goooboooogn

0 16150 2008 0 99-106 99

A generalization of Hardy spaces
on spaces of homogeneous type
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1. INTRODUCTION

This is an announcement of my recent work [10].

Let X = (X,d,u) be a space of homogeneous type in the sense of Coifman
and Weiss [1, 2] (see the next section for the definition). Using atoms, Coifman
and Weiss [2] introduced the Hardy space HP(X). The purpose of this report is
to generalize the definition of Hardy space HP(X) and prove that the generalized
Hardy spaces have the same property as H?(X). Our definition includes a kind of
Hardy spaces with variable exponent. The results are new even for the R” case.

First we state definitions of Campanato and Hoélder spaces. Let 1 < p < co and
¢: X xRy — R, where R, = (0,00). For a ball B = B(z,r), we shall write
¢(B) in place of ¢(x,r). For a function f € Li . (X) and for a ball B, let fg =
p(B)7! [5 f(z)du(z). Then the Campanato spaces £, 4(X) and the Hélder spaces
A4(X) are defined to be the sets of all f such that ||f]|c,, < oo and || flla, < oo,
respectively, where

1 1 by i/p
Ilens = 530 5755 (g7 [ 1) = foP dut@))
_ 2f(z) — f(»)l
178 = 2 ., 3 d@,v) + 04, 4w, )
Let C be the space of all constant functions. Then £, 4(X)/C and Ag(X)/C are

Banach spaces with the norm || f||¢, , and || f||a,, respectively. Campanato spaces

of these type were studied in [11, 7, 8, 12, 9]. See [9] for relations among these spaces.
When p = 1, we denote £ 4(X) by BMOy4(X). If ¢ = 1, then £, 4(X) = BMO(X).
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For ¢(z,r) = r*®), a(z) > 0, we denote Ay(X) by Lip,y(X). Then

2|f(z) = f(y)
i pnd Su .
1 e ey wry A, 9)*® + d(y, 1)o0)

If a(-) satisfies a certain condition, then Lip,.,(X) = £,4(X) for all p € [1, 00).

Using atoms, Coifman and Weiss [2] defined the Hardy space HP(X) as a subspace
of the dual of Lip,(X) and they proved that Lip,(X) is the dual of HP(X). Their
results are generalization of the case X = R™. In [2] Lip,(X) was regarded as
the space of functions modulo constants. Therefore, we denote by (HP(X))" =
Lip,(X)/C the fact above.

In this report, using [¢, g]-atoms, we define a generalized Hardy space Hl[}ﬁ al (X)
as a subspace of the dual of Ly 4(X)/C and prove that Ly ,(X)/C is the dual of
HEI(X), ie. (H([}'""’] (X))* = Ly 4(X)/C, where 1 < ¢ < 00, 1/g+1/¢' = 1, U is
a concave strictly increasing function from [0, 00) to itself and U(0) = 0 (see the
third section for the precise definition of H([}b 4(X)). The definition of H? (X) in [2],
0 <p <1, is a special case of ours, since Lip,(X) is a special case of Ly 4(X).

Coifman and Weiss [2] first defined H79(X), and then proved HP4(X) = HP>(X),
which was denoted by HP(X). We will prove that H?%(X) = HP*(X) under a
certain condition. In particular, for Hardy spaces with variable exponent p(z), we
use the condition that p(x) is log-Holder continuous (see Corollary 4.2).

The log-Holder continuity was used to prove boundedness of the Hardy-Littlewood
maximal operator on LP®) Lebesgue spaces with variable exponent, as follows.

Let G C R™ be bounded. For a function p: G — [1,00), let

LP@)(@) = {f € LYG): / (c|f(x))P® dz < 0o for some ¢ > 0}.
e

For f € LP@)(QG), let

p(z)
£ llp(z) =inf{>\ >0: /G (I—f-()\x—)]> dr < 1}.

Then || - ||,(z) is a norm and thereby LP®)(QG) is a Banach space. For a function f
on G, the Hardy-Littlewood maximal function of f is defined by

Mf ($)~Sup |B|/ Lf(v)|dy,

where the supremum is taken over all balls B containing z. By the definition we
have

IM flloo < 11 flloo-
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We say that p(z) is log-Hoélder continuous if

1
for |z —y| < =.

Ip(z) — p(y)| < 5

c

log |z — |
Theorem 1.1 (Diening [3]). If p(x) is log-Hélder continuous, then the operator M
is bounded on LP@(QG).

Remark 1.1. Let

_J4 (-1<z<L0)
p(m)”{z 0<z<1).

0 (-1 <z <0)
If f(z) = {96—1/3 0<z<1),
and M f ¢ Lp(w)(—l,l).

then M f(z) > c|z|~Y/3. In this case f € LP@(-1,1)

2. SPACE OF HOMOGE&EOUS TYPE
Let X = (X,d, u) be a space of homogeneous type, i.e. X is a topological space
endowed with a quasi-distance d and a nonnegative measure u such that
d(z,y) >0 and d(z,y)=0if and only if z = y,
d(z,y) = d(y, z),
(2.1) d(z,y) < Ky (d(z, 2) + d(2,y)),
the balls (d-balls) B(z,r) = B4z,r) = {y € X : d(z,y) < r}, r > 0, form a basis

of neighborhoods of the point z, i is defined on a o-algebra of subsets of X which
contains the balls, and

(2.2) 0 < u(B(z,2r)) < Ky u(B(z,r)) < o0,
If there are constants 6 (0 < 8 < 1) and K3 > 1 such that
(2.3) |d(z, z) — d(y, 2)| < K3 (d(z, 2z) + d(y, Z))l_od(ma y)e’ z,y,% € X,

then the balls are open sets. Note that (2.1) for some K; > 1 follows from (2.3)
(Lemarié [4]). Conversely, from (2.1) it follows that there exist # > 0, K3 > 1 and
a quasi-distance which is equivalent to the original d such that (2.3) holds (Macias
and Segovia [5]). Therefore We always assume (2.3) in this report.

It is known that, if 4(X) < +o00, then there is a constant Ry > 0 such that

(2.4) X =B(z,Ry) forallze X
(see [12, Lemma 5.1]).
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3. DEFINITIONS

Definition 3.1 (¢, g]-atom (resp. (p(:),g)-atom)). Let ¢ : X x (0,00) — (0, 00)
and 1 < ¢ < oo. A function a on X is called a [¢, g]-atom (resp. (p(-), g)-atom) if
there exists a ball B such that

(i) suppa C B,
W) llalle = ZrmyTwgrmy

(resp. |la|ly < p(B)Y9-1/P@) | where z is the center of B),

(i) /X o(z) du(z) = 0,

where ||al|, is the L? norm of a and 1/¢+1/¢' = 1. We denote by A[g, ] the set of
all (¢, q]-atoms. (We denote by A(p(-),q) the set of all (p(-), g)-atoms.)

We note that (p(-),g)-atoms are special cases of (¢, g]-atoms. If p(z) = p, then
the (p(-), g)-atom is the usual (p, ¢)-atom. Let p_ = inf p(z) and p, = supp(z).

Remark 3.1. Assume that pu(B(z,7)) ~ 7@ (Q >0)forz € X and 0 < 7 < o0
(0 <7 < Ro if p(X) < 00). Let a(z) = Q(1/p(z) —1). fQ/(6+Q) < p- <p; <1,
then 0 < a_ < ay < 6 and Lip,)(X) = Ly 4(X) for all ¢ € [1,00).

If a is a [¢, g]-atom and a ball B satisfies (i)—(iii), then

61 | [ e duiw)| = l [ a@)6(=) - g5) dutz)
<lall ([ 106 - 32l auta) v

< ?J»?}BT (;L{-,;) /B l9(2) — g5l du(w)) v

< lgllc, .

That is, the mapping g — [, agdpu is a bounded linear functional on Ly 4(X)/C
with norm not exceeding 1.

Definition 3.2 (HJ/(X)). Let 4 : X xR, = Ry, 1 < ¢ < 0o and 1/q+
1/¢ = 1. Let U be a continuous, concave, increasing and bijective function from
[0, +00) to itself. Assume that Ly 4(X)/C # {0}. We define the space H([}I’ a(x ) C
(Lq,6(X)/C)* as follows:
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f € H?U(X) if and only if there exist sequences {a;} C Alp,q]
and positive numbers {\;} such that

(3.2) F=Y " Najin (Ly4(X)/C)* and H U(N) < oo.
J J
From U(0) = 0 and the concavity of U it follows that
(3.3) UCr)<CU(r), 1<C<o0, 0<Tr <00,
(3.4) U(fr+s)<U(r)+U(s), 0<rs<oc.

Then H¥Y(X) is a linear space. (3.4) implies

(3.5) dxy<Ut (Z U()\j)>.

Therefore, if 3, U();) < oo, then} ; A; < coand 37 Aja; converges in (Ly 4(X)/C)*.
In general, the expression (3.2) is not unique. We define

I £l gigar = inf {U"l (Z U(/\j)) },

where the infimum is taken over all expressions as in (3.2). We note that || f|| gl
is not a norm in general. Let d(f,g) = U(||f — g||H([}>,q]) for f,g € H,[}t”Q](X). Then

d(f, g) is a metric and H([}” q) (X) is complete with respect to this metric. If I(r) =r,
then || f]| Al is a norm and H"¥(X) is a Banach space.

In the case of (p(-),q)-atoms instead of [@, q]-atoms, we denote H,[}i’ al (X) by
HED(X).

4. RESULTS

Theorem 4.1. If there exists a constant C, > 0 such that

(4.1) U(rs) < C.U(r)U(s) for 0<rs<1,

u(B1)¢p(B1) p(B1) :
(4.2) U (m) < C, (By) for all balls B, and B, with B, C B,

then
HP(X) = HP™ (X),

with equivalent topologies.
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Corollary 4.2. Let Q > 0. Assume that u(X) < oo and that u(B(z,r)) ~ 19 for
allz € X and 0 < r < Ry, where Ry is the constant in (2.4). Let U(r) = rP+ with
0 < p_ <ps <1, where p_ = inf p(z) and py = supp(x). If there exists a constant
Cy > 0 such that

(4.3)

Ip(x)—p(y)lslog(l/do(x’y» for d(z,y) < 1/2,

then
HE(X) = HED™(X),

with equivalent topologies.

In this case we denote HY'9(X) by HP")(X) simply, which is a kind of Hardy
spaces with variable exponent.

Proof of Corollary 4.2. The inequality (4.1) holds clearly. We show (4.2).
For B(z,r) C B(y, s),

U (qbgz,'r)prgx,’rD

o) ~ (C)Q”*(” PP G (1/p@)~1/6) < ¢Qp+(1/p(x)~1/pW))
u(B(z,r)) s — )
u(B(y.s))

since r/s < 1. If 1/2 < s < Ry, then

st+(1/p(w)—1/p(y)) < RO'QP+/P—_

If s < 1/2, then d(z,y) < s and

Qp+ (1/p(@)—1/p(y)) 1
log s9p+(/P@)=1/PW) < Qp, OO log(1/s)
p(z) — p(y) CoQp+

Lemma 4.3. Let E = HYY(X). If

(44) oi1:1<)1 ({f((:))

-0 (r—0),

then
el e- = sup {|¢()] : I flle < 1}

is finite for all £ € E*, and ||¢||g~ is a norm.

Remark 4.1. If (4.1) holds, then (4.4) holds. If (4.4) holds, then there exist constants
C > 0 and p > 0 such that U(r) < Cr? for r € (0,1]. If > 0 and U(r) =
(log(1/r))~® for small r > 0, then U does not satisfy (4.4).
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Let Li(X) be the set of all L-functions with bounded support, and let
1) = {f e 8x): [ san=o}.
Then, for 1 < g < oo, L2%(X) is dense in H([}f”QJ(X).
Theorem 4.4. If U satisfies (4.4), then

(EPI(X))" = Loax)/C.
More precisely, if g € Ly 4(X)/C, then the mapping £: f — [, f(g+c)du, for f €
L20(X), can be extended to a continuous linear functional on H,[f & (X). Conversely,
if £ is a continuous linear functional on H,[J"5 (X)), then there ezists g € Ly s(X)/C
such that £(f) = [, f(g + ¢)du for f € LZ°(X). The norm ||€|| is equivalent to
lgllc, ,-

Corollary 4.5. Assume the conditions in Remark 3.1 and Corollary 4.2. Then
(HPO(X))" = Lipy,(X)/C.
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