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1. INTRODUCTION
The precise analytic properties of Whittaker functions are utilized in the study

of the Fourier expansions of automorphic forms and their related topics such as
L-functions. In this note, we give explicit formulas for (general) principal series
Whittaker functions on $GL(3, C)$ . Also, we give a propagation formula which is an
expression of the Whittaker functions on $GL(3, C)$ via those on $GL(2, C)$ : This is
an analogue of the recent result of Ishii-Stade [5] for the class one cases.

This note is based on our recent paper [3]. See it for details..

2. DEFINITION OF WHITTAKER FUNCTIONS

Let $G=NAK$ be an Iwasawa decomposition of a real reductive group $G$ . For
an irreducible admissible representation $(\pi, H_{\pi})$ of $G$ , we choose a K-type $(\tau^{*}, V_{\tau^{*}})$

in $\pi$ which occurs with multiplicity one and fix an injective K-homomorphism $i\in$

$Hom_{K}(\tau^{*}, \pi|_{K})$ . Here $(\tau^{*}, V_{\tau}\cdot)$ means the contragradient representation of $(\tau, V_{\tau})$ .
Moreover, take a non-degenerate character $\eta$ of $N$ . Let us consider the intertwining
space

$\mathcal{I}_{\eta,\pi}=H_{om_{(9c^{K)}}},(\pi, C^{\infty}Ind_{N}^{G}(\eta))$

between $(g_{C}, K)$-modules consisting of all K-finite vectors, where $C^{\infty}Ind_{N}^{G}(\eta)$ is the
induced representation of $Ghom\eta$ as $C^{\infty}$-induction. For each $T\in \mathcal{I}_{\eta,\pi}$ , we define
a $V_{\tau}$-valued function $T_{i}$ on $G$ by

$T(i(v^{*}))(g)=(v^{*},$ $T_{i}(g)\rangle,$ $v^{*}\in V_{\tau}\cdot,$ $g\in G$ .

Here $\langle\cdot,$ $\cdot\rangle$ is the canonical bilmear form on $V_{\mathcal{T}^{*}}\cross V_{\tau}$ . The fimction $T_{i}$ means a
restriction of $T\in z_{\pi}2$ to $K$ and satisfies

$T_{2}(ngk)=\eta(n)\tau(k)^{-1}T_{i}(g)$ , $(n, g, k)\in NxGxK$.
Then we put

Wh
$( \pi, \eta, \tau)^{mod}=\bigcup_{i\in Hom_{K}(\tau^{*},\pi|_{K})}\{T_{i}|T\in a_{\pi}2’\tau_{i}$

is moderate growth $\}$ .

(Here the tem “moderate growth” is.by means of [9] \S 8.1.) According to the
multiplicity one theorem of Shalika [8], the dimension of the space Wh$(\pi, \eta, \tau)^{mod}$

is at most one. A unique (up to constant) element in Wh$(\pi, \eta, \tau)^{mod}$ is called $a$

primary Vl7hittaker function with respect to $(\pi, \eta, \tau)$ .
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3. WHITTAKER FUNCTIONS ON $GL(3, C)$

In this section, we determine the primary Whittaker function on $GL(3, C)$ for
principal series representations and their minimal K-types.

3.1. Groups and representations. Let $G=GL(3, C)$ be the complex general
linear group of degree 3, wnich is viewed as a real reductive group, with the center

$Z_{G}=\{ru1_{3}|r\in R_{>0},u\in U(1)\}\simeq C^{x}$ .
Here $1_{n}$ is the unit matrix of degree $n$ . Let $K=U(3)$ be a maximal compact
subgroup of $G$ , and define subgroups $A$ and $N$ of $G$ by

$A=$ $\{$diag $(a_{1},$ $a_{2},$ $a_{3})\in G|a_{i}\in R_{>0},$ $i=1,2,3\}$ ,

$N=$ $\{n(x)=(\begin{array}{lll}1 x_{1} x_{2}0 1 x_{3}0 0 1\end{array})\in G|x=(x_{i})\in C^{3}\}$ .

Then we have an Iwasawa decomposition $G=NAK$. If we put

$M=\{$diag $(u_{1},u_{2},u_{3})|u_{i}\in U(1),$ $i=1,2,3\}\simeq U(1)^{3}$ ,
then $M$ is the centralizer of $A$ in $K$ and $P=NAM$ gives the upper triangular
subgroup of $G$ , which is a minimal parabolic subgroup of $G$ .

The equivalence classes of irreducible continuous representations of $K$ are param-
eterized by the set of the highest weights

$\Lambda=\{\mu=(\mu_{1},\mu_{2}, \mu_{3})|\mu\in Z^{3},\mu_{1}\geq\mu_{2}\geq\mu_{3}\}$ .
We denote by $(\tau_{\mu}, V_{\mu})$ the representation of $K$ associated with $\mu\in\Lambda$ . The repre-
sentation space $V_{\mu}$ has the (normalized) GZ-basis $\{f(M)\}_{M\in G(\mu)}$ parameterized by
the set $G(\mu)$ of all G-pattems of type $\mu$ (cf. [1], [2]). Here a G-pattern $M\in G(\mu)$

is a triangle
$M=(\begin{array}{lll}\mu 1 \mu 2 \mu 3\alpha_{l} \alpha_{2}\beta \end{array})$

consisting of 6 integers satisfying the inequalities
$\mu_{1}\geq\alpha_{1}\geq\mu_{2}\geq\alpha_{2}\geq\mu 3$ , $\alpha_{1}\geq\beta\geq\alpha_{2}$ .

Let us take a character $\sigma_{n}$ of $M$ defined by
$\sigma_{n}$ (diag$(u_{1},$ $u_{2},$ $u_{3})$ ) $=u_{1}^{n_{1}}u_{2^{2}}^{n}u_{3^{3}}^{n}$ , $n=(n_{1}, n_{2}, n_{3})\in Z^{3}$ ,

and an element $\nu$ in the dual $a_{C}^{*}$ of $\mathfrak{a}c$ identified with $(\nu_{1}, \nu_{2}, \nu_{3})\in C^{3}$ via $\nu_{i}=\nu(E_{ii})$

for $1\leq i\leq 3$ . Here $\alpha_{C}$ is the complexification of the Lie algebra of $A$ and $E_{ii}$ is
the diagonal matrix unit with $(i,i)$-entry 1 and the remaining entries $0$ . Then the
induced representation

$\pi=\pi(\nu, \sigma_{n})=Ind_{P}^{G}(1_{N}\otimes e^{\nu+\rho}\otimes\sigma_{n})$

of $G$ kom the parabolic subgroup $P=NAM$ is called the principal series represen-
tation of $G$. Here $\rho$ is the half-sum of the positive restricted roots, i.e.,

$e^{\rho}$(diag $(a_{1},$ $a_{2},$ $a_{3})$ ) $=( \frac{a_{1}}{a_{3}})^{2}$ , diag $(a_{1}, a_{2}, a_{3})\in A$ .
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The central character of $\pi$ is given by
$Z_{G}\ni ru1_{3}\mapsto r^{\overline{\nu}}u^{\overline{n}}$ , $r\in R_{>0},$ $u\in U(1)$ ,

with il $=\nu_{1}+\nu_{2}+\nu_{3}$ and $\tilde{n}=n_{1}+n_{2}+n_{3}$ , and the minimal K-type of $\pi$ is the
representation $(\tau_{m}, V_{m})$ of $K$ associated with the dominant permutation $m\in\Lambda$ of
$n$ .

Finally, we take a non-degenerate character $\eta$ of $N$ defUed by
$\eta(n(x))=\exp(2\pi\sqrt{-1}{\rm Im}(x_{1}+x_{3}))$ .

3.2. Differential equations. Let us take an irreducible principal series represen-
tation $\pi=\pi(\nu, \sigma_{n})$ of $G$ with the mitmal K-type $(\tau_{m}, V_{m})$ and a non-degenerate
unitary character $\eta$ of $N$ defined in the previous subsection. In this subsection,
we consider a system of differential equations for the functions $\phi$ in Wh$(\pi, \eta, \tau)^{mod}$ .
This is described as that for the M-components $\phi(M)$ , since the Whittaker functions
are $V_{\tau}$-valued. Here the M-component $\phi(M)$ of $\phi$ corresponding to $M\in G(m)$ is
defined by

$\phi(M;g)=\langle\phi(g),$ $f(M)\rangle$ , $g\in G$ ,
for the GZ-basis $\{f(M)\}_{M\in G(m)}$ of $V_{m}$ .

It is well known that each element $C$ in the center $Z(g_{C})$ of the universal enveloping
algebra $U(g_{C})$ of $g_{\mathbb{C}}$ acts as a scalar on the K-finite vectors in $\pi$ . If we take an
injection $j\in Hom_{K}(\tau_{m}, \pi|_{K})$ , then we have the equation
(1) $C\cdot j(f(M))=\chi_{C}j(f(M))$ , $M\in G(m)$

for a scalar $\chi c$ . Therefore, each M-component $\phi(M)$ of $\phi\in$ Wh$(\pi, \eta, \tau)^{mod}$ satisfies
the equations

(2) $C\phi(M)=\chi_{C}\phi(M)$ , $C\in Z(gc)$ .
Here we remark that the generators of $Z(g_{C})$ can be constructed from the Capelli
elements in $U(g)$ (cf. [4]) via the identification of $U(g_{C})$ and $U(g)\otimes_{C}U(\mathfrak{g})$ .

Let $f$ (resp. $\mathfrak{p}$ ) be the $+1$ (resp. the $-1$ ) eigenspace of the Cartan involution
$\theta$ of $g$ defined by $\theta(X)=-{}^{t}X$ . Then the complexification $\mathfrak{p}_{C}$ of $\mathfrak{p}$ becomes a K-
module via the adjoint action and its irreducible decomposition is $\mathfrak{p}_{C}=Z_{\mathfrak{p},\mathbb{C}}\oplus \mathfrak{p}_{0,C}$

with $Z_{\mathfrak{p},C}\simeq V_{(0,0,0)}$ and $\mathfrak{p}_{0,C}\simeq V_{(1,0,-1)}$ . In the tensor product $\mathfrak{p}_{0,C}\otimes V_{\mu}$ with a
general irreducible representation $V_{\mu}$ of $K,$ $V_{\mu}$ occurs with multiplicity two as the
irreducible component. Take an injector $\iota$ from $V_{m}$ into $\mathfrak{p}_{0,C}\otimes V_{m}\simeq V_{(1_{2}0,-1)}\otimes V_{m}$

and fix an injection $j\in Hom_{K}(\tau_{m}, \pi|_{K})$ . Since the minimal K-type $\tau_{m}$ occurs with
multiplicity one in $\pi|_{K}$ , the composition

$V_{m}arrow^{\iota}\mathfrak{p}_{0,C}\otimes V_{m}arrow^{\alpha}\pi(\mathfrak{p}_{0_{2}C})j(V_{m})\subset L_{(M,\sigma_{n})}^{2}(K)$

is a scalar multiple of $j$ , where $\alpha$ is the evaluation map. Thus, if we write

$\iota(f(M))=\sum_{M’\in G(n1)}X_{M,M’}^{(\iota)}\otimes f(M’),$
$X_{M,M’}^{(\iota)}\in \mathfrak{p}_{0,C}$ ,

for the GZ-basis $\{f(M)\}_{M\in G(m)}$ of $V_{m}$ then we have the equation

(3)
$\sum_{M’\in G(m)}X_{M,M’}^{(\iota)}\cdot j(f(M’))=\lambda_{\iota}j(f(M))$ , $M\in G(m)$
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with a scalar $\lambda_{\iota}$ . We call this equation (3) the Dirac-Schmid eigen-equation. Then,
for each injector $\iota$ , we have the difference-differential equation

(4)
$\sum_{M’\in G(m)}X_{M,M^{l}}^{(\iota)}\phi(M’)=\lambda_{\iota}\phi(M)$

,

among the M-components $\{\phi(M)\}_{M\in G(m)}$ of $\phi\in$ Wh$(\pi, \eta,\tau)^{mod}$ .

3.3. Explicit integral formulas. Let $\pi=\pi(\nu, \sigma_{n}),$ $(\tau^{*}, V_{\tau^{r}})=(\tau_{m}, V_{m})$ , and $\eta$ be
as in the previous subsection. We give two explicit integral formulas for the primary
Whittaker function $\phi\in$ Wh$(\pi, \eta,\tau)^{mod}$ , in this subsection.

The Whittaker functions are determined by its A-radial parts (i.e. its restriction
to $A)$ because of the Iwasawa decomposition of $G$ . Moreover, the values on the
center $Z_{G}$ of $G$ are given by the central character of $\pi$ , i.e.,

$\phi(rug)=r^{\tilde{\nu}}u^{\hslash}\phi(g)$ , $\phi\in Wh(\pi, \eta, \tau)^{mod},$ $r\in R>0,$ $u\in U(1),$ $g\in G$ .
Therefore, we can describe them as fimctions of two variables with the coordinates

$y_{1}= \frac{a_{1}}{a_{2}}$ , $y_{2}= \frac{a_{2}}{a_{3}}$ ,

for diag $(a_{1}, a_{2}, a_{3})=a_{3}$ . diag $(y_{1}y_{2}, y_{2},1)\in A$.
To state our results, we need some notations. If we write $m=(n_{a}, n_{b}, n_{c})\in\Lambda$,

then we put $( \lambda_{1}, \lambda_{2}, \lambda_{3})=(\nu_{c}-\frac{\tilde{\nu}}{3},$ $\nu_{a}-\frac{\tilde{\nu}}{3},$ $\nu_{b}-\frac{\tilde{\nu}}{3})$ . For each G-pattern $M=$

$(\begin{array}{l}m_{1}m2ma\alpha_{l}\alpha_{2}\beta\end{array})\in G(m)$, we put $\delta(M)=\alpha_{1}+\alpha_{2}-m_{2}-\beta$ and

$\zeta_{1}^{(1)}(M)=\lambda_{1}-m_{3}+\beta$ , $\zeta_{1}^{(2)}(M)=-\lambda_{1}+m_{1}-\beta-\delta(M)$ ,
$\zeta_{2}^{(1)}(M)=\lambda_{2}+m_{1}-\beta$ , $\zeta_{2}^{(2)}(M)=-\lambda_{2}-m_{3}+\beta+\delta(M)$ ,
$\zeta_{3}^{(1)}(M)=\lambda_{3}+\alpha_{1}-\alpha_{2}-|\delta(M)|$ , $\zeta_{3}^{(2)}(M)=-\lambda_{3}+m_{1}-m_{3}-\alpha_{1}+\alpha_{2}$ .

Now we can state our main result, that is, two explicit integral formulas for the
primary Whittaker function with respect to the triple $(\pi, \eta, \tau)$ .
Theorem 3.1. Let $W_{3}(y)$ be the A-radial pan of the primary Whittaker fimction in
Wh$(\pi, \eta, \tau)^{mod}$ and $W_{3}(M;y)=y_{1}^{2}y_{2}^{2}\tilde{W}_{3}(M;y)$ be its $M-\omega mponent$ . Then $\tilde{W}_{3}(M;y)$

has the following integrd $e\varphi oessions$ ;

$\tilde{W}_{3}(M;y)$ $=$ $\frac{1}{(2\pi\sqrt{-1})^{2}}/s_{1}/s_{2}V_{3}(M;s_{1}, s_{2})(\pi y_{1})^{-\epsilon_{1}}(\pi y_{2})^{-\epsilon_{2}}ds_{1}ds_{2}$

$=$ $2^{4}(\pi y_{1})^{-\lambda+m_{2}-m}(\pi y_{2})\lambda+m_{2}-m$

$\cross I_{0^{\infty}}^{K_{A}}(2\pi y_{1}\sqrt{1+\frac{1}{v}})K_{A+\delta(M)}(2\pi y_{2}\sqrt{1+v})v^{B}(1+v)^{C}\frac{dv}{v}$ .

Here, in the first integral expression of Mellin-Bames type, the paths $s_{i}$ of integra-
tions are the vertical lines from ${\rm Re} s_{i}-\sqrt{-1}\infty$ to ${\rm Re} s_{i}+\sqrt{-1}\infty$ with enough large
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real part and the integmnd $V_{3}(M;s_{1}, s_{2})$ is defined by

$V_{3}(M;s_{1}, s_{2})= \prod_{1=1j}^{2}\prod_{=1}^{3}\Gamma(\frac{s_{i}+\zeta_{j}^{(i)}(M)}{2})/\Gamma(\frac{s_{1}+s_{2}+\zeta_{3}^{(1)}(M)+\zeta_{3}^{(2)}(M)}{2}I\cdot$

Also, in the second integral expression of Euler type, $K_{\nu}$ is the K-Bessel hnction
and the parameters $A,$ $B$ and $C$ are given as follows.

$A= \frac{\zeta_{1}^{(1)}(M)-\zeta_{2}^{(1)}(M)}{2}$ , $B= \frac{2\zeta_{3}^{(1)}(M)-\zeta_{1}^{(1)}(M)-\zeta_{2}^{(1)}(M)}{4}$ , $C= \frac{|\delta(M)|}{2}$ .
This theorem is obtained by solving the system of difference-differential equa-

tions (2) and (4) for the M-components of the Whuittaker function in the previous
subsection, explicitly.

Remark 3.2. The holonomic system of differential equations given in \S S.2 has regu-
lar singulanties along 2 divisors $y_{1}=0$ and $y_{2}=0$ which are of simple normal cross-
ing at $(y_{1}, y_{2})=(0,0)$ . The power series solutions of the system at $(y_{1}, y_{2})=(0,0)$

are called the secondary Whittaker functions. The secondary Whittaker functions
play an important role in $\omega nstmcting$ the Poincar\’e seri es (cf. [6], [7]). Our proof
of the main theorem requires the factorization theorem of the primary Whittaker
fiinctions by the secondaries.

Remark 3.3. In the explicit description of the Dirac-Scmid eigen-equations, $we$

used the Clebsch-Gordan $\omega efficients$ for the injectors $\iota$ : $V_{\mu}arrow V_{\mu}\otimes V_{(1_{2}0,-1)}$ with
oespect to the GZ-basis. Our paper [2] discussed its dual, that is, the Clebsch-Gordan
coefficients for the projectors from $V_{\mu}\otimes V_{(1,0,-1)}$ to $V_{\mu}$ .

4. PROPAGATION FORMULA FOR WHITTAKER FUNCTIONS

In this section, we give an expression of the primary Whuittaker function on
$GL(3, C)$ in terms of that on $GL(2, C)$ . This is an analogue of the formula ob-
tained by Ishii-Stade [5].

4.1. Whittaker functions on $GL(2, C)$ . First we recaJJ two explicit integral for-
mulas of the principal series Whuittaker functions on $GL(2, C)$ .

Let $G’=GL(2, C)$ and take subgroups $K’=U(2)$ , and

$A’=\{(\begin{array}{ll}a_{l} 00 a_{2}\end{array})|a_{i}\in R>0,$ $i=1,2\},$ $N^{l}=\{$ $n(x)=(\begin{array}{ll}1 x0 1\end{array})|x\in C\}$ ,

of $G’$ . Then we have an Iwasawa decomposition $G’=N’A’K’$ of $G’$ . The upper
triangular subgroup $P’=N’A’M’$ of $G’$ with the centralizer $M’$ of $A^{l}$ in $K$‘ given
by

$M’=\{(\begin{array}{ll}u_{l} 00 u_{2}\end{array})$ $u_{i}\in U(1),$ $i=1,2\}\simeq U(1)^{2}$ ,

is the minimal parabolic subgroup.
We can parameterize the equivalence classes of irreducible continuous representa-

tions of $K’=U(2)$ by the set
$\Lambda’=\{\mu’=(\mu_{1}’, \mu_{2}’)|\mu^{l}\in Z^{2}, \mu_{1}’\geq\mu_{2}’\}$ ,
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$hom$ the highest weight theory. The representation space $V_{\mu’}$ of the representation $\tau_{\mu’}$

associated with $\mu’=(\mu_{1}’, \mu_{2}’)\in\Lambda’$ has the (normalized) GZ-basis $\{f’(M’)\}_{M’\in G(\mu’)}$

as in the case of $U(3)$ . Here
$G(\mu’)=\{M^{l}=(\begin{array}{l}\mu_{2}^{/}\mu_{1}’\alpha\end{array})|\alpha’\in Z,$ $\mu_{1}’\geq\alpha’\geq\mu_{2}’\}$ .

A principal series representation
$\pi^{t}=\pi’(\nu’, \sigma_{n^{l}})=Ind_{P}^{G’},(1_{N’}\otimes e^{\sqrt{}+\rho’}\otimes\sigma_{n’})$ ,

of $G’$ with data $\nu^{l}=(\nu_{1}’, \nu_{2}’)\in C^{2}$ and $n’=(n_{1}’,n_{2}’)\in Z^{2}$ is defined similarly to that
of $GL(3, C)$ . Here the half-sum $\rho’$ of the positive restricted roots is given by

$e^{\rho’}$ (diag $(a_{1},$ $a_{2})$ ) $= \frac{a_{1}}{a_{2}}$ , diag $(a_{1}, a_{2})\in A’$ .

As in the case of $GL(3, C)$ , the central character of $\pi’$ is
$Z_{G’}=\{ru1_{2}|r\in R_{>0},u\in U(1)\}\ni ru1_{2}\mapsto r^{\sqrt{}}u^{\hslash’}$ , $r\in R_{>0},$ $u\in U(1)$ ,

with $\tilde{\nu}’=\nu_{1}’+\nu_{2}^{l}$ and $\tilde{n}’=n_{1}^{l}+n_{2}^{l}$ , and the minimal K’-type of $\pi’$ is the representation
$(\tau_{m’}, V_{m’})$ associated with the dominant permutation $m’\in\Lambda’$ of $n^{l}$ .

Also, we take a non-degenerate character $\eta’$ of $N’$ defined by
$\eta’(n(x))=\exp(2\pi\sqrt{-1}{\rm Im}(x))$ .

By virtue of the Iwasawa decomposition of $G^{l}$ and the central character of $\pi’$ , the
Whuittaker functions can be described as functions of a variable

$y= \frac{a_{1}}{a_{2}}$ , for diag $(a_{1}, a_{2})=a_{2}$ . diag $(y, 1)\in A’$ .

Theorem 4.1. Let $\pi^{l}=\pi^{l}(\nu’, \sigma_{n’})$ be an imeducible principal series representation
of $G’$ with the minimal $K’$ -type $(\tau_{m’}, V_{m’})$ associated with the dominant pervnutation
$m’=(m_{1)}^{l}m_{2}’)=(n_{a}’, n_{b}^{l})\in\Lambda’$ of $n’$ , and let $\eta’$ be a non-degenemte unitary character
of $N^{l}$ . Moreover let $W_{2}(y)\in$ Wh$(\pi’, \eta_{j}’\tau’)^{mod}$ be the (A’-radial part of) primary
Whittaker.fimction with $M’$ -components $W_{2}(M’;y)=y\tilde{W}_{2}(M^{l};y)$ for each G-pattem

$M^{l}=(\begin{array}{l}m_{1}’m_{2}’\alpha\end{array})\in G(m’)$ of weight $(w_{1}^{l}, w_{2}^{l})=(\alpha^{l}, m_{1}’+m_{2}^{l}-\alpha’)$ . Then the jfunction
$\tilde{W}_{2}(M’;y)$ has the following expressions:

$\tilde{W}_{2}(M’;y)=\frac{1}{2\pi\sqrt{-1}}lV_{2}(M^{l};s)(\pi y)^{-\epsilon}ds=4(\pi y)^{A}K_{B}(2\pi y)$.
Here, the path of integmtion is the vertical line jfiom ${\rm Re} s-\sqrt{-1}\infty$ to ${\rm Re} s+\sqrt{-1}\infty$

with enough large real part and the integrand $V_{2}(M’;s)$ is defined by

$V_{2}(M’;s)= \Gamma(\frac{s+\lambda_{2}’+m_{1}’-\alpha^{l}}{2})\Gamma(\frac{s+\lambda_{1}+\alpha’-m_{2}^{l}}{2})$ ,

with
$\lambda_{1}’=\nu_{b}’-\frac{\tilde{\nu}^{l}}{2},$ $\lambda_{2}’=\nu_{a}’-\frac{\tilde{\nu}^{l}}{2}$ ,

and the parameters $A$ and $B$ are given by

$A= \frac{m_{1}^{l}-m_{2}’}{2},$ $B= \frac{\lambda_{1}’-\lambda_{2}^{l}+w_{1}^{l}-w_{2}^{l}}{2}$ .
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This theorem is obtained by solving a system of differential equations for the
Whuittaker functions, as in the case of $GL(3, C)$ . But the required calculation is
much simpler than that of $GL(3, C)$ .

Remark 4.2. As in the case of $GL(3, C)$ , we can show the factonzation theorem
of the prima$\eta$ Whittaker junctions by the secondaries, which is essentially the $ex\sim$

pression of the K-Bessel fimction by the I-Bessel functions.
4.2. Some integral formulas. The modified Bessel function $K_{\nu}(z)$ of the second
kind has several integral expressions. Among them, we recall two expressions: One
is the integral expression of Mellin-Bames type

$K_{\nu}(z)= \frac{1}{4}\cdot\frac{1}{2\pi\sqrt{-1}}\int\Gamma(\frac{s+\nu}{2})\Gamma(\frac{s-\nu}{2})(\frac{z}{2})^{-\epsilon}ds$.

Here, the path of integration is the vertical line hom Re $s-\sqrt{-1}\infty$ to ${\rm Re} s+\sqrt{-1}\infty$

with enough large real part. Another is that of Euler type

$K_{\nu}(z)= \frac{1}{2}\int_{0}^{\infty}\exp(\frac{-z(t+t^{-1})}{2})t^{\nu}\frac{dt}{t}$ ,

which is valid only for ${\rm Re} z>0$ .
Also we recall the following integral formula so-called Barnes’ lemma

$\frac{1}{2\pi\sqrt{-1}}1^{\Gamma(z}+a)\Gamma(z+b)\Gamma(-z+c)\Gamma(-z+d)dz$

$= \frac{\Gamma(a+c)\Gamma(a+d)\Gamma(b+c)\Gamma(b+d)}{\Gamma(a+b+c+d)}$ .

Here the path of integration is the vertical line $homB\epsilon z-\sqrt{-1}\infty$ to ${\rm Re} z+\sqrt{-1}\infty$

with enough large real part.

4.3. Propagation formula. Let $\pi=\pi(\nu, \sigma_{n})$ be an irreducible principal series rep-
resentation of $G=GL(3, C)$ with data $\nu=(\nu_{1}, \nu_{2}, \nu_{3})\in C^{3}$ and $n=(n_{1}, n_{2}, n_{3})\in$

$Z^{3}$ and let $\eta$ be a non-degenerate unitary character of $N$ defined in \S 3. For simplicity,
we assume that the parameter $n$ satisfies the regularity condition

$n_{1}\geq n_{2}\geq n_{3}$ .
Then $n\in\Lambda$ and the minimal K-type of $\pi$ is $(\tau_{m}, V_{m})=(\tau_{n}, V_{n})$ .

Let $W_{3}(y)\in$ Wh$(\pi, \eta, \tau)^{mod}$ be the (A-radial part of) primary Whittaker fmction
with M-components $W_{3}(M;y)=y_{1}^{2}y_{2}^{2}\tilde{W}_{3}(M;y)$ . Under the regularity condition on
$n$ , we have the parameters $( \lambda_{1}, \lambda_{2}, \lambda_{3})=(\nu_{3}-\frac{\tilde{\nu}}{3},$ $\nu_{1}-\frac{\tilde{\nu}}{3},$ $\nu_{2}-\frac{\tilde{\nu}}{3})$ which appear

in the integrand $V_{3}(M;s_{1}, s_{2})$ of the integral expression of Mellin-Barnes type for
$\tilde{W}_{3}(M;y)$ in Theorem 3.1.
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Theorem 4.3. Let $M=(\begin{array}{l}m_{1}m_{2^{m}3}\alpha_{1}\alpha_{2}\beta\end{array})\in G(m)$ . Then the integrand $V_{3}(M;s_{1}, s_{2})$

has the following expression.

$V_{3}(M;s_{1}, s_{2})$ $= \Gamma(\frac{s_{1}+\zeta_{j}^{(1)}(M)}{2}I^{\Gamma}(\frac{s_{2}+\zeta_{j}^{(2)}(M)}{2})$

$x\frac{1}{2\pi\sqrt{-1}}l^{r}(\frac{z+s_{1}+\mu_{1}}{2})\Gamma(\frac{z+s_{2}+\mu_{2}}{2})V_{2}(M’;-z)dz$,

where $V_{2}(M’;s)$ is the integmnd of the integral expression of $\tilde{W}_{2}(M’;y)$ in Theorem
4.1 for a triple $(\pi’(\sqrt{}, \sigma_{n’}), \eta’, \tau_{m’})$ and a G-pattem $M’\in G(m’)$ and the path of
integmtion is the verti$cal$ line from ${\rm Re} z-\sqrt{-1}\infty$ to ${\rm Re} z+\sqrt{-1}\infty$ with large enough
real part. The parameters and the representations are given in the following table.

Proof. Assume $\delta(M)\geq 0$ . Then, since $\zeta_{1}^{(1)}(M)+\zeta_{1}^{(2)}(M)=\zeta_{3}^{(1)}(M)+\zeta_{3}^{(2)}(M)$,
Barnes’ lemma leads the equation

$V_{3}(M;s_{1}, s_{2})$ $=$ $\Gamma(\frac{s_{1}+\zeta_{2}^{(1)}(M)}{2})\Gamma(\frac{s_{2}+\zeta_{2}^{(2)}(M)}{2})$

$\cross\frac{1}{2\pi\sqrt{-1}}/z\Gamma(\frac{z+s_{1}+\mu_{1}}{2})\Gamma(\frac{z+s_{2}+\mu_{2}}{2})$

$x\Gamma(\frac{-z+\mu_{3}}{2})\Gamma(\frac{-z+\mu_{4}}{2})dz$,

where the parameters $\mu_{1}$ and $\mu_{2}$ are given in the assertion of theorem and $\mu_{3}$ and
$\mu 4$ are

$\mu_{3}=\frac{-\nu_{2}+\nu_{3}}{2}+\alpha_{2}-m_{3}$ , $\mu_{4}=\frac{\nu_{2}-\nu_{3}}{2}-\alpha_{2}+m_{2}$ .

Here we use the relations $\lambda_{1}+\frac{\lambda_{2}}{2}=\frac{-\nu_{2}+\nu_{3}}{2}$ and $\lambda_{3}+\frac{\lambda_{2}}{2}=\frac{\nu_{2}-\nu_{3}}{2}$ .
The assertion for the other cases of $\delta(M)$ can be obtained similarly. $\square$

Corollary 4.4. We have the following expression of $\tilde{W}_{3}(M;y)$ .

$\tilde{W}_{3}(M;y)$ $=4 \pi^{a\iota+a2}y_{1}^{a_{1}+A_{1}}y_{2}^{a_{2}-A_{2}}\int_{0}^{\infty}/o^{\infty}\exp(-\pi(y_{1}^{2}u_{1}+\frac{1}{u_{1}}+y_{2}^{2}u_{2}+\frac{1}{u_{2}}))$

$xu_{1}^{A_{1}}u_{2}^{-A_{2}}\tilde{W}_{2}(M’;\pi y_{2}\sqrt{\frac{u_{2}}{u_{1}}})\frac{du_{1}}{u_{1}}\frac{du_{2}}{u_{2}}$ .
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Here
$a_{k}= \frac{1}{2}\{\zeta_{j}^{(k)}(M)+\mu k\}$ , $A_{k}=\zeta_{j}^{(k)}(M)-a_{k}$ , $k=1,2$ ,

and the pammeters and the representations are given in Theorem 4.3.
Pmof. This corollary is obtained $hom$ the integral expression of MeUin-Barnes type
for $W_{3}(M;y)$ in Theorem 3.1 and Theorem 4.3 by using the integral expressions of
$K_{\nu}(z)$ in \S 4.2. $\square$
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