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1 Introduction
When a non empty closed set $\varphi(x)$ in a topological space $Y$ is assigned for each $x$

of a topological space $X$ , we call the correspondence a set-valued mapping and write
$\varphi$ : $Xarrow Y$ by the Greek alphabet. For single-valued mapping, we write $f$ : $Xarrow Y$ etc.
by the Roman alphabet. In this paper, we assume that set-valued mappings are upper
semi-continuous.

In this paper, we shall prove Borsuk’s antipodal theorem for an admissible mapping
$\varphi$ : $\partial\overline{U}arrow R^{n}$ where $U$ is a bounded symmetric open neighborhood of the origin of
$R^{n+k}(k\geqq 1)$ and generalize to the case of an admissible mapping $\varphi$ : $\partial\overline{U}arrow E$ where $U$

is a bounded symmetric open neighborhood of the origin of the normed space E.
In the second section, we review various cohomology theories and summerize some

definitions and result. In this paper, we shall mainly use Alexander-Spanier cohomology
theory $\overline{H}^{*}(X;F)$ with coefficient in a field F.

In the third sect\’ion, we define an equivariant mapping in the class of set-valued map-
pings (cf. Definition 3.4) and discuss about Borsuk’s antipodal theorem for admissible
mappings. Y.S.Chang proved a generalization of Borsuk’s antipodal theorem (cf. Theo-
rem 4 in [1] $)$ for closed convex valued mappings by using the method of general topology
and analysis. We shall prove the following theorem which is a generalization of his theorem
by using the method of algebraic topology (cf. Theorem 3.6).

Main Theorem 1. Let $U$ be a bounded open neighborhood of the origin in $R^{m+k}$ for
$k\geqq 1$ which is symmetric with respect to the involution $T(x)=-x$ . Assume that $\varphi$ :
$\partial\overline{U}arrow R^{m}$ is an equivariant admissible mapping. Then there exists point $x_{0}\in\partial\overline{U}$ such
that $\varphi(x_{0})\ni 0$ .

We shall prove the following theorem (cf. Theorem 3.7) which is a generalization of
Theorem 6 in [1] and also a generalization of Theorem 9.1, 9.2 of \S 10 in [6] for set-valued
mappings.

Main Theorem 2. Let $U$ be a bounded open neighborhood of the origin in $R^{m+k}$ for $k\geqq 0$

which is symmetric with respect to the involution $T(x)=-x$ . Assume that $\varphi$ : $\overline{U}arrow R^{m}$

is an admissible mapping which is equivariant on the boundary $\partial\overline{U}$ of U. Then there exists
a point $x_{0}\in\overline{U}$ such that $\varphi(x_{0})\ni 0$ and a point $x_{1}\in\overline{U}$ such that $\varphi(x_{1})\ni x_{1}$ .

In the last section, we discuss a generalization of results of \S 3 to the infinite dimen-
sional normed space. We obtain the following theorem (cf. Theorem 4.2) which is a
generalization of Theorem 7 in [1] in the case of the normed space.
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Main Theorem 3. Let $U$ be a symmetnc bounded open neighborhood of the origin in
a normed space E. $\mathcal{A}ssume$ that $\hat{\Psi}$ : $\overline{U}arrow E$ is upper semi-continuous, compact convex
valued mapping and is equivariant on $\partial\overline{U}$ . Then there exist a fixed point $z_{0}\in\overline{U}$ such that
$\varphi(z_{0})\ni z_{0}$ .

In the above theorem, we can not deduce the existence of the zero value of $\varphi$ . We
shall generalize Borsuk-Ulam theorem to the case of infinite dimensional spaces.

Main Theorem 4. Let $E_{k}$ be a closed subspace of codimension $k\geqq 1$ of $E$ and $U$ be a
symmetric bounded open neighborhood of the origin of E. If $\Phi$ : $\partial\overline{U}arrow E_{k}$ is a compact
admissible mapping, there is a point $x_{0}\in\partial\overline{U}$ such that $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ where
$\varphi(x)=x-\Phi(x)$ .

2 Various cohomology theories
To begin with, we give some remarks about several cohomology theories. For the detail,

see Y.Shitanda [12]. The Alexander-Spanier cohomology theory $\overline{H}^{*}(-;G)$ is isomorphic
to the singular cohomology theory $H^{*}(-;G)$ , that is,

$\mu:\overline{H}^{*}(X;G)\cong H^{*}(X;G)$

if the singular cohomology theory satisfies the continuity condition (cf. Theorem 6.9.1
in [13] $)$ . For a paracompact Hausdorff space $X$ , it holds also the isomorphism between
\v{C}ech cohomology theory $\check{H}^{*}(-;G)$ with coefficient in a constant sheaf and the Alexander-
Spanier cohomology theory $\overline{H}^{*}(-;G)$ (cf. Theorem 6.8.8 in [13])

$\check{H}^{*}(X;G)\cong\overline{H}^{*}(X;G)$ .

An ANR space is an r-image of some open set of a normed space (cf. Proposition 1.8
in [5] $)$ . For an ANR space $X$ , it holds also the isomorphism:

$\check{H}^{*}(X;G)\cong\overline{H}^{*}(X;G)\cong H^{*}(X;G)$

by Theorem 6.1.10 of [13]. The remarkable feature of the Alexander-Spanier cohomology
theory is that it satisfies the continuity property (cf. Theorem 6.6.2 in $[13|)$ . Hereafter
we mainly use the Alexander-Spanier (co)homology theory with coefficient field F.

Definition 2.1. Let $X$ and $Y$ be paracompact Hausdorff spaces. $\mathcal{A}$ mapping $f$ : $Xarrow Y$
$\iota s$ called a $Vieto7^{Y}tS$ mapping, if it satisfies the following conditions:

1. $f$ is proper and onto continuous mapping.

2. $f^{-1}(y)$ is an acyclic space for any $y\in Y$ , that is. $\overline{H}^{*}(f^{-1}(y);F)=0$ for positive
dimension.

When $f$ is closed and onto continuous mapping and satisfies the condition (2), we call it
weak $Vietor s$ mapping.
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If $f^{-1}(K)$ is compact set for any compact subset $K\subset Y,$ $f$ is called a proper mapping.
Note that a proper mapping is closed. A mapping $f$ : $Xarrow Y$ is called a compact mapping,
if $f(X)$ is contained in a compact set of $Y$ , or equivalently its closure $\overline{f(Y)}$ is compact.

The following theorem is called Vietoris’s theorem and is essentially important for our
purpose (cf. Theorem 6.9.15 in [13]).

Theorem 2.2. Let $f$ : $Xarrow Y$ be a weak Vietoris mapping between paracompact Haus-
dorff spaces $X$ and Y. Then,

$f^{*}:\overline{H}^{m}(Y;F)arrow\overline{H}^{m}(X;F)$ (1)

is an isomorphism for all $m\geqq 0$ .

The graph of set-valued mapping $\varphi$ : $Xarrow Y$ is defined by $\Gamma_{\varphi}=\{(x, y)\in XxY|y\in$

$\varphi(x)\}$ . If $\varphi$ is upper semi-continuous, $\Gamma_{\varphi}$ is closed, but the converse is not true. If the
image $\varphi(X)$ is contained in a compact set, the converse is true (cf. \S 14 in [5]).

Definition 2.3. An upper semi-continuous mapping $\varphi$ : $Xarrow Y$ is admissible, if there
exists a paracompact Hausdorff space $\Gamma$ satisfying the following conditions:

1. there exist a Vietoris mapping $p:\Gammaarrow X$ and a continuous mapping $q:\Gammaarrow Y_{f}$

2. $\varphi(x)\supset q(p^{-1}(x))$ for each $x\in X$ .

A pair of mappings $(p, q)u$ called a selected pair of $\varphi$ .
Define $\varphi^{*}:\overline{H}^{*}(Y)arrow\overline{H}^{*}(X)$ by the set $\{(p^{*})^{-1}q^{*}\}$ where $(p, q)$ is a selected pair of

admissible mapping $\varphi$ : $Xarrow Y$ . And $\varphi_{*}$ is similarly defined.
Let $N$ be a paracompact Hausdorff space with a free involution $T$ and $p:\Gammaarrow N$ a

Vietoris mapping. Consider the following diagram:

$\hat{\Gamma}arrow^{\Delta\hat}\Gamma x\Gamma$

$\downarrow\hat{p}$ $\downarrow pxp$ (2)

$Narrow^{\Delta}NxN$

where $\Delta$ is given by $\Delta(x)=(x, T(x)).\hat{\Gamma}$ is defined by the pull-back square and $\hat{p}$ and $\hat{\Delta}$

are induced mappings in the pull-back square, i.e. $\hat{p}(y, y’)=p(y)$ . Involutions on $N^{2},$ $\Gamma^{2}$

are given by switching mappings $T(x, x’)=(x’, x)$ . All mappings are equivariant with
respect to their involutions. Clearly $\hat{\Gamma}$ has free involution $\hat{T}$ . The following lemma is
proved in Lemma 4.6 of [12].

Lemma 2.1. Let $N$ be a pamcompact Hausdorff space with a free involution $T$ and $p$ :
$\Gammaarrow N\wedge$ be a Vietoris mapping. Then $\hat{p}$ : $\hat{\Gamma}arrow N$ is a $\pi$ -equivariant Vietoris mapping
and $\Gamma$ is a paracompact Hausdorff space. $\hat{p}_{\pi}$ : $\hat{\Gamma}_{\pi}arrow N_{\pi}$ is a Vietoris mapping and $\hat{\Gamma}_{\pi}$ is
a paracompact Hausdorff space. Moreover if $N$ is a $met_{7}nc$ space and $A$ is a $\pi$ -invariant
closed subspace of $N_{f}$ then $\overline{H}^{*}(\hat{\Gamma}-\hat{p}^{-1}(A);F_{2})$ and $\overline{H}^{*}(\hat{\Gamma}_{\pi}-\hat{p}_{\pi}^{-1}(\mathcal{A}_{\pi});F_{2})$ are isomorphic
to $\overline{H}^{*}(N-A;F_{2})$ and $\overline{H}^{*}(N_{\pi}-A_{\pi};F_{2})$ respectively.
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3 Borsuk’s antipodal theorem
The classical Borsuk’s antipodal theorem says that an equivariant mapping $f$ : $S^{m}arrow$

$R^{m}$ has the zero value, that is, there exists a point $x_{0}\in S^{m}$ such that $f(x_{0})=0$ (cf.
Theorem 5.2 of \S 5 in [6] $)$ . A generalized Borsuk’s antipodal theorem is also stated as
follows (cf. Theorem 9.2 of \S 10 in [6]).

Theorem 3.1. Let $U$ be a bounded symmetnc open neighborhood of the origin in $R^{m}$ .
$\mathcal{A}ssume$ that the closure $\overline{U}$ of $U$ is a finite polyhedron and $f$ : $\overline{U}arrow R^{m}$ be a continuous
mapping which is equivariant on the boundary $\partial\overline{U}$ of U. Then $f$ has the zero value, that
is, there exists a point $x_{0}\in\overline{U}$ such that $f(x_{0})=0$ .

S.Y.Chang proved the following Borsuk antipodal theorems for upper semi-continuous
mappings which are closed convex set valued (cf. Theorem 4 in [1]). A set valued mapping
$F:Xarrow Y$ is called antipodal mapping in his paper, if $F$ satisfies $F(x)\cap(-F(-x))\neq\emptyset$

for all $x\in X$ .

Theorem 3.2. Let $U$ be a bounded symmetnc open neighborhood of the ontgin in $R^{m+1_{f}}$

and $F:\partial\overline{U}arrow R^{m}$ be upper semi-continuous, closed convex-valued, and antipodal preserv-
ing. Then $F$ has the zero value ) that is, there exists a point $x_{0}\in\overline{U}$ such that $F(x_{0})\ni 0$ .

We prepare a theorem for later applications.

Theorem 3.3. Let $N$ be a paracompact Hausdorff space with a free involution $T$ and
$M$ an m-dimensional closed manifold with a free involution $T’$ . $\mathcal{A}ssume$ that $c^{m}\neq 0$ for
$c=c(N, T)\in\overline{H}^{1}(N_{\pi};F_{2})$ and $f$ is an equivariant mapping. Then $f^{*}:\overline{H}^{*}(M;F_{2})arrow$

$\overline{H}^{*}(N;F_{2})$ is not tnvial for a positive dimension.

Proof. Let $h:Marrow S^{\infty}$ be an equivariant mapping such that $h_{\pi}^{*}(\omega)=c(M, T’)$ . Here $\omega$

is the generator of $\overline{H}^{1}(RP^{\infty};F_{2})$ . $hf$ : $Narrow S^{\infty}$ is also an equivariant mapping such that
$(hf)_{\pi}^{*}(\omega)=c(N, T)$ . From $c(N, T)^{m}\neq 0$ , it holds $c(M, T’)^{m}\neq 0$ . By Gysin-Smith exact
sequence, we see $\phi^{*}(c_{M})=c(M, T’)^{m}$ where $c_{M}$ is the dual cocycle of the m-dimensional
fundamental cycle $[M]$ . By

$\phi^{*}f^{*}(c_{M})=f_{\pi}^{*}\phi^{*}(c_{M})=f_{\pi}^{*}(c(M, T’)^{m})=c(N, T)^{m}\neq 0$ ,

we obtain the result. $\square$

In this paper we adopt a new definition of an equivariant mapping for set valued
mappings. Our definition is a generalization of S. Y. Chang’s definition.

Definition 3.4. Let $X$ and $Y$ be pamcompact Hausdorff spaces with involutions $T$ and $T’$

respectively. $\mathcal{A}n$ admissible mapping $\varphi$ : $Xarrow Y$ is said to be $equivariant_{f}$ if there exist a
paracompact Hausdorff space $\Gamma$ with a free involution and an equivariant Vietoris mapping
$p:\Gammaarrow X$ and an equivariant continuous mapping $q:\Gammaarrow Y$ such that $qp^{-1}(x)\subset\varphi(x)$

for $x\in X.$ $\mathcal{A}n$ admissible mapping $\varphi$ : $Xarrow Y$ is said to be equivariant on a closed
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subspace $X_{0}$ of $X_{f}$ if there exists an equivariant Vietoris mapping $p_{0}$ : $\Gamma_{0}arrow X_{0}$ and
equivanant mapping $q_{0}:\Gamma_{0}arrow Y$ and satisfies the following commutativity:

$X_{0}\downarrow karrow^{p0}\Gamma_{0}\downarrow iarrow^{q_{0}}Y\downarrow id$

$Xarrow^{p}\Gammaarrow^{q}Y$

where $(p, q)$ is a selected pair of $\varphi$ and $i$ is a closed inclusion.

For an equivariant mapping $\varphi$ : $Xarrow Y$ , it holds $qp^{-1}(x)\subset\varphi_{0}(x)$ for $x\in X$ where
$\varphi_{0}(x)=\varphi(x)\cap T’\varphi(T(x))$ . For an admissible mapping $\varphi$ : $Xarrow Y$ which is equivariant
on $X_{0}$ , it holds $q_{0}p_{0}^{-1}(x)\subset\varphi_{0}(x)$ for $x\in X_{0}$ .

We shall generalize Theorem 3.1 and 3.2 in what follows. Let $\partial\overline{U}$ be the boundary of
$\overline{U}$ , that is, $\partial\overline{U}=\overline{U}-Int\overline{U}$ .

Proposition 3.5. Let $U$ be a bounded open neighborhood of the origin in $R^{m+k}$ for $k\geqq 1$

which is symmetric with respect to the involution $T(x)=-x$ . $\mathcal{A}ssume$ that the boundary
$\partial U$ is an $(m+k-1)$ -dimensional manifold and $\varphi$ : $\partial\overline{U}arrow R^{m}$ is an admissible mapping
and is equivariant on $\partial\overline{U}$ . Then there exists a point $x_{0}\in\overline{U}$ such that $\varphi(x_{0})\ni 0$ .

Proof. Set $M=\overline{U-D}$ where $D$ is an open disk centered at $0$ with a small radius $r>0$ .
$M$ is a topological manifold with boundary which has the free involution $T$ . We have
$i^{*}(c(M, T))=c(\partial\overline{U}, T)$ for the inclusion $i:\partial\overline{U}arrow M$ and $j^{*}(c(M, T))=c(\partial\overline{D}, T)$ for the
inclusion $j:\partial\overline{D}arrow M$ . We can prove the following formula:

$c^{m+k-1}(\partial\overline{U}, T)[(\partial\overline{U})_{\pi}]=c^{m+k-1}(S^{m+k-1}, T)[S_{\pi}^{m+k-1}]$

by the method of Theorem 4.9 in J.Milnor [7]. Since $c^{m+k-1}(S^{m+k-1}, T)$ is not zero, we
obtain

$c^{m+k-1}(\partial\overline{U}, T)\neq 0$ . (3)
By our assumption, there exists an equivariant Vietoris mapping $p_{0}$ : $\Gamma_{0}arrow\partial\overline{U}$ and

an equivariant mapping $q_{0}:\Gamma_{0}arrow R^{m}$ such that $q_{0}p_{0}^{-1}(x)\subset\varphi(x)$ for $x\in\partial\overline{U}$. We have a
formula:

$c(\Gamma_{0}, T’)=p_{0\pi}^{*}(c(\partial\overline{U}), T)\neq 0$ . (4)
Assume that $\varphi(x)$ does not contain zero. $q_{0}$ is considered as $q_{0}$ : $\Gamma_{0}arrow R^{m}-\{0\}$ .

Since $q_{0}$ is equivariant, we have a formula:

$q_{0\pi}^{*}(c)=c(\Gamma_{0}, T’)$ (5)

where $c$ is the first Stiefel-Whitney class of $R^{m}-\{0\}$ . From the results (4), (5), we have

$(q_{0\pi})^{*}(c^{m+k-1})=c(\Gamma_{0}, T’)^{m+k-1}=(p_{0\pi})^{*}(c(\partial\overline{U}, T)^{m+k-1})$ . (6)

The left side of the equation is zero by $c^{m}=0$ and the right side is not zero by the
results (3) and (4) and the bijectivity of $(p_{0\pi})^{*}$ . From the contradiction, we obtain the
conclusion. $\square$
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$\backslash Ve$ must remark that $\Psi^{\cap}$ is defined on $\partial\overline{U}$ , not on $\overline{U}$ . We can also generalize Proposition
3.5 for the case that $\partial\overline{U}$ is not an $(m+k-1)$-dimensional closed manifold. The following
theorem is a gencralization of Theorem 4 of S.Y.Chang [1].

Theorem 3.6. Let $U$ be a bounded open neighborhood of the ongin in $R^{m+k}$ for $k\geqq 1$

which $\iota s$ symmetnc with respect to the involution $T(x)=-x$ . $\mathcal{A}ssume$ that $\varphi$ : $\partial\overline{U}arrow R^{m}$

$\iota s$ an equivanant admissible mapping. Then there exists point $x_{0}\in\partial\overline{U}$ such that $\varphi(x_{0})\ni$

$0$ .

Proof. We symmetrically cover $\overline{U}$ by finitely many open disks $\{V_{\alpha}\}_{\alpha\in A}$ with a small radius
below $r>0$ such that $\overline{U}\subset\bigcup_{\alpha\in A}V_{\alpha}$ . We may assume that $W= \bigcup_{\alpha\in A}\overline{V_{\alpha}}$ is a manifold
with boundary. Moreover we may assume that the boundary $\partial W$ is a manifold. If $\partial W$ is
not a manifold, it happened at a point $x$ where two closed disks $\overline{V}_{1}$ and $\overline{V}_{2}$ are tangent
each other. Since the point $x$ is clearly outside of $\overline{U}$ , it is sufficient to add two small disks
symmetrically at $x$ and $T(x)$ . Therefore we have

$c^{m+k-1}(\partial W, T)\neq 0$ . (7)

as in the proof of Proposition 3.5.
Set $\overline{U}_{r}=\{x\in\overline{U}|d(x, \partial\overline{U})\geqq 2r\}$ where $d(x, \partial\overline{U})$ is the distance between $x$ and $\partial\overline{U}$ .

We symmetrically cover $\overline{U}_{r}$ by finitely many open disks $\{V_{\beta}’\}_{\beta\in B}$ with a small radius below
$r>0$ such that $\overline{U}_{r}\subset\bigcup_{\beta\in B}V_{\beta}’\subset\overline{U}$. Set $W’= \bigcup_{\beta\in B}\overline{V_{\beta}’}$. We may assume that $W’$ is a
manifold with boundary and satisfies $W‘\subset Int\overline{U}$ . By Proposition 3.5 and $\partial(W-IntW’)=$
$\partial W\cup\partial W’$ , we obtain

$c^{m+k-1}(\partial W’, T)\neq 0$ , $c^{m+k-1}(W-IntW’, T)\neq 0$ .

Since families $\{IntW-W’\}$ and $\{W-IntW’\}$ are cofinal coverings of $\partial\overline{U}$ , we have
the isomorphism

fi‘ $( \partial\overline{U})\cong\lim_{arrow}\overline{H}^{*}(IntW-W’)\cong\lim_{arrow}\overline{H}^{*}$ ( $W$ –Int$W’$ ) (8)

by the continuity of the Alexander-Spanier cohomology theory. By the naturality of
Stiefel-Whitney class with respect to $\{W-IntW’\}$ , we see

$c^{m+k-1}(\partial\overline{U}, T)\neq 0$ . (9)

Therefore we obtain the result by the similar method as the proof of Proposition 3.5. $\square$

Let $\partial U$ be the boundary of $U$ . Note that $\partial U=\overline{U}-U$ . Generally $\partial U$ and $\partial\overline{U}$ are
different and $\partial\overline{U}\subset\partial U$ . For an open set $U$ of a normed space $E$ , it is said to be balanced
if satisfies $sU\subset U$ for all $s,$ $(0\leqq s\leqq 1)$ . Since a bounded open symmetric balanced
space $U$ satisfies the condition of the following theorem, we obtain easily Theorem 6 in
[1].
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Theorem 3.7. Let $U$ be a bounded open neighborhood of the ongin in $R^{m+k}$ for $k\geqq 0$

which is symmetnc with respect to the involution $T(x)=-x$ . $\mathcal{A}ssume$ that $\varphi$ : $\overline{U}arrow R^{m}$

is an admissible mapping which is equivanant on the boundary $\partial\overline{U}$ of U. Then there exists
a point $x_{0}\in\overline{U}$ such that $\varphi(x_{0})\ni 0$ and a point $x_{1}\in\overline{U}$ such that $\varphi(x_{1})\ni x_{1}$ .

Proof. We define a new open neighborhood $V$ of the origin in $R^{m+k+1}$ :

$V=\{(x, s)\in R^{m+k+1}|x\in Int\overline{U}, |s|<d(x, \partial\overline{U})\}$ . (10)

Clearly $V$ is an open neighborhood of the origin in $R^{m+k+1}$ and bounded symmetric with
respect to the antipodal involution in $R^{m+k+1}$ . We easily see:

$\overline{V}=\{(x, s)\in R^{m+k+1}|x\in\overline{U}, |s|\leqq d(x, \partial\overline{U})\}$ . (11)

The boundary $\partial\overline{V}$ of $\overline{V}$ is

$\partial\overline{V}=\{(x, s)\in R^{m+k+1}|x\in\overline{U}, |s|=d(x, \partial\overline{U})\}$ . (12)

Define a mapping $J:\overline{U}arrow R^{m+k+1}$ by

$J(x)=x+d(x, \partial\overline{U})e_{m+k\dotplus 1}$ (13)

where $x\in R^{m+k}$ and $e_{m+k+1}$ is the $(m+k+1)$-th unit vector in $R^{m+k+1}$ . Clearly we see
$\partial\overline{V}=J(\overline{U})\cup\{TJ(\overline{U})\}$ . As Theorem 3.6, we have $c(\partial\overline{V}, T)^{m+k}\neq 0$ and $c(\partial\overline{U}, T)^{m+k-1}\neq$

$0$ .
For the case $k>0$ the theorem is proved by the similar method as Theorem 3.6. We

shall prove for the case $k=0$ . Let $\hat{\varphi}$ : $\overline{U}arrow R^{m}$ be defined as follows:

$\hat{\varphi}(x)=\{\begin{array}{ll}\varphi(x) if x\in Int\overline{U}\varphi(x)\cup\{T\varphi(Tx)\} if x\in\partial\overline{U}.\end{array}$ (14)

Since $\varphi$ is upper semi-continuous, we can easily verify that $\hat{\varphi}$ is upper semi-continuous.
Since $\varphi$ is an equivariant admissible mapping on $\partial\overline{U}$ , we can easily verify that $\hat{\varphi}$ is equiv-
ariant admissible on $\partial\overline{U}$. Note $\hat{\varphi}(Tx)=T\hat{\varphi}(x)$ for $x\in\partial\overline{U}$.

Define $\Psi$ : $\partial\overline{V}arrow R^{m}$ by

$\Psi(z)=\{\begin{array}{ll}\hat{\varphi}(J^{-1}(z)) if z\in J(\overline{U})T\hat{\varphi}(J^{-1}(Tz)) if z\in TJ(\overline{U}).\end{array}$ (15)

$\Psi$ is well-defined and an upper semi-continuous mapping defined on $\partial\overline{V}$ .
Let $p$ : $\Gammaarrow\overline{U}$ and $q$ : $\Gammaarrow R^{m}$ be a selected pair of $\varphi$ . We shall show that $\Psi$ is

equivariant on $\partial\overline{V}$. Let $\hat{\Gamma}$ be the space obtained by the pushout $\Gammaarrow i\Gamma_{0}arrow iT\Gamma$ . Here we
note $i_{1}$ : $\Gamma_{0}arrow\Gamma_{1}$ in the place of $i$ : $\Gamma_{0}arrow\Gamma$ and $i_{2}$ : $\Gamma_{0}arrow\Gamma_{2}$ in the place of $iT$ : $\Gamma_{0}arrow\Gamma$ .
$\Gamma$ has the involution $\hat{T}$ induced by the following diagram:

$r_{I^{1}h}arrow^{i_{1}}r_{1^{0}\tau}arrow^{iz}\Gamma_{2}\downarrow k$

$\Gamma_{2}arrow^{i_{2}}\Gamma_{0}arrow^{i_{1}}\Gamma_{1}$
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where $h:\Gamma_{1}arrow\Gamma_{2},$ $k:\Gamma_{2}arrow\Gamma_{1}$ are defined by the identity $\Gammaarrow\Gamma$ .
$\hat{p}$ : $\hat{\Gamma}arrow\partial\overline{V}$ is defined by

$\hat{p}(x)=\{\begin{array}{ll}J(p(x)) if x\in\Gamma_{1}TJ(p(\hat{T}x)) if x\in\Gamma_{2}.\end{array}$

We easily see $\hat{p}$ : $\hat{\Gamma}arrow\partial\overline{V}$ is a Vietoris mapping.
$\hat{q}$ : $\hat{\Gamma}arrow R^{m}$ is defined by

$\hat{q}(x)=\{\begin{array}{ll}q(x) if x\in\Gamma_{1}Tq(\hat{T}x) if x\in\Gamma_{2}.\end{array}$

By Theorem 3.6, we obtain a point $x_{0}\in\partial\overline{V}$ such that $\Psi(x_{0})\ni 0$ . This means
$\varphi(y_{0})\ni 0$ for a point $y_{0}\in\overline{U}$ .

For the second part, define $\varphi_{1}$ : $\overline{U}arrow R^{m+k}$ by $\varphi_{1}(x)=x-j\varphi(x)$ for $x\in\overline{U}$ where
$j:R^{m}arrow R^{m+k}$ . $p:\Gammaarrow\overline{U}$ and p–jq: $\Gammaarrow R^{m+k}$ are the selected pair of $\varphi_{1}$ . We
easily verify that $\varphi_{1}$ is equivariant on $\partial\overline{U}$ by our hypothesis on $\varphi$ . By apply the former
part of this theorem to the case, there exists an element $x_{1}\in\overline{U}$ such that $\varphi_{1}(x_{1})\ni 0$ , i.e.
$\varphi(x_{1})\ni x_{1}$ . $\square$

4 Generalization to normed spaces
For a normed space $E,$ $D$ is defined by $\{x\in E|\Vert x\Vert\leqq 1\}$ and $S$ its boundary. We

easily see that $S$ is acyclic for an infinite dimensional normed space. Let $S_{\pi}$ be the orbit
space of $S$ by the antipodal involution. The cohomology ring of $S_{\pi}$ is the polynomial ring
or truncated polynomial ring according to the infinite or finite dimensional normed spaces.
This is easily proved by using the Gysin-Smith exact sequence of a double covering space.

We shall give a generalization of Theorem 3.7 to the normed space. We prepare the
Schauder approximation theorem for our application (cf. Theorem 12.9 in [5]).

Theorem 4.1. Let $X$ be a Hausdorff space and $U$ an open set of a normed space $E$ and
$f$ : $Xarrow U$ a continuous compact mapping. Then, for any $\epsilon>0$ , there exists a continuous
compact mapping $f_{\epsilon}$ : $Xarrow U$ satisfying the following condition:

1. $f_{\epsilon}(X)\subset E^{n(\epsilon)}$ for a finite dimensional subspace $E^{n(\epsilon)}$ of $E$

2. $\Vert f_{\epsilon}(x)-f(x)\Vert<\epsilon$ for any $x\in X$

3. $f_{\epsilon}(x),$ $f(x):Xarrow U$ are homotopic, noted by $f_{\epsilon}\simeq f$ .

In what follows, we assume that $\Gamma$ is a metric space. The following theorem 4.2 is
called Borsuk’s fixed point theorem (cf. Theorem 3.3 in \S 6 in [6], Theorem 3.7). Y.S.Chang
proved Theorem 4.2 for the case of a bounded symmetric balanced neighborhood of the
origin in a locally convex topological space (cf. Theorem 7 in [1]). We shall extend his
theorem to the case of spaces which is not necessarily contractible.
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Theorem 4.2. Let $U$ be a symmetnc bounded open neighborhood of the origin in a normed
space E. $\mathcal{A}ssume$ that $\varphi$ : $\overline{U}arrow E$ is upper semi-continuous, compact $\omega nvex$ valued
mapping and is equivanant on $\partial\overline{U}$ . Then there exist a fixed point $z_{0}\in$ Z7 such that
$\varphi(z_{0})\ni z_{0}$ .

Proof. The normed space $E$ has the involution $T$ defined by $T(x)=-x$ . Let $p:\Gammaarrow\overline{U}$

and $q:\Gammaarrow E$ be a selected pair of $\varphi$ . Let $p_{0}$ : $\Gamma_{0}arrow\overline{U}$ and $q_{0}$ : $\Gamma_{0}arrow E$ be a selected
pair of $\varphi_{0}$ which are equivariant mappings and $\varphi_{0}(x)=\varphi(x)\cap(T\varphi(T(x)))$ for $x\in\partial\overline{U}$ .

For any natural number $n$ , we find finite dimensional vector subspaces $\{V_{n}\}$ in $E$ and
$\{q_{n}:\Gammaarrow V_{n}\}$ such that

$|1q(y)-q_{n}(y) \Vert<\frac{1}{n}$ $(y\in\Gamma)$ (16)

by the approximation theorem of Schauder. Note that we can choose vector spaces $\{V_{n}\}$

such that $\dim V_{n}$ increases as $n$ increases and $V_{n}\subset V_{n+1}$ for all $n$ by seeing the con-
struction in the approximation theorem.

Note that $\Gamma_{0}$ has the involution $\tilde{T}$ . Define $q_{n,0}:\Gamma_{0}arrow V_{n}$ by

$q_{n,0}(z)= \frac{1}{2}\{q_{n}(z)-q_{n}(\tilde{T}(z))\}$ (17)

which is equivariant. We obtain the following inequality:

$\Vert q_{n,0}(z)-q_{0}(z)\Vert<\frac{1}{n}$ (18)

for $z\in\Gamma_{0}$ . This is proved by 1 $q_{n}(z)-q_{0}(z) \Vert<\frac{1}{n}$ for $z\in\Gamma_{0}$ and $\Vert q_{n}(\tilde{T}z)+q_{0}(z)\Vert=$

$\Vert q_{n}(\tilde{T}z)-q_{0}(\tilde{T}z)\Vert<\frac{1}{n}$ for $z\in\Gamma_{0}$ . And it holds also

$\Vert q_{n,0}(z)-q_{n}(z)\Vert<\frac{1}{n}$ (19)

for $z\in\Gamma_{n,0}$ . This is proved by $\Vert q_{n}(\tilde{T}z)+q_{n}(z)\Vert\leqq\Vert q_{n}(\tilde{T}z)-q_{0}(\tilde{T}z)\Vert+\Vert q_{0}(\tilde{T}z)+q_{n}(z)||\leqq$

$\Vert q_{n}(\tilde{T}z)-q_{0}(\tilde{T}z)\Vert+\Vert-q_{0}(z)+q_{n}(z)\Vert<\frac{2}{n}$ for $z\in\Gamma_{0}$ . Especially $q_{n}$ and $q_{n,0}$ are homotopic.
Let $\varphi_{n}$ : $\overline{U}arrow V_{n}$ be defined by

$\varphi_{n}(x)=B_{n}(\varphi(x))\cap V_{n}$ . (20)

where $B_{n}( \varphi(x))=\{z\in E|d(z, \varphi(x))\leqq\frac{1}{n}\}$ . By the inequality (16), it holds $\varphi_{n}(x)\neq\emptyset$

for $x\in\overline{U}$ . The graph of a set valued mapping $\hat{h}(x)=B_{n}(\varphi(x))$ is clearly a closed set in
$E\cross E$ and also the graph of $\varphi_{n}$ is a closed set in $V_{n}\cross V_{n}$ . Since the image of $\varphi_{n}(\overline{U})$ is
contained in a compact set by the condition of $\varphi$ and the definition of $\varphi_{n},$ $\varphi_{n}$ is upper
semi-continuous and compact mapping. $p_{n}=p$ and $q_{n}$ is a selected pair of $\varphi_{n}$ . Since $q_{n,0}$

is equivariant, $\varphi_{n}$ is equivariant on $\partial\overline{U}$ by the inequality (19).
Set $K_{n}=\overline{U\cap V_{n}}$ in $V_{n}$ and $K_{n,0}=\partial(\overline{U\cap V_{n}})$ . Set $\Gamma_{n}=p^{-1}(K_{n}),$ $\Gamma_{n0\}}=(p_{0})^{-1}(K_{n_{\dagger}0})$ .

$p_{n}$ : $\Gamma_{n}arrow K_{n}$ and $p_{n_{2}0}$ : $\Gamma_{n,0}arrow K_{n,0}$ are the restrictions of $p$ to $\Gamma_{n}$ and $\Gamma_{n,0}$ respectively.
The restriction of $q_{n}$ to $\Gamma_{n}$ is also written by $q_{n}$ : $\Gamma_{n}arrow V_{n}\subset E$ .
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Let $\psi_{n}$ : $K_{n}arrow V_{n}$ be the restriction of $\hat{\Psi}n$ to $K_{n}$ . We see $t$)$n(x)\neq\emptyset$ for $\prime x\in K_{n}$ by
(18). Let $\psi_{n_{1}0}:K_{n,0}arrow V_{n}$ be defined by $\psi_{n,0}(x)=\psi_{n}(x)\cap T\psi_{n}(T(x))$ for $x\in K_{n,0}$ . We
see $\psi_{n,0}(x)\neq\emptyset$ for $x\in K_{n,0}$ by (19).

We apply Theorem 3.7 to the case $\psi_{n}$ : $K_{n}arrow V_{n}$ . We have a point $z_{n}\in K_{n}$ such
that $z_{n}\in\varphi_{n}(z_{n})$ . From $z_{\eta}\in\psi_{n}(z_{n})$ , i.e. $z_{n}\in\varphi_{n}(z_{n})$ , we have a sequence $\{w_{n}\}$ satisfying
$\Vert z_{n}-w_{n}\Vert<\frac{1}{n}$ and $w_{n}\in\varphi(z_{n})$ . Since $\varphi$ is a compact mapping, a subsequence of $\{w_{n}\}$

converges to $w_{0}$ . Therefore we may assume that $\{z_{n}\}$ converge to a point $w_{0}$ . Since $\varphi$ is
upper semi-continuous, we have $z_{0}\in\varphi(z_{0})$ .

$\square$

In the above theorem, we can not prove the existence of the zero value of $\varphi$ as the
finite dimensional case. Now we shall give some examples. Let $D$ be the unit disk in a
Hilbert space H. Let $f$ : $Darrow D$ be defined by

$f(\{z_{n}\})=(\sqrt{1-\Vert z\Vert^{2}}, \{z_{n}\})$ . (21)

Clearly $f$ is a continuous mapping on $D$ and equivariant on the boundary $S$ and not a
compact mapping. If $f$ has a zero value, it holds the equations $\sqrt{1-\Vert z\Vert^{2}}=0$ , $z_{n}=0$

for all $n$ . We obtain easily the contradiction from the equations. Therefore $f$ has not a
zero value. We see also easily that $f$ has not a fixed point.

Let $g:Darrow D$ be defined by

$g( \{z_{n}\})=(\sqrt{1-||z\Vert^{2}}, \{\frac{z_{n}}{n}\})$ . (22)

Clearly $g$ is a continuous mapping on $D$ and equivariant on the boundary $S$ and a compact
mapping. If $g$ has a zero value, it holds the equations $\sqrt{1-\Vert z\Vert^{2}}=0$ , $\frac{z_{n}}{n}=0$ for all
$n$ . We obtain easily the contradiction from the equations. Therefore $g$ has not the zero
value. Of course $g$ has a fixed point (cf. \S 12 in [5], \S 3 in [12]).

Definition 4.3. Let $X$ be a subset of a vector space V and $\Phi$ : $Xarrow V$ a compact
admissible mapping. $\mathcal{A}$ set-valued mapping $\varphi$ : $Xarrow V$ is called an admissible compact
field, if $\varphi$ is defined by $\varphi(x)=x-\Phi(x)$ .

Let $E_{k}$ be a closed subspace of codimension $k$ of a normed space E. K.Geba and L.
G6rniewicz [3] proved the following theorem for the case of the unit sphere of a normed
space. Our method is different from their method.

Theorem 4.4. Let $E_{k}$ be a closed subspace of codimension $k\geqq 1$ of $E$ and $U$ be a
symmetnc bounded open neighborhood of the origin of E. If $\Phi$ : $\partial\overline{U}arrow E_{k}$ is a compact
admissible mapping, there is a point $x_{0}\in\partial\overline{U}$ such that $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ where
$\varphi(x)=x-\Phi(x)$ .

Proof. Let $(p, q)$ a selected pair of $\Phi$ where $p:\Gammaarrow\partial\overline{U}$ is a Vietoris mapping and $q:\Gammaarrow$

$E_{k}$ continuous mapping. There is a k-dimensional subspace $L_{k}$ such that $E=E_{k}\oplus L_{k}$ .
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By the approximation theorem of Schauder, there are finite dimensional vector subspace
$V_{n}\subset E_{k}$ and $q_{n}:\Gammaarrow V_{n}$ such that

$|1q(y)-q_{n}(y)$ $I$ $< \frac{1}{n}$

for $y\in\Gamma$ . We may assume that $\dim V_{n}$ increases and $V_{n}\subset V_{n+1}$ . Let $\Phi_{n}$ : $\partial\overline{U}arrow V_{n}$ be
a set-valued mapping defined by

$\Phi_{n}(x)=B_{n}(\Phi(x))\cap V_{n}$

where $B_{n}( \Phi(x))=\{y\in E|d(\Phi(x), y)\leqq\frac{1}{n}\}$ . Since the graph of $\Phi_{n}$ is closed and $\Phi_{n}(\partial\overline{U})$

is compact, $\Phi_{r\iota}$ is upper semi-continuous. Clearly $\Phi_{n}$ has a selected pair $p:\Gammaarrow\partial\overline{U}$ and
$q_{n}$ : $\Gammaarrow V_{n}$ . Therefore $\Phi_{n}$ is a compact admissible mapping.

Set $\varphi_{n}(x)=x-\Phi_{n}(x)$ . Consider $\Psi_{n}:W_{n}arrow V_{n}$ defined by the restriction of $\Phi_{n}$ to
$W_{n}$ where $W_{n}=\partial\overline{U}\cap(V_{n}\oplus L_{k})$ . Note that $c(W_{n}, T)^{i_{n}+k-1}\neq 0$ by Proposition 3.5 where
$\dim W_{n}=i_{n}$ .

By applying Theorem 6.3 of Y.Shitanda [12] to $\psi_{n}(x)=x-\Psi_{n}(x)$ , we have a point
$x_{n}\in W_{n}$ such that $\psi_{n}(x_{n})\cap\psi_{n}(T(x_{n}))\neq\emptyset$ . This means $x_{n}-y_{n}=-x_{n}-z_{n}$ for some
$y_{n}\in\Psi_{n}(x_{n})$ and $z_{n}\in\Psi_{n}(T(x_{n}))$ . Since $\Phi$ is compact mapping, there are convergent
points $y_{0}$ and $z_{0}$ of $\{y_{n}\}$ and $\{z_{n}\}$ respectively. Therefore there is a convergent point $x_{0}$

$y_{0}-z_{0}$where $x_{n}arrow x_{0}$ and $x_{0}=\overline{2}$ . We see easily $y_{0}\in\Phi(x_{0})$ and $z_{0}\in\Phi(T(x_{0}))$ . By

$\partial\overline{U}|\varphi(x)\cap\varphi(T(x))\neq\emptyset\}$ .
$x_{0}-y_{0}=-x_{0}-z_{0}$ , we have $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ , i.e. $A(\varphi)\neq\emptyset$ where

$A(\varphi)=\{x\in\square$

Let $X$ be a space with a ffee involution $T$ and $S^{k}$ a k-dimensional sphere with the
antipodal involution. Define $\gamma(X)$ and $Ind(X)$ by

$\gamma(X)$ $=$ $\inf$ { $k|f:Xarrow S^{k}$ equivariant mapping}
$Ind(X)$ $=$ $\sup\{k|c^{k}\neq 0\}$

respectively, where $c\in\overline{H}^{1}(X_{\pi};F_{2})$ is the class $c=f_{\pi}^{*}(\omega)$ for an equivariant mapping
$f$ : $Xarrow S^{\infty}$ . If $X$ is a compact space with a free involution, it holds the following
formula (cf. \S 3 in [2]):

$Ind(X)\leqq\gamma(X)\leqq\dim$ $X$ . (23)
K. Ggba and L. G\’orniewicz proved $IndA(\varphi)\geqq k-1$ (cf. Theorem 2.5 in [2]). We shall
generalize their result.

Corollary 4.5. Under the hypothesis of Theorem 4.4, it holds

$IndA(\varphi)\geqq k-1$ .

Proof. We use the notation of Theorem 4.4. Consider $\varphi_{n}$ : $W_{n}arrow V_{n}$ where $\tilde{\varphi}_{n}=$

$\varphi(x)\cap V_{n}$ for $x\in W_{n}$ . Clearly it holds $\mathcal{A}(\tilde{\varphi}_{n})\subset A(\tilde{\varphi}_{n+1})$ . By Theorem 6.3 of [12], we
have $Ind(A(\tilde{\varphi}_{n}))\geqq k-1$ . Therefore we obtain the result. $\square$
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