi$-spaces

In this section, we deal with a subclass of the class of G-convex uniform spaces
containing preceding ones.

Definition. For a G-convex uniform space $(X, D;\Gamma;\mathcal{U})$ , a subset $Y$ of $X$ is called a $\Phi-$

set if for each entourage $U\in \mathcal{U}$ , there exists a $\Phi$-map $T$ : $Yarrow X$ such that Gr$(T)\subset U$

(that is, $T(y)\subset U[y]$ for all $y\in Y$). If $X$ itself is a $\Phi$-set, then it is called a $\Phi$-space.
Note that every subset $Y$ of a $\Phi$-space is a $\Phi$-set.

Examples 7.1. Horvath $[Ho1|$ first defined a $\Phi$-space for a C-space $(X; \Gamma)$ and gave
examples as follows:

(1) A particular type of uniform spaces including locally convex t.v. $s$ .
(2) Convex metric spaces in the sense of Takahashi with a metric satisfying certain

property.

Examples 7.2. An important subclass of $\Phi$-sets is that of locally convex sets in a
t.v. $s$ . For nontrivial examples of convex and locally convex subsets, see Had\v{z}i\v{c} [H2].
Moreover, there is an example of a nonconvex, adnissible, locally convex subset of a
non-locally convex t.v.$s.$ ; see Hahn $[Hh|$ .
Proposition 7.1. $Ever^{v}y$ locally convex subset $Y$ of a convex subset $X$ of a t.v.s. $E$ is
a $\Phi$ -subset of $X$.

Note that the concept of local G-convexity does not generalize that of local convexity
of a subset of a t.v. $s$ . in Examples 7.2.

Examples 7.3. Any subset of the Zima type in a G-convex uniform space $(X\supset$

$D_{i}\Gamma;\mathcal{U})$ such that every singleton is $\Gamma$-convex is a $\Phi$-set.

Examples 7.4. For a locally G-convex space $(X\supset D;\Gamma;\mathcal{U})$ , any nonempty subset $Y$

of $X$ is a $\Phi$-set. A locally G-convex space $(X\supset D;\Gamma;\mathcal{U})$ is a $\Phi$-space.

Examples 7.5. Let $(X\supset D;\Gamma)$ be a metric G-convex space such that (1) $D$ is dense
in $X$ ; and (2) every open ball is $\Gamma$-convex. Then $(X\supset D;\Gamma)$ is a $\Phi$-space.

8. Admissible G-convex spaces

For more general purposes, we generalize the admissibility of subsets of t.v. $s$ . to
subsets of G-convex spaces as follows:

Definition. For a G-convex uniform space $(X, D;\Gamma;\mathcal{U})$ , a subset $Y$ of $X$ is said to be
admissible (in the sense of Klee) if, for each nonempty compact subset $K$ of $Y$ and for
each entourage $U\in \mathcal{U}$ , there exists a continuous function $h:Karrow Y$ satisfying

(1) $(x, h(x))\in U$ for all $x\in K$ ;
(2) $h(K)\subset\Gamma_{N}$ for some $N\in\langle D\rangle$ ; and
(3) there exists a continuous function $p$ : $Karrow\Delta_{n}$ such that $h=\phi_{N}\circ p$ , where

$\phi_{N}:\Delta_{n}arrow\Gamma_{N}$ and $|N|=n+1$ .
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Examples 8.1. Examples of admissible subsets of a t.v. $s$ . $E$ can be seen in the references
in [H2].

Definition. Let $(X, D;\Gamma;\mathcal{U})$ be a G-convex uniform space. A subset $K$ of $X$ is said to
be Klee approximable if, for each entourage $U\in \mathcal{U}$ , there exists a continuous function
$h$ : $Karrow X$ satisfying conditions (1)$-(3)$ in the preceding definition. Especially, for a
subset $Y$ of $X,$ $K$ is said to be Klee approximable into $Y$ whenever the range $h(K)\subset$

$\Gamma_{N}\subset Y$ for some $N\in(D\rangle$ in condition (2).

Examples 8.2. Every nonempty compact $\Phi$-set of a G-convex uniform space is Klee
approximable, and every $\Phi$-space $(X, D;\Gamma;\mathcal{U})$ is admissible.

Examples 8.3. In a t.v. $s$ . $E$ , we gave examples of Klee approximable sets in [P15].

The following summarizes the mutual relations among the various subclasses of G-
convex uniform spaces [P14]:

Theorem 8.1. In the class of G-convex uniforn spaces, the following hold:
(1) Any LG-space is of the Zima-Had\v{z}i\v{c} type.
(2) Every LG-space is locally $G-\omega nvex$ whenever every singleton is $\Gamma$-convex.
(3) Any nonempty subset of a locally G-convex space is a $\Phi$ -set.
(4) Any Zima-Had\v{z}i\v{c} type subset of a G-convex uniform space such that every sin-

gleton is $\Gamma$ -convex is a $\Phi$ -set.
(5) $Even/\Phi$ -space is admissible. More generally, every nonempty $\omega mpact\Phi$ -subset

is Klee appro cimable.

9. Fixed point theorems

We have the following main result in this paper:

Theorem 9.1. Let $(X, D;\Gamma;\mathcal{U})$ be a G-convex uniform space, $Y$ a subset of $X$ , and
$F\in \mathfrak{B}(Y, Y)$ a map such that $F(Y)$ is Klee appronimable into Y. Then $F$ has the almost
fixed point property.

Fhrther if $Y$ is Hausdorff and if $F$ is closed and compact, then $F$ has a fixed point
$x_{0}\in Y$ .

Proof. Since $K$ $:=F(Y)$ is Klee approximable into $Y$ , for each symmetric entourage
$U\in \mathcal{U}$ , there exists a continuous function $h:Karrow Y$ satisfying conditions (1) $-(3)$ of
the definition of Klee approximable subsets, and we have

$\Delta_{n}arrow r_{N^{arrow}}^{F|r_{N}}\phi_{N}Karrow^{p}\Delta_{n}$

for some $N\in\langle D\rangle$ with $|N|=n+1$ and $\Gamma_{N}\subset Y$ . Let $p’$ $:=p|_{F(\Gamma_{N})}$ . Since $F\in \mathfrak{B}(Y, Y)$ ,
the composition $p’\circ(F|_{\Gamma_{N}})\circ\phi_{N}$ : $\Delta_{n}arrow\Delta_{n}$ has a fixed point $a_{U}\in\Delta_{n}$ . Let $x_{U}$ $:=$

$\phi_{N}(aU)$ . Then
$a_{U}\in(p’\circ F\circ\phi_{N})(aU)=(p’\circ F)(x_{U})$

and hence
$xU=\phi_{N}(aU)\in(\phi_{N}\circ p’\circ F)(x_{U})$ .
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Since $h=\phi_{N}\circ p$ by definition, we have

$x_{U}=h(yU)$ for some $yU\in(F|r_{N})(x_{U})$ .

Therefore, for each entourage $U\in \mathcal{U}$ , there exist points $x_{U}\in Y$ and $yU\in F(x_{U})$ such
that $(xu, yu)=(h(yU), yU)\in U$ . So, for each $U$ , there exist $x_{U},$ $yU\in Y$ such that
$yU\in F(x_{U})$ and $yU\in U[x_{U}]$ .

Now suppose $F$ is closed and compact. Since $F(Y)$ is relatively compact, we may
assume that the net $yU$ converges to some $x_{0}\in\overline{F(Y)}$. Then, by the Hausdorffness
of $Y$ , the net $x_{U}$ also converges to $x_{0}$ . Since the graph of $F$ is closed in $Y\cross\overline{F(Y)}$

and $(x_{U}, yu)\in$ Gr$(F)$ , we have $(x_{0},$ $x_{0})\in$ Gr$(F)$ and hence we have $x_{0}\in F(x_{0})$ . This
completes our proof.

For $X=Y$ , Theorem 9.1 reduces to the following main result of [P14]:

Theorem 9.2. Let $(X, D;\Gamma;\mathcal{U})$ be a $G-\omega nvex$ unifo$7m$ space such that $X$ is Hausdorff
and $F\in \mathfrak{B}(X, X)$ a multimap such that $F(X)$ is Klee approrimable. Then $F$ has the
almost fixed point property. Further if $F$ is closed and compact, then $F$ has a fixed point
$x_{0}\in X$ .
Theorem 9.3. Let $(X, D;\Gamma;\mathcal{U})$ be a Hausdorff admissible G-convex space. Then any
compact closed map $F\in \mathfrak{B}(X, X)$ has a fixed point.

Corollary 9.4. Let $(X, D;\Gamma;\mathcal{U})$ be a compact admissible G-convex space such that $X$

is Hausdorff. Then any map $F\in \mathfrak{U}_{c}^{\kappa}(X, X)$ has a fixed point.

In view of Theorem 8.1, Theorems 9.1-9.3 and Corollary 9.4 can be applied to various
subclasses of the class of admissible G-convex spaces.

Especially, an admissible convex subset of a t.v. $s$ . is an admissible G-convex space,
and hence we have the following from Theorem 9.3:

Corollary 9.5. Let $X$ be an admissible convex subset of a Hausdorff $t.v.s$ . E. Then
any compact closed map $F\in \mathfrak{B}(X, X)$ has a fixed point.

Corollary 9.5 was given in [P3], where we listed more than sixty papers in chrono-
logical order, from which we could deduce particular forms. Especially, from Corollary
9.5, we obtain

Corollary 9.6. Let $X$ be an admissible convex subset of a Hausdorff t.v.s. E. Then
any compact map $F\in V_{c}(X,X)$ (that is, a finite composition of acyclic maps) has a
fixed point.

This generalizes Theorem 5.1.
In the following, we are mainly concemed with $\Phi$-maps and $\Phi$-spaces.

Lemma 9.7. [Hol, $P4|$ Let $Y$ be a paracompa$ct$ space, $(X, D;\Gamma)$ an H-space, and
$T:Yarrow X$ a $\Phi$ -map. Then $T$ has a continuous selection.

From Lemma 9.7 and Theorem 9.3, we have the following:

Theorem 9.8. Let $(X, D;\Gamma;\mathcal{U})$ be an admissible pamcompact H-space. Then any
compact $\Phi$ -map $T:Xarrow X$ has a fixed point.
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From Theorems 8.1 and 9.8, we have

Corollary 9.9. Let $(X, D;\Gamma;\mathcal{U})$ be an H-space. If it is also a paracompact $\Phi$ -space,
then any compact $\Phi$ -map $T:Xarrow X$ has a fixed point.

Some applications of Corollary 9.9 were given in [$Ho1|$ and $[P8|$ .
From Theorems 8.1 and 9.2, we have the following:

Theorem 9.10. Let $(X, D;\Gamma;\mathcal{U})$ be a G-convex $unif_{07}m$ space and $F\in \mathfrak{B}(X, X)a$

map such that $\overline{F(X)}$ is a compact Hausdorff $\Phi$ -subset of X. If $F$ is closed, then $F$ has
a fixed point.

Since every locally convex set is a $\Phi$-set, we have the following:

Corollary 9.11. Let $X$ be a nonempty convex subset of a Hausdorff t.v.s. Then any
compact closed map $F\in \mathfrak{B}(X, X)$ such that $\overline{F(X)}$ is locally convex has a fixed point.

From Theorems 8.1 and 9.3, we have the following in [P5]:

Theorem 9.12. Let $(X, D;\Gamma;\mathcal{U})$ be a Hausdorff $\Phi$ -space. Then any compact closed
map $F\in \mathfrak{B}(X, X)$ has a fixed point.

Particular forms of Theorem 9.12 were known by Horvath $[Ho1|$ and Park and Kim
[PK]. Moreover, Ben-El-Mechaiekh et al. [BC] obtained a particular form of Theorem
9.12 for approachable maps. In our previous works, it was shown that Theorem 9.12
subsumes a large number of fixed point theorems related to approachable maps on G-
convex spaces, acyclic maps on locally G-convex spaces, and Kakutani maps on $\Phi$-spaces
or on hyperconvex metric spaces; see Part I.

For a non-closed map, we have the following:

Corollary 9.13. Let $(X, D;\Gamma;\mathcal{U})$ be a compact $\Phi$ -space such that $X$ is Hausdorff and
$F\in \mathfrak{A}_{c}^{\kappa}(X, X)$ . Then $F$ has a fixed point.

From Examples 7.5, Lemma 9.7, and Theorem 9.12, we have

Corollary 9.14. Let $(X \supset D;\Gamma)$ be a metic G-convex space such that $D$ is dense in
$X$ and every open ball is $\Gamma$ -convex. Then every compact $\Phi$ -map $F$ : $Xarrow X$ has a fixed
point.
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