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INTRODUCTION

A real Bott tower is described as a sequence of RPl-bundles just as the real restriction
to Bott towers [2]. From the viewpoint of group actions, an n-dimensional real Bott
tower is viewed as the quotient of the n-dimensional torus $\mathcal{I}^{m}=S^{1}x\ldots xS^{1}$ by the
product $(\mathbb{Z}_{2})^{n}$ of cyclic groups of order 2. A Bott matrix $A$ of size $n$ is a upper triangular
matrix whose diagonal entries are one and the other entries are either one or zero. By the
definition, there are $2^{\underline{n}_{2}^{2}arrow-}$ distinct Bott matrices of size $n$ . The free action of $(\mathbb{Z}_{2})^{n}$ on $T^{n}$

can be expressed by each row of the Bott matrix $A$ whose orbit space $M(\mathcal{A})=T^{n}/(\mathbb{Z}_{2})^{n}$

is the real Bott tower. It is easy to see that $M(A)$ is a compact euclidean space form
(Riemannian flat manifold). Then we can apply the Bieberbach theorem [5] to classify
real Bott towers. Using this theorem, the classification of real Bott towers up to dimension
4 has been obtained [3]. In [2] we have proved that every n-dimensional real Bott tower
$M(\mathcal{A})$ admits an injective Seifert fibred structure, that is there exists a k-torus action on
$M(A)$ whose quotient space is an $(n-k)$-dimensional real Bott tower orbifold $M(B)$ by
some $(\mathbb{Z}_{2})^{\epsilon}$-action $(1\leq s\leq k)$ . Moreover we have shown the smooth rigidity which states
that real Bott towers $M(\mathcal{A}_{i})i=1,2$ are diffeomorphic lf and only if the corresponding
actions $((\mathbb{Z}_{2})^{s_{\ddagger}}, M(B_{i}))$ are equivariantly diffeomorphic. When the low dimensional real
Bott towers with $(\mathbb{Z}_{2})^{s}$-actions are determined, we can distinguish the diffeomorphism
classes of higher dimensional ones by the rigidity.

The main purpose of this paper is to determine the diffeomorphism classes of 4 di-
mensional real Bott towers from the classifications of 2, 3 dimensional real Bott towers
with $(\mathbb{Z}_{2})^{s}$-actions $(s=1,2)$ . This method also works for dimension 5 but the classifica-
tion of low dimensional real Bott towers with $(\mathbb{Z}_{2})^{s}$-actions are a bit complicated. The
classification of 5 dimensional real Bott towers will be appeared elsewhere. (cf. [4])

1. REVIEW OF $[2|$

Each i-th row of a Bott matrix $A$ defines a $\mathbb{Z}_{Q}$ -action on $T^{n}$ by
$g_{i}(z_{1}, z_{2}, \ldots, *)=(z_{1}, \ldots, z_{i-1}, -z_{i},\tilde{z}_{i+1}, \ldots,\tilde{z}_{n}),$ $(i=1, \ldots, n)$

where $(i, i)-(diagonal)$ entry 1 acts as $z_{i}arrow-z_{i}$ while $\tilde{z}_{j}$ is either $z_{j}$ or $\overline{z}_{j}$ depending on
whether $(i,j)$-entry $(i<j)$ is $0$ or 1 respectively. Note that $\overline{z}$ is the conjugate of the
complex number $z\in S^{\iota}$ . It always trivial; $z_{j}arrow z_{j}$ whenever $j<i$ . Here $(z_{1}, \ldots, z_{n})$ are
the standard coordinates of the n-dimensional torus $T^{n}$ . Those $\langle g_{1},$ $\ldots,g_{n}\rangle$ constitute the
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generators of $(\mathbb{Z}_{2})^{n}$ . It is easy to see that $(\mathbb{Z}_{2})^{n}$ acts freely on $T^{n}$ such that the orbit space
$M(A)=T^{n}/(\mathbb{Z}_{2})^{n}$ is a smooth compact manifold. In this way, given a Bott matrix $A$ of
size $n$ , we obtain a free action of $(\mathbb{Z}_{2})^{n}$ on $T^{\tau\iota}$ .

Now let us recall operations I, II, III and IV [2] to a Bott matrix $A$ of size $n$ under
which the diffeomorphism class of $M(A)$ does not change.
I. Interchange the coordinates $z_{i},$ $z_{j}$ in $T^{n},$ $(z_{j}arrow z_{i}’, z_{i}arrow z_{j}’)$ .
II. Interchange the generators $g_{i},$ $g_{j}(i<j),$ $(g_{j}arrow g_{i}’, g_{i}arrow g_{j}’)$ .
Performing the operations I and II iteratively, we get a Bott matrix

(1.1) $A’=( \frac{I_{k}|C}{0|B})B=(1$ ... $*1)$

where $I_{k}$ is a maximal block of identity matrix of size $k$ , the entries of the $*$ are either
1 or $0,$ $B$ is the Bott matrix of size $(n-k)$ which presents a real Bott tower $M(B)=$
$T^{n-k}/(\mathbb{Z}_{2})^{n-k}$ . Since $I_{k}$ is a maximal block of identity matrix, each $k+j(j=1, \ldots, n-k)$-th
column of $A^{l}$ has at least two non zero elements.

Associated to the Bott matrix $A’$ , the $(\mathbb{Z}_{2})^{n}$-action splits into $(\mathbb{Z}_{2})^{k}x(\mathbb{Z}_{2})^{n-k}$ and $T^{m}$

splits into $T^{k}xT^{n-k}$ . Hence

(1.2) $M(A)=T^{n}/( \mathbb{Z}_{2})^{n}\cong\frac{T^{k}xT^{n-k}}{(\mathbb{Z}_{2})^{k}\cross(\mathbb{Z}_{2})^{n-k}}=T^{k_{(z_{2}^{X})^{k}}}M(B)=M(A’)$.

Note that above $(\mathbb{Z}_{2})^{k}$-action of (1.2) Is not necessarily effective on $M(B)$ but we can
reduce it to the effective $(\mathbb{Z}_{2})^{s}$-action on $M(B)$ for some $s(1\leq s\leq k)$ . In order to do so,
we have two more operations.
III. If there is an m-th row $(1 \leq m\leq k)$ whose entries in $C$ are all zero, then divide
$T^{k}xM(B)$ by the corresponding $\mathbb{Z}_{2}$-action.
IV. If the p-th row and $\ell$-th row $(1\leq p<P\leq k)$ have the common entries in $C$ ,
then compose the $\mathbb{Z}_{2}$-action of p-th row with l-th row and divide $T^{k}\cross M(B)$ by this
$\mathbb{Z}_{2}$-action.
By an iteration of III, IV, the quotient is again diffeomorphic to $T^{k}\cross M(B)$ but eventually
the $(\mathbb{Z}_{2})^{k}$-action is reduced to the effective $(\mathbb{Z}_{2})^{s}$-action on $T^{k}xM(B)$ . Therefore the
Bott matrix $A’$ reduces to

$($ 1.3)

in which

$M(A’)=T^{k_{(Z_{2}^{\cross})^{k}}}M(B)$

$= \frac{T^{k-s}xT^{s}xM(B)}{(\mathbb{Z}_{2})^{k-s}x(\mathbb{Z}_{2})^{\epsilon}}=M(A^{\prime l})$.
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Since $(\mathbb{Z}_{2})^{k-s}$ acts trivially on $T^{s}xM(B)$ then we have

$M(\mathcal{A}’’)\cong T^{k}\cross M(B)(Z_{2})^{s}$ .

From now on, we write $M(\mathcal{A})$ instead of $M(A”)$ .

Remark 1.1. From the submatrix $*of(1.3)$ , the group $(\mathbb{Z}_{2})^{s}=\langle g_{k-s+1},$
$\ldots,$

$g_{k}\rangle$ acts on
$T^{k}\cross M(B)$ by

$g_{i}(z_{1}, \ldots, z_{k-s+1}, \ldots, z_{k}, [z_{k+1}, \ldots, z_{n}])$

(1.4)
$=(z_{1}, \ldots, z_{k-s+1}, \ldots, -z_{\iota}, \ldots, z_{k}, [\tilde{z}_{k+1}, \ldots,\tilde{z}_{n}])$

where $\tilde{z}=\overline{z}$ or $z$ . So there induces an action of $(\mathbb{Z}_{2})^{s}$ on $M(B)$ by

(1.5) $g_{i}([z_{k+1}, \ldots, z_{n}])=[\tilde{z}_{k+1},$ $\ldots,\tilde{z}_{n}|$ .

Moreover in [2], we have shown that

Theorem 1.2 (Structure). Given a real Bott tower $M(A)$ , there exists a maximal $T^{k_{-}}$

action $(k\geq 1)$ such that
$M(A)=T^{k}\cross M(B)(Z_{2})^{\epsilon}$

is an injective Seifert fiber space over the $(n-k)$ -dimensional real Bott orbifold $M(B)/(\mathbb{Z}_{2})^{\epsilon}$ ;

(1.6) $T^{k}arrow M(A)arrow M(B)/(\mathbb{Z}_{2})^{s}$ .

There $u$ a central extension of the fundamental group $\pi(A)$ of $M(A)$ :

(1.7) $1arrow \mathbb{Z}^{k}arrow\pi(A)arrow Q_{B}arrow 1$

such that
(i) $\mathbb{Z}^{k}$ is the maximal central free abelian subgroup
(ii)

$M(B)Thein.duced$
group $Q_{B}$ is the semidirect product $\pi(B)\rangle\triangleleft(\mathbb{Z}_{2})^{s}$ for which $\mathbb{R}^{n-k}/\pi(B)=$

See [2] for the proof.

By this theorem, a real Bott tower $M(\mathcal{A})$ which admits a maximal $T^{k}$-action $(k\geq 1)$

can be created from an $(n-k)$-dimensional real Bott tower $M(B)$ by a $(\mathbb{Z}_{2})^{s}$-action, and
the corresponding Bott matrix $A$ has the form as in (1.3) above.

Next, we can apply the following theorem to check whether two real Bott towers are
diffeomorphic,

Theorem 1.3 (Rigidity). Let $M(\mathcal{A}_{1}),$ $M(\mathcal{A}_{2})$ be n-dimensional real Bott towers and
$1arrow \mathbb{Z}^{k_{i}}arrow\pi(A_{i})arrow Q_{B_{i}}arrow 1$ be the associated group extensions $(i=1,2)$ . Then the
following are equivalent:

(i) $\pi(A_{1})$ is isomorphic to $\pi(\mathcal{A}_{2})$ .
(ii) There exists an isomorphism of $Q_{B_{1}}=\pi(B_{1})\rangle\triangleleft(\mathbb{Z}_{2})^{s_{1}}$ onto $Q_{B_{2}}=\pi(B_{2})\rangle\triangleleft(\mathbb{Z}_{2})^{s2}$

preserving $\pi(B_{1})$ and $\pi(B_{2})$ .
(iii) The action $((\mathbb{Z}_{2})^{s_{1}}, M(B_{1}))$ is equivare antly diffeomorphic to $((\mathbb{Z}_{2})^{s2}, M(B_{2}))$ .
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See [2] for the proof.

Note that two real Bott towers $M(A_{1})$ and $M(\mathcal{A}_{2})$ are diffeomorphic if and only if
$\pi(A_{1})$ is isomorphic to $\pi(A_{2})$ by the Bieberbach theorem [5]. Moreover Theorem 1.3
implies that if $M(B_{1})$ and $M(B_{2})$ are not diffeomorphic then $M(A_{1})$ is not diffeomorphic
to $M(A_{2})$ . Therefore two real Bott towers which admit different maximal $T^{k}$-action
are not diffeomorphic. If they have the same maximal $T^{k}$ -action, then the quotients
$((\mathbb{Z}_{2})^{s}i, M(B_{i}))$ are compared. If $M(B_{1})$ is not diffeomorphic to $M(B_{2})$ or $s_{1}\neq s_{2}$ , then
$M(A_{1})$ and $M(A_{2})$ are not diffeomorphic. So our task is to distinguish the $(\mathbb{Z}_{2})^{s}$-actions
on $M(B_{i})$ when it is the case that $s_{1}=s_{2}=s$ and $M(B_{1})$ is diffeomorphic to $M(B_{2})$ .
Proposition 1.4. The $(\mathbb{Z}_{2})^{\epsilon}$ -action on $M(B)$ is distinguished by the number of $\omega mpo-$

nents and types of each positive dimensional fixed point subsets.
See [2] for the proof.

Note that from (1.5), the fixed point set of $(\mathbb{Z}_{2})^{s}$ acting on $M(B)$ is characterized by
the equation:

$(\tilde{z}_{k+1}, \ldots,\tilde{z}_{n})=g(z_{k+1}, \ldots, z_{n})$

for some $g\in(\mathbb{Z}_{2})^{n-k}$ .

Deflnition. We say that two Bott matrices $A$ and $A^{l}$ are equivalent (denoted by $A\sim A’$ )
if $M(A)$ and $M(A’)$ are diffeomorphic.

In order to understand easily, we shall give the explicit calculations in the following
examples how to create and distinguish the diffeomorphism type of real Bott towers.
Example 1.1.

We create Bott matreces of size 4 where the corresponding real Bott towers admit the
maximal $T^{2}$ -actions. By Theorem 1.2, such Bott matri ces can be created from a Bott
matrex $B$ of size 2. In this example we choose $B=(\begin{array}{ll}1 10 1\end{array})$ . There are 12 Bott matrices
of size 4 created from $B$ with the $(\mathbb{Z}_{2})^{s}$ -actions where $s=1,2$ (see subsection 3.2 below).
Now we choose four of them as follows

$A_{3}=(\begin{array}{llll}1 0 1 00 1 1 00 0 1 10 0 0 1\end{array}),$ $\mathcal{A}_{4}=(\begin{array}{llll}1 0 0 00 1 1 00 0 1 10 0 0 1\end{array})$ ,

$A_{5}=(\begin{array}{llll}1 0 1 10 1 0 10 0 1 10 0 0 1\end{array}),$ $A_{6}=(\begin{array}{llll}1 0 1 00 1 0 10 0 1 10 0 0 1\end{array})$ .

a$)$ . Let us $\omega nsider$ the Bott matrices $A_{3}$ and $A_{4}$ . As mentioned in the previous para-
graph, by the operation IV, the $(\mathbb{Z}_{2})^{2}$ -action on $T^{2}\cross M(B)\omega rresponding$ to Bott
matrix $A_{3}$ reduces to the $\mathbb{Z}_{2}$ -action. ($M(B)=a$ Klein bottle). Therefore Bott
matrix $A_{3}$ is equivalent to $A_{4}$ .

b $)$ . Now the induced action of $(\mathbb{Z}_{2})^{2}$ on $M(B)$ corresponding to Bott matmces $A_{5}$ and
$A_{6}$ are

161



(i). $g_{1}([z_{3}, z_{4}])=[\overline{z}_{3},\overline{z}_{4}],$ $g_{2}([z_{3}, z_{4}])=[z_{3},\overline{z}_{4}]$ and
(ii). $h_{1}([z_{3}, z_{4}])=[\overline{z}_{3}, z_{4}],$ $h_{2}([z_{3}, z_{4}])=[z_{3},\overline{z}_{4}]$

respectively. We change the generator $g_{1}$ into $g_{1}’([z_{3}, z_{4}])=g_{1}g_{2}([z_{3}, z_{4}])=[\overline{z}_{3}, z_{4}]$ .
Then define an equivanant diffeomorphism $\varphi$ : $((\mathbb{Z}_{2})^{2}, M(B))arrow((\mathbb{Z}_{2})^{2}, M(B))$ by
$\varphi([z_{3}, z_{4}])=([z_{3}, z_{4}])$ such that $\varphi g_{1}’=h_{1}\varphi$ and $\varphi g_{2}=h_{2}\varphi$ . Hence $M(\mathcal{A}_{5})$ is
diffeomorphic to $M(\mathcal{A}_{6})$ by Theorem 1.3.

c $)$ . To show that $M(A_{4})\iota s$ not diffeomorphic to $M(A_{6})$ , we use the following argument.
Since the $(\mathbb{Z}_{2})^{2}$ -action on $M(B)$ corresponding to $A_{4}$ reduces to the $\mathbb{Z}_{2}$ -action then
$M(A_{4})=T^{2}x_{Z_{2}}M(B)$ , but $M(A_{6})=T^{2}x_{(Z_{2})^{2}}M(B)$ .

Example 1.2.
We shall create 5-dimensional real Bott towers which admit maximal $S^{1}$ -actions. There-

fore the corresponding Bott matrices can be created from the Bott matrices of size 4. $In$

this example we create the Bott matrix $A$ from $A_{4}$ (see Example 1.1.). We introduce 3 of
4 Bott matnces as follows

$\mathcal{A}_{7}=(\begin{array}{lllll}1 1 1 0 00 1 0 0 00 0 1 1 00 0 0 1 10 0 0 0 1\end{array}),A_{8}=(\begin{array}{lllll}1 1 1 1 00 l 0 0 00 0 1 1 00 0 0 1 10 0 0 0 1\end{array}),\mathcal{A}_{9}=(\begin{array}{lllll}l 1 1 0 10 1 0 0 00 0 1 1 o0 0 0 1 10 0 0 0 1\end{array})$ .

a$)$ . The induced action of $\mathbb{Z}_{2}$ on $M(A_{4})\omega msponding$ to Bott matrices $A_{7}$ and $\mathcal{A}_{8}$ are
$g_{1}([z_{2},$ $z_{3},$ $z_{4},$ $z_{5}|)=[\overline{z}_{2},\overline{z}_{3}, z_{4}, z_{5}]$ and
$h_{1}([z_{2}, z_{3}, z_{4}, z_{5}])=[\overline{z}_{2}, Z3, \overline{z}_{4}, z_{5}]=[h_{3}(\overline{z}_{2},\overline{z}_{3},\overline{z}_{4}, z_{5})]$

$=[\overline{z}_{2}, -\overline{z}_{3}, z_{4}, z_{5}]$

respectively. We define an equivar ant diffeomorphism
$\varphi:(\mathbb{Z}_{2}, M(A_{4}))arrow(\mathbb{Z}_{2}, M(A_{4}))$

by $\varphi([z_{2}, z_{3}, z_{4}, z_{5}])=([z_{2}, iz_{3}, z_{4}, z_{5}])$ , such that $\varphi g_{1}=h_{1}\varphi$ . Hence $M(\mathcal{A}_{7})$ is
$diff\omega morphic$ to $M(A_{8})$ .

b $)$ . Real Bott tower $M(\mathcal{A}_{7})$ is not diffeomorphic to $M(\mathcal{A}_{9})$ , because they are dis-
tinguished by the positive dimensional fixed point sets of $\mathbb{Z}_{2}$ -actions on $M(A_{4})$

where the fixed point sets $\omega roesponding$ to $A_{7}$ and $A_{9}$ are (i) 2-components $T^{2}$ ,
$2-\omega mponentsS^{1},4$ points, (ii) 6-components $S^{1},4$ points, respectively.

2. Two AND THREE DIMENSIONAL REAL BOTT TOWERS
2.1. Two dimensional real Bott towers. We shall classify the diffeomorphism classes
of 2-dimensional real Bott towers.

Theorem 2.1. The diffeomorphism classes of 2-dimensional real Bott towers $\omega nsist$ of
two.

We shall explain Theorem 2.1. The Bott matrices are

(2.1) $\mathcal{A}_{1}=(\begin{array}{ll}1 00 1\end{array})$ or $A_{2}=( \frac{1|1}{0|1})$ .
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Then the corresponding real Bott towers $M(A_{1}),$ $M(\mathcal{A}_{2})$ are not diffeomorphic because
$M(A_{1})$ is a torus $T^{2}$ and $M(A_{2})$ is a Klein bottle.
2.2. Three dimensional real Bott towers. Using our Theorem 1.2, 3-dimensional real
Bott towers are obtained from the 1, 2-dimensional real Bott towers with $(\mathbb{Z}_{2})^{\epsilon}$-actions.
Theorem 2.2. The diffeomorphism classes of 3-dimensional real Bott towers $\omega nsist$ of
four.
2.2.1. $S^{1}$ -actions with two dimensional quotients.

The Bott matrices of $M(A)$ admitting $S^{1}$-actions are the following forms

(2.2) $(\begin{array}{lll}1 1 10 1 00 0 1\end{array}),$ $(\begin{array}{lll}1 1 00 1 10 0 1\end{array}),$ $(\begin{array}{lll}1 1 1o 1 10 0 1\end{array})$ .

By the $\mathbb{Z}_{2}$-actions on two dimensional real Bott towers $M(B)$ , the first row of each matrix
is determined as above. However the second and third Bott matrices are equivalent

(2.3) $(\begin{array}{lll}1 1 00 1 10 0 l\end{array})\sim(\begin{array}{lll}1 1 10 1 10 0 1\end{array})$ .

In fact, let $M(B)$ be the Klein bottle where $B=(\begin{array}{ll}1 10 1\end{array})$ . Then there is an equivariant
diffeomorphism $\varphi$ : $(\mathbb{Z}_{2}, M(B))arrow(\mathbb{Z}_{2}, M(B))$ which is defined by $\varphi([z_{2}, z_{3}])=[iz_{2}, z_{3}]$

such that $\varphi g_{1}=h_{1}\varphi$ where $g_{1}([z_{2}, z_{3}])=[\overline{z}_{2}, z_{3}]$ and $h_{1}([z_{2}, z_{3}])=[\overline{z}_{2},\overline{z}_{3}]=[h_{2}(\overline{z}_{2},\overline{z}_{3})]=$

$[-\overline{z}_{2}, z_{3}]$ .
So the diffeomorphism classes of this case consist of two.

2.2.2. $T^{2}$ -actions with one dimensional quotients.
The Bott matrices of $M(A)$ admitting $T^{2}$-actions have the form

$(\begin{array}{lll}1 0 a130 1 a230 0 1\end{array})$ ,

where $a_{13},$ $a_{23}=\{0,1\}$ . In this case $M(B)=M(1)=S^{1}$ with $\mathbb{Z}_{2}$-action.
The following shows all the possibilities of the above form.

(2.4) $(\begin{array}{lll}1 0 10 1 00 0 1\end{array})\sim(\begin{array}{lll}1 0 00 1 10 0 1\end{array})\sim(\begin{array}{lll}1 0 10 l 10 0 1\end{array})$ .

However they are equivalent to each other by operations I, II, III and IV. In this case it
consists of just one diffeomorphism class.

Obviously a 3-dimensional real Bott tower admitting $T^{3}$-action is $T^{3}$ whose Bott matrix
is the identity matrix of rank 3. Combined with the cases of $S^{1},$ $T^{2}$-actions we get four
distinct diffeomorphism classes.
Remark 2.3. We have already introduced seven of eight Bott matrices of size 3. The
remaining is the following Bott matrix

(2.5) $(\begin{array}{lll}1 1 00 1 00 0 1\end{array})$ .

However it \’is equivalent to the first Bott matrix in (2.4) by using operations I and II $(i.e.$ ,
interchange the coordinates $z_{2},$ $z_{3}$ and the generators $g_{2},g_{3}$ ).
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3. FOUR DIMENSIONAL REAL BOTT TOWERS

In this section we shall classify the diffeomorphism classes of 4-dimensional real Bott
towers where by using Theorem 1.2, such real Bott towers are obtained from 1, 2 or
3-dimensional real Bott towers with the $(\mathbb{Z}_{2})^{s}$-actions.

Theorem 3.1. The $diffeomorph\iota sm$ classes of 4-dimensional real Bott towers $\omega nsist$ of
twelve.

We shall explain Theorem 3.1.

3.1. $S^{1}$-actions with three dimensional quotients.
The Bott matrices of $M(A)$ admitting $S^{1}$-actions have the following form

(3.1) $(\begin{array}{llll}1 1 a13 a_{14}0 0 B 0 \end{array})$

where $a_{13},$ $a_{14}=\{0,1\}$ . In this case $M(B)$ corresponds to Bott matrices (2.2), (2.4) and
$I_{3}$ with the $\mathbb{Z}_{2}$-actions.

The following shows all the possibilities of the form (3.1).

(i).

(3.2) $(\begin{array}{llll}1 1 0 00 1 1 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 1 1 10 1 1 10 0 1 00 0 0 1\end{array})$ .

(ii).

(3.3) $(\begin{array}{llll}1 1 1 00 1 1 10 0 1 00 0 0 l\end{array})\sim(\begin{array}{llll}1 1 0 10 1 1 10 0 1 00 0 0 1\end{array})$ .

The two Bott matrices in (3.2) (resp. (3.3)) are equivalent by the equivariant diffeomor-
phism $\varphi$ : $(\mathbb{Z}_{2}, M(B))arrow(\mathbb{Z}_{2}, M(B))$ defined by $\varphi([z_{2}, z_{3}, z_{4}])=[iz_{2}, z_{3}, z_{4}]$ , where $M(B)$
corresponds to the first Bott matrix in (2.2). Then the fixed point sets of the $\mathbb{Z}_{2}$-actions
on $M(B)$ corresponding to the Bott matrices (3.2) and (3.3) are (a) $T^{2},4$ points, (b)
4-components $S^{1}$ , respectively.

(iii).

(3.4) $(\begin{array}{llll}1 1 0 00 1 1 00 0 1 10 0 0 1\end{array})\sim*(\begin{array}{llll}1 1 1 00 1 1 00 0 1 10 0 0 1\end{array})\sim**(\begin{array}{llll}1 1 0 00 l 1 10 0 1 10 0 0 1\end{array})\sim*(\begin{array}{llll}1 1 1 10 1 1 10 0 l 10 0 0 1\end{array})$ .
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$($ iv$)$ .

(3.5) $(\begin{array}{llll}1 1 0 10 1 1 00 0 1 10 0 0 1\end{array})\sim*(\begin{array}{llll}1 1 1 10 1 1 00 0 1 10 0 0 1\end{array})\sim^{**}(\begin{array}{llll}1 1 0 10 l 1 10 0 1 10 0 0 1\end{array})\sim^{*}(\begin{array}{llll}1 1 1 00 1 1 10 0 1 10 0 0 1\end{array})$ .

The Bott matrices in (3.4) as well as (3.5) are equivalent to each other by the fol-
lowing equivariant diffeomorphisms $\varphi$ : $(\mathbb{Z}_{2}, M(B))arrow(\mathbb{Z}_{2}, M(B))$ which Is defined by
$\varphi([z_{2}, z_{3}, z_{4}])=[iz_{2}\rangle z_{3}, z_{4}]$ for $”\sim^{*}$ “ and by $\varphi([z_{2}, z_{3}, z_{4}])=[iz_{2}, iz_{3}, z_{4}]$ for $”\sim**$ . Here
$M(B)$ corresponds to the second or third Bott matrix in (2.2). On the other hand the
fixed point sets of the $\mathbb{Z}_{2}$-actions on $M(B)$ corresponding to the Bott matrices (3.4) and
(3.5) are (a) $T^{2},$ $S^{1},2$ points, (b) 3-components $S^{1},2$ points, respectively.

(v).

$(\begin{array}{llll}1 1 1 10 1 0 10 0 1 10 0 0 1\end{array})\sim^{a)}(\begin{array}{llll}1 1 1 00 l 0 10 0 1 10 0 0 1\end{array})\sim^{b)}(\begin{array}{llll}1 1 1 00 1 0 10 0 l 00 0 0 1\end{array})\sim^{a)}$

(3.6)

$(\begin{array}{llll}1 1 1 10 1 0 l0 0 1 00 0 0 1\end{array})\sim^{d)}(\begin{array}{llll}1 1 1 10 1 0 00 0 1 10 0 0 1\end{array})\sim^{c)}(\begin{array}{llll}1 1 1 00 1 0 00 0 1 l0 0 0 1\end{array})$ .

The Bott matrices in (3.6) are equivalent to each other by the following equivariant
diffeomorphisms

$\varphi:(\mathbb{Z}_{2}, M(B))arrow(\mathbb{Z}_{2}, M(B))$

$\varphi([z_{2}, z_{3}, z_{4}])=[iz_{2}$ , Z3, $z_{4}|$ (for $\sim^{a)}$ ”)

$\varphi([z_{2}, z_{3}, z_{4}])=[z_{2}z_{3}, z_{3}, z_{4}](f$ $or$
$\sim^{b)}$ ”

$)$

$\varphi([z_{2}, z_{3}, z_{4}])=[z_{2}, iz_{3}, z_{4}]$ (for $\sim^{c)}$ ”),

and for $”\sim^{d)}$ “ we interchange the coordinates $z_{2},$ $z_{3}$ and the generators $g_{2},g_{3}$ (by opera-
tions I, II). Here $M(B)$ corresponds to the Bott matrices in (2.4).

Remark 3.2. We have two more Bott matrices which are equivalent to the Bott matrices
in (3.6), namely

$(\begin{array}{llll}1 1 0 10 1 l 00 0 1 00 0 0 1\end{array})$ , $(0001$ $0011$ $0111$ $0011$

These Bott matrices are obtained from

$(\begin{array}{llll}1 1 1 00 1 0 10 0 1 00 0 0 1\end{array})$ and $(\begin{array}{llll}1 1 1 10 1 0 10 0 1 00 0 0 1\end{array})$

respectively, by interchanging the coordinates $z_{3},$ $z_{4}$ and the generators $g3,g_{4}$ .
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(vi). Obviously it consists of just one Bott matrix of $M(A)$ obtained from $M(B)$ with
$\mathbb{Z}_{2}$-action, where $B=I_{3}$ , namely

(3.7) $(\begin{array}{llll}1 1 1 10 1 0 00 0 1 00 0 0 1\end{array})$ .

So the diffeomorphism classes of the case of $S^{1}$-actions with three dimensional quotients
consist of six.

3.2. $T^{2}$-actions with two dimensional quotients.
The Bott matrices of $M(A)$ admitting $T^{2}$-actions have the following form

(3.8) $(\begin{array}{ll}I_{2} *0 B\end{array})$ .

In this case $M(B)$ corresponds to Bott matrix $I_{2}$ or $(\begin{array}{ll}l 10 1\end{array})$ with the $(\mathbb{Z}_{2})^{\theta}$-actions where
$s=1,2$ .

The following shows all the possibilities of the form (3.8).

(i).

$(\begin{array}{llll}1 0 0 10 1 1 00 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 10 l 1 l0 0 1 00 0 0 l\end{array})\sim(\begin{array}{llll}1 0 1 00 1 0 10 0 1 00 0 0 1\end{array})\sim$

(3.9)

$(\begin{array}{llll}1 0 1 10 1 0 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 00 1 1 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 10 1 1 00 0 1 00 0 0 1\end{array})$ .

(ii).

(3.10) $(\begin{array}{llll}1 0 0 00 1 1 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 10 1 0 00 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 l0 l 1 10 0 1 00 0 0 1\end{array})$ .

Similar to Example 1.1, one can check that the Bott matrices in (3.9) (resp. (3.10)) are
equivalent to each other. We can check that the $(\mathbb{Z}_{2})^{2}$ -actions on 2-dimensional real Bott
towers $M(B)$ to each $B$ in (3.10) can be reduced to a $\mathbb{Z}_{2}$-action on it. Moreover the class
of real Bott tower in (3.9) is not equivalent to that of (3.10).

Remark 3.3. There are two more Bott matrices which are equivalent to the Bott matrices
in (3.9), namely

$(\begin{array}{llll}1 1 0 00 ] 0 00 0 1 10 0 0 1\end{array})$ , $(\begin{array}{llll}l 1 0 10 1 0 00 0 1 10 0 0 1\end{array})$ .
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These Bott matri ces are obtained from

$(\begin{array}{llll}1 0 1 00 1 0 10 0 1 00 0 0 1\end{array})$ and $(\begin{array}{llll}1 0 1 10 1 0 10 0 1 00 0 0 1\end{array})$

respectively, by interchanging the coordinates $z_{2},$ $z_{3}$ and the generators $g_{2},g_{3}$ .
Next from the Bott matrix

(3.11) $(\begin{array}{llll}1 0 1 10 1 0 00 0 1 00 0 0 1\end{array})$

in (3.10) we obtain the Bott matrices

$(\begin{array}{llll}1 1 0 10 1 0 00 0 1 00 0 0 1\end{array})$ and $(0001001100110001$

where the first Bott matrix is obtained by interchanging the coordinates $z_{2},$ $z_{3}$ and the
generators $g_{2},$ $g_{3}$ , while the second Bott matrix is obtained by interchanging the $\omega ordinates$

$z_{2},$ $z_{4}$ and the generators $g_{2},g_{4}$ of the Bott matrix (3.11).

(iii).

$(\begin{array}{llll}1 0 0 00 1 1 00 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 00 1 1 10 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 00 1 0 00 0 1 10 0 0 1\end{array})\sim$

(3.12)

$(\begin{array}{llll}1 0 1 10 1 0 00 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 00 1 1 00 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 10 1 1 10 0 1 10 0 0 1\end{array})$ .

(iv).

$(\begin{array}{llll}1 0 0 10 1 1 00 0 l 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 l0 1 1 10 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 00 1 0 10 0 1 10 0 0 1\end{array})\sim$

(3.13)

$(\begin{array}{llll}1 0 1 10 1 0 10 0 1 10 0 0 l\end{array})\sim(\begin{array}{llll}1 0 1 00 1 1 10 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 1 10 1 1 00 0 1 l0 0 0 1\end{array})$ .

We have already checked the equivalence of (iii) and (iv) respectively. Compare Example
1.1.

Remark 3.4. There are four more Bott matr ces which are equivalent to the Bott matrices
in (3.12), namely

(3.14) $(\begin{array}{llll}1 1 0 00 1 0 l0 0 1 00 0 0 1\end{array}),$ $(\begin{array}{llll}1 1 0 00 l 1 00 0 1 00 0 0 1\end{array})$ , $(\begin{array}{llll}1 l 0 10 1 0 10 0 1 00 0 0 1\end{array}),$ $(0001001101110001$
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The first Bott matrix (resp. the second Bott matrix) in (3.14) $\iota s$ obtained from

$(\begin{array}{llll}1 0 1 00 1 0 00 0 1 10 0 0 1\end{array})$

by interchanging the $\omega ordinatesz_{2},$ $z_{3}$ and the generators $g_{2},g_{3}$ (resp. the coordinates
$z_{2},$ $z_{3},$ $z_{4}$ and the generators $g_{2},$ $g_{3},$ $g_{4}$ ), while the third Bott matrix (resp. the fourth Bott
matrix) in (3.14) is obtained from

$(\begin{array}{llll}1 0 1 10 1 0 00 0 1 10 0 0 1\end{array})$

by the same opemtions with above.
Associated to the class (3.13), there are two more Bott matrices which are equivalent to

this class, namely

$(\begin{array}{llll}0 1 0 00 1 0 10 0 1 10 0 0 1\end{array})$ , $(\begin{array}{llll}1 1 0 10 1 0 10 0 1 10 0 0 1\end{array})$ ,

where these Bott matrices are obtained from

$(\begin{array}{llll}1 0 1 00 1 0 10 0 1 10 0 0 1\end{array})$ and $(\begin{array}{llll}1 0 1 10 1 0 10 0 1 10 0 0 1\end{array})$

respectively by interchanging the coordinates $z_{2},$ $z_{3}$ and the generators $g_{2},$ $g_{3}$ .

So the diffeomorphism classes of the case of $T^{2}$-actions with two dimensional quotients
consist of four.

3.3. $T^{3}$-actions with one dimensional quotients.
The Bott matrices of $M(A)$ admitting $T^{3}$-actions have the following form

(3.15) $(\begin{array}{llll} I_{3} *0 0 0 1\end{array})$ .

In this case $M(B)=M(1)=S^{1}$ with $\mathbb{Z}_{2}$-action.
The following shows all the possibilities of the form (3.15).

$(\begin{array}{llll}l 0 0 00 i 0 00 0 1 10 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 00 1 0 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 00 1 0 10 0 1 10 0 0 1\end{array})\sim$

(3.16)

$(\begin{array}{llll}1 0 0 10 1 0 00 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 10 1 0 00 0 l 10 0 0 1\end{array})\sim(\begin{array}{llll}l 0 0 10 1 0 10 0 1 00 0 0 1\end{array})\sim(\begin{array}{llll}1 0 0 10 1 0 10 0 1 10 0 0 l\end{array})$ .

However they are equivalent to each other by the operations I, II, III and IV. So in this
case it consists of just one diffeomorphism class.
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Remark 3.5. There are four more Bott matmces which are equivalent to the Bott matrices
in (3.16), namely

(3.17) $(\begin{array}{llll}1 0 0 00 1 1 00 0 1 00 0 0 1\end{array}),$ $(0001001100010001$ , $(0001000100110001$ , $(0001000101110001^{\cdot}$

The first and fourth Bott matrices in (3.17) are obtained from

$(\begin{array}{llll}1 0 0 00 1 0 10 0 1 00 0 0 1\end{array})$ and $(\begin{array}{llll}1 0 0 10 1 0 10 0 1 00 0 0 1\end{array})$

respectively, by interchanging the coordinates $z_{3},$ $z_{4}$ and the genemtors $g_{3},$ $g_{4}$ . The second
Bott matrix (resp. the third Bott matrix) in (3.17) is obtained from

$(\begin{array}{llll}1 0 0 10 1 0 00 0 1 00 0 0 1\end{array})$

by interchanging the coordinates $z_{2},$ $z_{4}$ and the generators $g_{2},$ $g_{4}$ (resp. the coordinates
Z3, $z_{4}$ and the genemtors $g_{3},g_{4}$ ).

Obviously the corresponding Bott matrix of size 4 of a real Bott tower admitting $T^{4}-$

action is the identity matrix of rank 4. Combined with the cases of $S^{1},$ $T^{2},$ $T^{3}$-actions we
get 12 distinct diffeomorphism classes of 4-dimensional real Bott towers.
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