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ABSTRACT. We give some comments on Meir-Keeler’s fixed point theo.

rem. First we give a proof of the theorem. We next compare the theorem

with the Banach contraction principle, Edelstein’s and Branciari’s fixed

point theorems. Also, we discuss Lim’s characterization and state recent

generalizations of the theorem.

1. INTRODUCTION

In 1969, Meir and Keeler [9] proved the following, very interesting and
excellent fixed point theorem.

Theorem 1 (Meir and Keeler [9]). Let $(X, d)$ be a complete $metr\dot{\eta}c$ space
and let $T$ be a Meir-Keeler contraction ($MKC$, for short) on $X$ , i. e., for
every $\epsilon>0$ , there exists $\delta>0$ such that

$d(x, y)<\epsilon+\delta$ implies $d(Tx,Ty)<\epsilon$

for all $x,$ $y\in X$ . Then $T$ has a unique fixed point $z$ and $\lim_{n}T^{n}x=z$ holds

for every $x\in X$ .

Recently Suzuki [18] gave a proof of Theorem 1 in which we use reductio

ad absurdum only once. The following proof is slightly better than that in

[18].

Proof. For $x,$ $y\in X$ , putting $\epsilon$ $:=d(x,y)$ , we obtain $d(Tx,Ty)\leq d(x, y)$ . So
$\{d(T^{n}x, T^{n}y)\}$ is nonincreasing and thus converges to some nonnegative real

number $\alpha$ . Assume $\alpha>0$ . Then $hom$ the assumption, there exists $\delta_{1}>0$

such that
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$\bullet$ $d(u,v)<\alpha+\delta_{1}$ implies $d(Tu,Tv)<\alpha$ .
We can choose $\nu\in \mathbb{N}$ such that $d(T^{\nu}x, T^{\nu}y)<\alpha+\delta_{1}$ . Then we have

$\alpha=\lim_{narrow\infty}d(T^{n}x,T^{n}y)\leq d(T^{\nu+1}x, T^{\nu+1}y)<\alpha$ ,

which is a contradiction. Therefore we obtain

$\lim_{narrow\infty}d(T^{n}x, T^{n}y)=0$

for all $x,$ $y\in X$ . Fix $x\in X$ and $\epsilon>0$ . Then there exists $\delta_{2}>0$ such that

$\bullet$ $d(u, v)<\epsilon+\delta_{2}$ implies $d(Tu, Tv)<\epsilon$ .
Since $\lim_{n}d(T^{n}x, T^{n+1}x)=0,$ $d(T^{\ell}x,T^{\ell+1}x)<\delta_{2}$ holds for sufficiently large
$\ell\in \mathbb{N}$ . We shall show

(1) $d(T^{\ell+1}x,T^{l+m}x)<\epsilon$

for $m\in N$ by induction. It is obvious that (1) holds when $m=1$ . We
assume that (1) holds for some $m\in \mathbb{N}$ . Then we have

$d(T^{\ell}x, T^{\ell+m}x)\leq d(T^{\ell}x, T^{\ell+1}x)+d(T^{\ell+1}x,T^{\ell+m}x)<\delta_{2}+\epsilon$

and hence $d(T^{\ell+1}x, T^{\ell+m+1}x)<\epsilon$ holds. So, by induction, (1) holds for

every $m\in \mathbb{N}$ . Therefore we have shown

$\lim\sup d(T^{n}x,T^{m}x)=0$ .
$narrow\infty_{m>n}$

This implies that $\{T^{n}x\}$ is Cauchy. Since $X$ \’is complete, $\{T^{n}x\}$ converges

to some point $z\in X$ . Since $T$ is continuous, we obtain

$Tz=T( \lim_{narrow\infty}T^{n}x)=\lim_{narrow\infty}T\circ T^{n}x=z$.

That is, $z$ is a fixed point of $T$ . For every $y\in X$ , we have

$\lim_{narrow\infty}d(z,T^{n}y)=\lim_{narrow\infty}d(T^{n}z,T^{n}y)=0$.

This implies that the fixed point is unique.

In this paper, we give some comments on the Meir-Keeler fixed point

theorem. We have given a proof of the theorem. Next, we compare the

theorem with the Banach contraction principle, Edelstein’s and Branciari’s

fixed point theorems. Also, we discuss Lim’s characterization and state

recent generalizations of the theorem.
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2. THE BANACH CONTRACTION PRINCIPLE

It is well known that the Meir-Keeler theorem is a generalization of the

Banach contraction principle [1] and Edelstein’s fixed point theorem [4].

Theorem 2 (Banach [1]). Let (X, d) be a complete metric space let $T$ be a
contraction on $X$ , i. e., there exists $r\in(0,1)$ such that

$d(Tx, Ty)\leq rd(x, y)$

for all $x,$ $y\in X$ . Then $T$ has a unique fixed point.

Proof. Fix $\epsilon>0$ and put $\delta=(1/r-1)\epsilon$ . Then if $d(x, y)<\epsilon+\delta$ and $x\neq y$ ,

we have

$d(Tx, Ty)\leq rd(x, y)<r\epsilon+r\delta=\epsilon$ .

Thus, $T$ is an MKC. By Theorem 1, we obtain the desired result.

Theorem 3 (Edelstein $[4|)$ . Let $(X, d)$ be a compact metric space and let $T$

be a mapping on X. Suppose that

$d(Tx, Ty)<d(x, y)$

for all $x,$ $y\in X$ with $x\neq y$ . Then $T$ has a unique fixed point.

Proof. Assume that $T$ is not an MKC. Then there exist $\epsilon>0$ , sequences
$\{x_{n}\}$ and $\{y_{n}\}$ in $X$ such that

(2) $d(x_{n}, y_{n})<\epsilon+1/n$ and $d(Tx_{n}, Ty_{n})\geq\epsilon$ .

Since $X$ is compact, without loss of generality, we may assume $\{x_{n}\}$ and $\{y_{n}\}$

converge to some points $x_{0}$ and $y_{0}$ in $X$ , respectively. Since $T$ is continuous,

we have

$d(x_{0}, y_{0})\leq\epsilon\leq d(Tx_{0},Tyo)<d(x_{0}, yo)$ .

This is a contradiction. Therefore $T$ is an MKC. By Theorem 1, we obtain

the desired result.
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3. BRANCIARI’S FIXED POINT THEOREM

In 2002, Branciari extended the Banach contraction principle in another
direction. The theorem can be proved by Theorem 1; see [20].

Theorem 4 (Branciari [2]). Let (X, d) be a complete metric space and let
$T$ be a Bmnciari contraction on $X,$ $i.e_{f}$ there exist $r\in[0,1)$ and a locally
integrable function $f$ from $[0, \infty)$ into itself such that

$/o^{s}f(t)dt>0$ and $/0^{d(Tx,Ty)_{f(t)dt}}\leq r/0^{d(x_{t}y)_{f(t)dt}}$

for all $s>0$ and $x,$ $y\in X$ . Then $T$ has a unique fixed point.

Proof. Assume that $T$ is not an MKC. Then there exist $\epsilon>0$ , sequences
$\{x_{n}\}$ and $\{y_{n}\}$ in $X$ satisfying (2). We have

$/0^{\epsilon}f(t)dt\leq/0^{d(Tx_{n},Ty_{n})_{f(t)dt\leq r}}/0^{d(x_{n},y_{n})_{f(t)dt\leq r}}/0^{\epsilon+1/n}f(t)dt$

and hence
$/o^{\epsilon}f(t)dt\leq r/o^{e}f(t)dt$ .

This contradicts $\int_{0}^{e}f(t)dt>0$ . Therefore $T$ is an MKC. By Theorem 1, we
obtain the desired result.

$\mathbb{R}om$ the above proof, we know that contractions of integral type are
MKC. So, it is natural to consider MKC of integral type. Our answer is
that MKC of integral type are still MKC. That is, the following holds.

Theorem 5 $([20|)$ . Let $(X, d)$ be a metrec space and let $T$ be a mapping on
X. Let $f$ be a locally integmble function from $[0, \infty)$ into itself satisfying
$\int_{0}^{s}f(t)dt>0$ for all $s>0$ . Assume that for each $\epsilon>0_{f}$ there exists $\delta>0$

such that

$/0^{d(x,y)_{f(t)dt}}<\epsilon+\delta$ implies $/0^{d(Tx,Ty)_{f(t)dt}}<\epsilon$

for all $x,$ $y\in X$ . Then $T$ is an $MKC$.

4. LIM $s$ CHARACTERIZATION

In 1977, Wong [24] characterized MKC. Lim $[8|$ gave another character-
ization of MKC, using the notion of L-functions. However, Lim’s proof is
very difficult. Recently Suzuki [17, 18] improved Lim’s theorem and gave a
simple proof. Proinov [11] also gave a simple proof.
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Definition (Lim [8]). A function $\varphi hom[0, \infty)$ into itself is called an L-

function if $\varphi(0)=0,$ $\varphi(s)>0$ for $s\in(O, \infty)$ , and for every $s\in(O, \infty)$ there

exists $\delta>0$ such that $\varphi(t)\leq s$ for all $t\in[s,$ $s+\delta|$ .

Theorem 6 ([8, $18|)$ . Let (X, d) be a $met_{7}\dot{n}c$ space and let $T$ be a mapping

on X. Then the following are equivalent:

(i) $T$ is an $MKC$.
(ii) There exists an $L$ -fUnction $\varphi$ such that

(3) $x,$ $y\in X,$ $x\neq y$ implies $d(Tx, Ty)<\varphi(d(x, y))$ .
(iii) There exists a nondecreasing, Lipschitz continuous L-function $\varphi$ sat-

isfying (3).

Sketch of proof. It is obvious that (iii) implies (ii). We can easily prove that
(ii) implies (i). Let us prove that (i) implies (iii). Assume that $T$ is an MKC.
Then $hom$ the assumption, we can define a function $\alpha$ : $(0, \infty)arrow(0, \infty)$

such that
$d(x, y)<\epsilon+\alpha(\epsilon)$ implies $d(Tx, Ty)<\epsilon$

for $\epsilon\in(0, \infty)$ . We also define functions $\beta$ : $(0, \infty)arrow[0, \infty),$ $\psi$ : $[0, \infty)arrow$

$[0, \infty)$ and $\varphi:[0, \infty)arrow[0, \infty)$ as follows;

$\beta(t)=\inf\{\epsilon>0:t<\epsilon+\delta(\epsilon)\}$ ,

$\psi(t)=\{\begin{array}{ll}0 if t=0,\beta(t) if t>0 and nun \{\epsilon>0 : t<\epsilon+\delta(\epsilon)\} exists,(\beta(t)+t)/2 otherwise,\end{array}$

$\varphi(t)=\sup\{\psi(t)+\min\{2(t-u), 0\}:u\in(0, \infty)\}$ .
Then such $\varphi$ satisfies (iii). $\square$

5. GENERALIZATIONS

We finally state recent generalizations of the Meir-Keeler theorem. The

following theorem is also a generalization of Kirk’s theorem for asymptotic

contractions [7].

Theorem 7 ([17]). Let (X, d) be a complete metric space and let $T$ be a

continuous mapping on X. Assume that $T$ is an asymptotic contmction of
Meir-Keeler type (A $CMK$, for short), i.e., there exists a sequence $\{\varphi_{n}\}$ of
functions from $[0, \infty)$ into itself satisfying the following:
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(i) $\lim\sup_{n}\varphi_{n}(\epsilon)\leq\epsilon$ for all $\epsilon\geq 0$ .
(ii) For each $\epsilon>0$ , there exist $\delta>0$ and $\nu\in \mathbb{N}$ such that $\varphi_{\nu}(t)\leq\epsilon$ for

all $t\in[\epsilon,\epsilon+\delta]$ .
(iii) $d(T^{m}x, T^{n}y)<\varphi_{n}(d(x, y))$ for all $n\in \mathbb{N}$ and $x,$ $y\in X$ with $x\neq y$ .

Then $T$ has a unique fixed point.

In 2001, Suzuki [12] introduced the notion of $\tau$-distances.

Deflnition ([12]). Let $(X, d)$ be a metric space. Then a function $phom$

$X\cross X$ into $[0, \infty)$ is called a $\tau$ -distance on $X$ if there exists a function $\eta$

ffom $Xx[0, \infty)$ into $[0, \infty)$ and the following are satisfied:
$(\tau 1)p(x, z)\leq p(x, y)+p(y, z)$ for all $x,y,$ $z\in X$ .
$(\tau 2)\eta(x, 0)=0$ and $\eta(x, t)\geq t$ for all $x\in X$ and $t\in[0, \infty)$ , and $\eta$ is

concave and continuous in its second variable.
$( \tau 3)\lim_{n}x_{n}=x$ and $\lim_{n}\sup\{\eta(z_{n},p(z_{n}, x_{m}))$ : $m\geq n\}=0$ imply

$p(w,x) \leq\lim\inf_{n}p(w,x_{n})$ for all $w\in X$ .
$( \tau 4)\lim_{n}\sup\{p(x_{n}, y_{m}) : m\geq n\}=0$ and $\lim_{n}\eta(x_{n},t_{n})=0$ imply

$\lim_{n}\eta(y_{n},t_{n})=0$ .
$( \tau 5)\lim_{n}\eta(z_{n},p(z_{n},x_{n}))=0$ and $\lim_{n}\eta(z_{n},p(z_{n}, y_{n}))=0$ imply $\lim_{n}$

$d(x_{n},y_{n})=0$ .

The metric $d$ is a $\tau$-distance on $X$ . Many useful examples and propositions

are stated in [5, 12-16, 19, $22|$ and references therein. Using the notion of
$\tau$-distances, Suzuki $[14|$ proved the following. See also [23].

Theorem 8 ([14]). Let $X$ be a complete metric space with a $\tau$ -distance $p_{f}$

and let $T$ be a mapping on X. Suppose that $T$ is a Meir-Keeler contmction

with respect to $p$ , i. e., for every $\epsilon>0_{y}$ there exists $\delta>0$ such that

$p(x,y)<\epsilon+\delta$ implies $p(Tx,Ty)<\epsilon$

for all $x,$ $y\in X$ . Then $T$ has a unique fixed point.

Kikkawa and Suzuki [6] proved the following theorem, which is also a
generalization of Park-Bae’s theorem $[10|$ . See also [21].

Theorem 9 ([6]). Let $(X, d)$ be a complete metric space. Let $S$ and $T$ be

mappings on $X$ satisfying the following:

(i) $S$ is continuous.
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(ii) $T(X)\subset S(X)$ .

(iii) $S$ and $T$ commute.

Assume that for any $\epsilon>0$ , there exists $\delta>0$ such that

$\frac{1}{2}d(Sx, Tx)<d(Sx, Sy)$ and $d(Sx, Sy)<\epsilon+\delta$ imply $d(Tx,Ty)<\epsilon$

for all $x,$ $y\in X$ . Then there exists a unique common fixed point of $S$ and $T$ .

Di Bari, Suzuki and Vetro proved the following, which is also a general-

ization of Theorem 1 though Theorem 10 is not a fixed point theorem.

Theorem 10 ([3]). Let $X$ be a uniformly convex Banach space and let $A$

and $B$ be nonempty subsets of X. Suppose that $A$ is closed and convex. Let
$T$ be a cyclic Meir-Keeler $\omega ntmction$ on $A\cup B$ , that is,

(i) $T(A)\subset B$ and $T(B)\subset A$ .

(ii) For every $\epsilon>0$ , there erzsts $\delta>0$ such that

$d(x, y)<d(A, B)+\epsilon+\delta$ implies $d(Tx,Ty)<d(A, B)+\epsilon$

for all $x\in A$ and $y\in B_{f}$ where $d(A, B)= \inf\{d(a, b) : a\in A, b\in B\}$ .

Then there exists a unique best proximity point $z$ in $A$ , that is, $d(z,Tz)=$

$d(A, B)$ .
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