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1 Introduction

Let n(7) be the Dedekind eta function defined by

P n
n(r) =q= [[(1 -q"),
n=1
where q = exp(2miT) and 7 lies in the complex upper half plane H =
{r|Im(7) > 0}. Let N be a positive integer, let e, eq,---,eyn are integers,
and let f be a meromorphic function over H of the form

H n(er)%.

iN
i>0

If all of the e; are non-negative, we say that f is an eta-product.

Serre [12] has given the following identities relating certain eta-product and
theta series associated to a pair of quadratic forms. (see [12], p260)

Let p be a prime number such that p = —1 (mod 24). Consider the following
pair of primitive binary quadratic forms with discriminant —p :

p+25
24

1
Q:: 622+ Ty + p—;—é—yz, Q- : 6z% + 5zy +

Then we have 1
5 (9, (r) = B,()) = n(r)n(r),
where J¢, (1) and 9¢,(7) are the theta series associated to @ and Q..

We will extend this relation. Qur result is the following.
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Theorem 1.1
Let N be a squarefree positive integer such that N = —1 ( mod 24). Consider
the following two primitive binary quadratic forms with discriminant —N :

N+1, N+25 ,

. 2 . 2
Q: 6z° +zy+ 24 ve, Q2 : 6z° + Sxy + 54

Then we have 1
590, (7) ~ 90,(7)) = n()n(NT).

In theoreml.1, we see that 3(dq,(7) — ¥o,(7)) and n(r)n(N7) are cusp

forms on I'o(N) of weight 1 and character x_n(*) = (=) (Jacobi sym-
bol) ie. 1(9q,(T) — 9, (7)), n(T)n(NT) € Si(To(N),x—n). The space of
S1(Fo(N), x-n) is very interesting but difficult. New forms of weight 1 cor-
respond to Galois representations of the Gq = Gal(Q/Q).

We review two-dimensioanal Galois representations and new forms of weight
1. Let p be a prime and g = 3 ° , a,g™ be a normalised newform on Ty(p)
of weight 1. Then Deligne-Serre’s theorem shows that there is an irreducible
two-dimensional linear representation p of Gq, with Artin conductor p, such
that L(p,s) = > > a,n"*, where L(p,s) is the Artin L-series. We say
that g is of dihedral type (resp. type Sy, type As) if p is of dihedral type
(resp. type Si, type As) i.e. the image of projective linear representation
p(Gq) C PGL,(C) is isomorphic to the dihedral group D, (resp. Sy, As).
Now let —d be a discriminant of imaginary quadratic field. For f € N
let H(—df?) be the set of equivalence classes of primitive positive definite
binary quadratic forms with discriminant —df?. Let p : Gq — GLy(C)
be an irreducible odd representation with Artin conductor df? and such that
p(Gq) is a generalized dihedral group. Then the fixed field of the kernel of p is

contained in the ring class field Ky of K = Q(+/—d) with conductor f and p is

determined by a character x : H(—df?) — C*, namely p = Ind gﬁgﬁ ;%(X)

For this p, there exists a normalized newform g in S;(To(—df?), x_q) such
that L(p, s) = L(g, s). It is given by

g== 3 (@) ()

QeH(—df?)
(cf. [1]), where w is a number of roots of unity in Q(v/—d).

In section 4 , by using theoreml.l, we see that some 7n(7)n(/NT) are linear
combination of cusp forms which correspond to representation of dihedral
type. Moreover we study the subspace which is generated by {Jq(7) | @ €
H(-N)} C Si(Fo(—=N), x-n)-
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2 Preliminaries

In this section, we recall some results about eta-product and theta series
associated to quadratic form. First, we review eta-product.

Suppose that f(7) = [l 4y n(i7)* is an eta-product which satisfies the
following properties :

1. Z ie; =0 (mod 24),

0<i|N
N
2. —e; = .
Z e 0 (mod 24)
0<i|N '
Then f(7) satisfies
(l’T'+b _ k
) = x@(er + d)Ff(r)
b _1)*s
for every d € T'o(N), where k := %EOQ-,NG@? ,» x(d) = (‘—Z)k—)

(Jacobi symbol), and s := [[o;n 2. That is, f(7) is a weakly modular form
of level N, weight k and character x(see [3], p90).

A complete set of representatives for the cusps of I'g(V) is

CN={%€Q; ¢|N, 1<a <N gcd(a,N) =1

a a , N
and S= ¥ a=a (mod ged(c, —c—))}

Let 2 € Cn. Then the order of zero of f(1) = [[oiy n(i7)* at ¢ is

he gcd(i, c)?
a == — TN e 1
i T Z i ()
0<i|N

where h, = ;c.T(IcVETer is the width of the cusp %(see [6], p49).

Next, we review the theta series associated to quadratic form. Let Q(x) =
IxA'x = 13T ez (x = (T1,...,%,), ¢; € R, A € M. (R)) be a

i,j=1
positive defnite integral quadratic form, that is Q(x) > 0 for x # 0, and
a;; = aj; is an inetger, a; is an even inetger, i.e. A = (a;;) is an integral

symmetric matrix. The theta series associated to () is defined by
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do(r) = ¢°@.

TE€EZT

Assume r is even and put r = 2k. The bacis result, due to Schoeneberg, is
that 9o(T) € M(IV, x), where N is the least positive integer such that NA™!

is even integral and x(d) := (tﬁﬂé) (Jacobi symbol)(see [11] chapter VI).

In theorem1.1 we can write Q1(z,y) = 3(z,v) ( 12 _N_1+_1 ) ( : ) Since N
12

~1
( 112 N]:I—I ) is even integral, we have 9¢,(7) € My (To(N), x- ~). Simi-
12
larly, we have 9¢g, (1) € M1(To(N), Xx-n)-

3 Proof of Theoreml.1

Since N is a squarefree integer, a complete set of representatives for the cusps
of Fo(N ) is

Cn = {1 :a|N}.

Let 1 € Cn. We calculate the order of zero of 9, (1) — Vg, () and n(T)n(NT)
at ;. First, we consider the eta-product. From (1) , the order of zero of
n(r)n(NT) at § is

_ N+k?
£ 24k
We have vy = —2{,—’:3 € N, because k devides N and 24 devides N + 1 and
k% —1. From this, n(7)n(N7) vanishes at all cusps of I'g(/V). Hence we obtain

n(r)n(NT) € Si1(Co(N), X-N)-

v

Next, we consider the theta series. We put A = ( 112 ;v_i_l ), Ay =
12

12 5
(2 ade ) ond put 94,(r) = 90u(r), Dualr) = Vs(r). For o cwsp }
1 0

k1
tion law (see [10], p.189), we have

we take v = € SLy(Z). Then we have yoo =

Eol L

. By transforma-

Sa (D) = (det A))"2k7H(=i) > @(m)d(r; Ay, m, N),

me(Z/NZ)?
A;m=0 ( mod N)



where S
9(r; AL,m,N)= > g,
x€(Z/NZ)2
x=m ( mod N)
1,
®(m) = (kNQ{ ‘gA g+ 'mA 18+ 5 ‘mA;m}).

gE(Z/kNZ)2
g=0 ( mod N)

Hence 94, (7)|[7]1 has a gy, expansion (g, = qﬁ)

Salh = @t A)Hk (=) S S(m)g, 7

me(Z/NZ)2
A1m=0 ( mod N)
Lemma
n{Ql(m)hlc m € Z?, Aiom = 0 (modN)} > N+
N? T = 24k
. Q2(m) k 2 N + k2
: = >
min{ N2 m e Z°, Aom =0 (modN)} > YT
Proof. We put y; = p;(m) = Qlffv‘;)—h& Then
1 N?
62° + zy + (—— + v —l'—b}h——)=0_
k
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has integral solutions. We regard above as a quadratic equation of z. Then

its discriminant

2

hi )
= N(-¢* +24li1k)

is a square. Since N is squarefree , there exists @ € 2N + 1, s € N such that

—y? + 24k = N°s2,
From this, we have

y? = 24mk — N°s®
= k(24 — hpe N7 1s%).

Hence there exists 8 € 2N + 1, t € N such that
247 — hy N a=1g2 — kP42,
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Thus we obtain

_ hN>1s? 4 kP2 S hi+k N+k
24 - 24 24k

A similar argument works for dq, (7). O

251

By lemma we have

90, (7) — 9, (7)

€ My(T). 2
am@n) < MW )
We note that there are no non-constant modular forms of weight zero, i.e.
M) =C

for any congruence subgroup I'. Hence we have 9q, (7)—Yg,(7) = en(T)n(NT),
for some ¢ € C. Comparing coefficient of qyﬁl, theoreml.1 follows from this.

4 Example

We give some examples for theorem1.1.

The case n(7)n(717).
Consider the two primitive binary quadratic forms with discriminant —71 :

Q:: 622 +zy+3y%, Qa: 62+ 5zy + 4.
By theoreml.1 we have

%(1901 (1) — Fq.(7)) = n(7)n(717) € 81(To(71), X—71)-

Next, we show that n(7)n(717) is a linear combination of dihedral cusp forms.
Let K be the imaginary quadratic field K = Q(+/—71) and let Hx be the
Hilbert class field of K. We consider an irreducible odd representation p :
Gal(Hg/Q) — GLy(C) with Artin conductor 71. Then p is determined by
a character x : H(—71) — C*, namely p = Ind g‘;fggg%(x) ’I‘he elements
of group H(—71) = C7 (cyclic group of order 7) are written as follows:

( Ry : x?+ zy+ 18y?
Ry : 2z% + zy + 992
Ry : 4x? + 3zy + 59°
H(—-71)={ R3: 3x%+ zy + 6y?
Ry : 3x? — zy + 612
Ry : 4z? — 3zy + 5y2
| Rg: 22?2 — zy + 9y?
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where Ry is the identity element, R, is a generator of group H(—71) and

}?1' == R1z-

Since Gal(Hg /Q) & D14, the number of irreducible representation of Gal(Hk /Q)
« 'a i g 0 .

is 3. We put p; = Ind g{;ggﬂ% (xi), xi(R1) = ¢ ie. ps(Ry) = ( %’ & (1=
1,2,3). For this p;, there exists a normalized newform g; in S;(I'o(71), x-71)
such that L(p;,s) = L(g;,s). It is given by

g=5 > x(R) () (3)

ReH(—T71)

We consider the space which is generated by {9gr(7) | R€ H (%71)}. Let
and 1) be Dirichlet characters modulo u and v with uv = N and ¢ is primitive
and (p1)(—1) = —1. Then Eisenstein series E¥¥ is defined by

Ef® = (p)L($,0) + 6)L(p,0) +23 3 e( = )(m)g”

n=1 min
m21

where L i s trivial
. it @ is trivia
8(p) = { 0 if otherwise -
From (3), we have g; € < 9g(7) | R € H(-71) > (1 <4 £ 3), and we see
that Eisenstein series E;*™ € < 9x(7) | R € H(—T71) >. More precisely,
we have

E;X-m /2 1 2 2 2 Iy (T)
[ . l 1 aiy a9 dasg '19 Ry ('T )
go 211 a; a3 a VR, (T) |’
ags 1 as ai Qs 2 R3 (T )

where a; = (¢ + {7 . Then determinant of this matrix is nonzero. Hence we
have < 9g(7) | R € H(~T1) > = < E;™™, g1, 92, 95 >. Moreover, we
have 1(9g,(7) — Fg,(7)) (i # j) is a linear combination of cusp forms which
correspond to representation of dihedral type, and we note that 3(J9g,(7) —
g, (1)) = n(r)n(717).

The case n(7)n(957).
Consider the two primitive binary quadratic forms with discriminant —95 :

Q. : 622+ zy + 492, Qs : 6x2 + 5zy + 5y°.
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By theoreml.1 we have

%(19621 (T) - 19Q2 (T)) = 77(7-)77(957-) € S (F0(95)’ X—gs)-

Next, we show that 7(7)n(957) is a linear combination of dihedral cusp forms.
Let K be the imaginary quadratic field K = Q(1/—95) and let Hx be the
Hilbert class field of K. We consider an irreducible odd representation p :
Gal(Hg/Q) = GL2(C) with Artin conductor 95. Then p is determined by
a character x : H(—95) — C*, namely p = Ind gﬁggﬂ% (x)- The elements
of group H(—95) & Cy are written as follows:

( Ry : 2%+ zy + 2492
Ry : 222 4+ zy + 1292
Ry : 4z% + zy + 632
R;: 3z% + zy + 8y?
Ry : 5z% + 5zy + 632
Rs: 32% — zy + 8y
Rg : 4z? — oy + 632

| Ry: 22% —zy + 1242

H(—95) = ¢

where Ry is the identity element, R, is a generator of group H(—95) and
R; = R;".

Since Gal(Hg /Q) = Dsg, the number of irreducible representation of Gal(Hg /Q)

. . P00,
is 3. We put p; = Ind gﬁﬁﬁﬁf%(xi) , Xi(Fa) = G ie. pi(Ry) = ( %8 o ) (i=
1,2,3). For this p;, there exists a normalized newform g; in S;(I'0(95), X—95)
such that L(p;,s) = L(g;, s) . It is given by
1
g=3 > x(R) Oa(r). @

ReH(-95)

Then we obtain 1 1
7091 — 292 + 95) = 5(Ors — Vra)-

Now Q, and Rg are equivalent over SLy(Z), namely there is a matrix d €
SLy(Z) such that Qi(z,y) = Re(az + by, cx + dy). Similaly @Q; and R, are

equivalent over SLy(Z). Therefore we have ¥g, = ¥g,, ¥, = &, and

’}i(gl —2g; + g3) = %(’91%6 — 9r,) = n(7)n(957).
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This mean that n(7)n(957) is a linear combination of cusp forms which cor-
respond to representation of dihedral type.

Lastly, we consider the space which is generated by {9r(7) | R € H(—95)}.
From (4), we have g; € < Ir(7) | R € H(—95) > (1 < i < 3), and we see
that Eisenstein series £;'X~* and E}**"*° € < ¥x(7) | R € H(—95) >. More
precisely, we have

EX=%% /2 1 2 2 2 2 Do (T)
EXsX=19 /9 11 -2 2 -2 1 Pr, (1)
()1 = p) 1 V2 0 —v2 -1 VR, (T)
92 1 0 -2 0 1 Vrs(T)
g3 1 —vV2 0 V2 -1 Ir, (T)

Then determinant of this matrix is nonzero. Hence we have < 9g(7) | R €
H(—95) > = < E;*%, EX*X-° g g, g3 >. Moreover, suppose that R;
and R; are in the same genus i.e. equivalent over the p-adic integers Z, for
all primes p and equivalent over R. Then we see that (g, (7) — UR, (’T'))
is a linear combination of cusp forms which correspond to representation of
dihedral type.
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