MIKI HIRANO AND TAKAYUKI ODA

1. INTRODUCTION

The precise analytic properties of Whittaker functions are utilized in the study of the Fourier expansions of automorphic forms and their related topics such as *L*-functions. In this note, we give explicit formulas for (general) principal series Whittaker functions on $GL(3, \mathbb{C})$. Also, we give a propagation formula which is an expression of the Whittaker functions on $GL(3, \mathbb{C})$ via those on $GL(2, \mathbb{C})$: This is an analogue of the recent result of Ishii-Stade [5] for the class one cases.

This note is based on our recent paper [3]. See it for details.

2. DEFINITION OF WHITTAKER FUNCTIONS

Let G = NAK be an Iwasawa decomposition of a real reductive group G. For an irreducible admissible representation (π, H_{π}) of G, we choose a K-type (τ^*, V_{τ^*}) in π which occurs with multiplicity one and fix an injective K-homomorphism $i \in$ Hom $_K(\tau^*, \pi|_K)$. Here (τ^*, V_{τ^*}) means the contragradient representation of (τ, V_{τ}) . Moreover, take a non-degenerate character η of N. Let us consider the intertwining space

$$\mathcal{I}_{\eta,\pi} = \operatorname{Hom}_{(\mathfrak{g}_{\mathbf{C}},K)}(\pi, C^{\infty}\operatorname{Ind}_{N}^{G}(\eta))$$

between $(\mathfrak{g}_{\mathbb{C}}, K)$ -modules consisting of all K-finite vectors, where $C^{\infty} \operatorname{Ind}_{N}^{G}(\eta)$ is the induced representation of G from η as C^{∞} -induction. For each $T \in \mathcal{I}_{\eta,\pi}$, we define a V_{τ} -valued function T_{i} on G by

$$T(i(v^*))(g) = \langle v^*, T_i(g) \rangle, \ v^* \in V_{\tau^*}, \ g \in G.$$

Here $\langle \cdot, \cdot \rangle$ is the canonical bilinear form on $V_{\tau^*} \times V_{\tau}$. The function T_i means a restriction of $T \in \mathcal{I}_{\eta,\pi}$ to K and satisfies

$$T_i(ngk) = \eta(n)\tau(k)^{-1}T_i(g), \quad (n, g, k) \in N \times G \times K.$$

Then we put

$$Wh(\pi,\eta,\tau)^{mod} = \bigcup_{i \in Hom_{K}(\tau^{*},\pi|_{K})} \{T_{i} \mid T \in \mathcal{I}_{\eta,\pi}, T_{i} \text{ is moderate growth}\}.$$

(Here the term "moderate growth" is by means of [9] §8.1.) According to the multiplicity one theorem of Shalika [8], the dimension of the space $Wh(\pi, \eta, \tau)^{mod}$ is at most one. A unique (up to constant) element in $Wh(\pi, \eta, \tau)^{mod}$ is called a primary Whittaker function with respect to (π, η, τ) .

MIKI HIRANO AND TAKAYUKI ODA

3. WHITTAKER FUNCTIONS ON $GL(3, \mathbb{C})$

In this section, we determine the primary Whittaker function on $GL(3, \mathbb{C})$ for principal series representations and their minimal K-types.

3.1. Groups and representations. Let $G = GL(3, \mathbb{C})$ be the complex general linear group of degree 3, which is viewed as a real reductive group, with the center

$$Z_G = \{ ru1_3 \mid r \in \mathbf{R}_{>0}, u \in U(1) \} \simeq \mathbf{C}^{\times}.$$

Here 1_n is the unit matrix of degree *n*. Let K = U(3) be a maximal compact subgroup of *G*, and define subgroups *A* and *N* of *G* by

$$A = \{ \text{diag}(a_1, a_2, a_3) \in G \mid a_i \in \mathbf{R}_{>0}, i = 1, 2, 3 \},$$
$$N = \left\{ n(\mathbf{x}) = \begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{pmatrix} \in G \mid \mathbf{x} = (x_i) \in \mathbf{C}^3 \right\}.$$

Then we have an Iwasawa decomposition G = NAK. If we put

$$M = \{ \text{diag}(u_1, u_2, u_3) \mid u_i \in U(1), i = 1, 2, 3 \} \simeq U(1)^3,$$

then M is the centralizer of A in K and P = NAM gives the upper triangular subgroup of G, which is a minimal parabolic subgroup of G.

The equivalence classes of irreducible continuous representations of K are parameterized by the set of the highest weights

$$\Lambda = \{ \mu = (\mu_1, \mu_2, \mu_3) \mid \mu \in \mathbb{Z}^3, \mu_1 \ge \mu_2 \ge \mu_3 \}.$$

We denote by (τ_{μ}, V_{μ}) the representation of K associated with $\mu \in \Lambda$. The representation space V_{μ} has the (normalized) GZ-basis $\{f(M)\}_{M \in G(\mu)}$ parameterized by the set $G(\mu)$ of all G-patterns of type μ (cf. [1], [2]). Here a G-pattern $M \in G(\mu)$ is a triangle

$$M = \begin{pmatrix} \mu_1 & \mu_2 & \mu_3 \\ \alpha_1 & \alpha_2 \\ \beta \end{pmatrix}$$

consisting of 6 integers satisfying the inequalities

$$\mu_1 \ge \alpha_1 \ge \mu_2 \ge \alpha_2 \ge \mu_3, \quad \alpha_1 \ge \beta \ge \alpha_2.$$

Let us take a character $\sigma_{\mathbf{n}}$ of M defined by

$$\sigma_{\mathbf{n}}(\operatorname{diag}(u_1, u_2, u_3)) = u_1^{n_1} u_2^{n_2} u_3^{n_3}, \quad \mathbf{n} = (n_1, n_2, n_3) \in \mathbf{Z}^3,$$

and an element ν in the dual $\mathfrak{a}_{\mathbb{C}}^*$ of $\mathfrak{a}_{\mathbb{C}}$ identified with $(\nu_1, \nu_2, \nu_3) \in \mathbb{C}^3$ via $\nu_i = \nu(E_{ii})$ for $1 \leq i \leq 3$. Here $\mathfrak{a}_{\mathbb{C}}$ is the complexification of the Lie algebra of A and E_{ii} is the diagonal matrix unit with (i, i)-entry 1 and the remaining entries 0. Then the induced representation

$$\pi = \pi(
u, \sigma_{\mathbf{n}}) = \operatorname{Ind}_{P}^{G}(1_{N} \otimes e^{\nu + \rho} \otimes \sigma_{\mathbf{n}})$$

of G from the parabolic subgroup P = NAM is called the principal series representation of G. Here ρ is the half-sum of the positive restricted roots, i.e.,

$$e^{
ho}(ext{diag}(a_1, a_2, a_3)) = \left(rac{a_1}{a_3}
ight)^2, \quad ext{diag}(a_1, a_2, a_3) \in A.$$

The central character of π is given by

$$Z_G \ni ru1_3 \mapsto r^{\tilde{\nu}} u^{\tilde{n}}, \quad r \in \mathbf{R}_{>0}, \ u \in U(1),$$

with $\tilde{\nu} = \nu_1 + \nu_2 + \nu_3$ and $\tilde{n} = n_1 + n_2 + n_3$, and the minimal K-type of π is the representation (τ_m, V_m) of K associated with the dominant permutation $\mathbf{m} \in \Lambda$ of **n**.

Finally, we take a non-degenerate character η of N defined by

$$\eta(n(\boldsymbol{x})) = \exp\left(2\pi\sqrt{-1}\operatorname{Im}\left(x_1 + x_3\right)\right).$$

3.2. Differential equations. Let us take an irreducible principal series representation $\pi = \pi(\nu, \sigma_n)$ of G with the minimal K-type (τ_m, V_m) and a non-degenerate unitary character η of N defined in the previous subsection. In this subsection, we consider a system of differential equations for the functions ϕ in Wh $(\pi, \eta, \tau)^{\text{mod}}$. This is described as that for the M-components $\phi(M)$, since the Whittaker functions are V_{τ} -valued. Here the M-component $\phi(M)$ of ϕ corresponding to $M \in G(\mathbf{m})$ is defined by

$$\phi(M;g) = \langle \phi(g), f(M) \rangle, \quad g \in G,$$

for the GZ-basis ${f(M)}_{M \in G(\mathbf{m})}$ of $V_{\mathbf{m}}$.

It is well known that each element C in the center $Z(\mathfrak{g}_{\mathbb{C}})$ of the universal enveloping algebra $U(\mathfrak{g}_{\mathbb{C}})$ of $\mathfrak{g}_{\mathbb{C}}$ acts as a scalar on the K-finite vectors in π . If we take an injection $j \in \operatorname{Hom}_{K}(\tau_{m}, \pi|_{K})$, then we have the equation

(1)
$$\mathcal{C} \cdot j(f(M)) = \chi_{\mathcal{C}} j(f(M)), \quad M \in G(\mathbf{m})$$

for a scalar $\chi_{\mathcal{C}}$. Therefore, each *M*-component $\phi(M)$ of $\phi \in Wh(\pi, \eta, \tau)^{\text{mod}}$ satisfies the equations

(2)
$$C\phi(M) = \chi_C \phi(M), \quad C \in Z(\mathfrak{g}_{\mathbf{C}}).$$

Here we remark that the generators of $Z(\mathfrak{g}_{\mathbb{C}})$ can be constructed from the Capelli elements in $U(\mathfrak{g})$ (cf. [4]) via the identification of $U(\mathfrak{g}_{\mathbb{C}})$ and $U(\mathfrak{g}) \otimes_{\mathbb{C}} U(\mathfrak{g})$.

Let \mathfrak{k} (resp. \mathfrak{p}) be the +1 (resp. the -1) eigenspace of the Cartan involution θ of \mathfrak{g} defined by $\theta(X) = -{}^{t}X$. Then the complexification $\mathfrak{p}_{\mathbb{C}}$ of \mathfrak{p} becomes a K-module via the adjoint action and its irreducible decomposition is $\mathfrak{p}_{\mathbb{C}} = Z_{\mathfrak{p},\mathbb{C}} \oplus \mathfrak{p}_{0,\mathbb{C}}$ with $Z_{\mathfrak{p},\mathbb{C}} \simeq V_{(0,0,0)}$ and $\mathfrak{p}_{0,\mathbb{C}} \simeq V_{(1,0,-1)}$. In the tensor product $\mathfrak{p}_{0,\mathbb{C}} \otimes V_{\mu}$ with a general irreducible representation V_{μ} of K, V_{μ} occurs with multiplicity two as the irreducible component. Take an injector ι from $V_{\mathbf{m}}$ into $\mathfrak{p}_{0,\mathbb{C}} \otimes V_{\mathbf{m}} \simeq V_{(1,0,-1)} \otimes V_{\mathbf{m}}$ and fix an injection $j \in \operatorname{Hom}_{K}(\tau_{\mathbf{m}}, \pi|_{K})$. Since the minimal K-type $\tau_{\mathbf{m}}$ occurs with multiplicity one in $\pi|_{K}$, the composition

$$V_{\mathbf{m}} \xrightarrow{\iota} \mathfrak{p}_{0,\mathbb{C}} \otimes V_{\mathbf{m}} \xrightarrow{\alpha} \pi(\mathfrak{p}_{0,\mathbb{C}}) j(V_{\mathbf{m}}) \subset L^{2}_{(M,\sigma_{\mathbf{n}})}(K)$$

is a scalar multiple of j, where α is the evaluation map. Thus, if we write

$$\iota(f(M)) = \sum_{M' \in G(\mathbf{m})} X_{M,M'}^{(\iota)} \otimes f(M'), \ X_{M,M'}^{(\iota)} \in \mathfrak{p}_{0,\mathbf{C}},$$

for the GZ-basis $\{f(M)\}_{M \in G(\mathbf{m})}$ of $V_{\mathbf{m}}$ then we have the equation

(3)
$$\sum_{M'\in G(\mathbf{m})} X_{M,M'}^{(\iota)} \cdot j(f(M')) = \lambda_{\iota} j(f(M)), \quad M \in G(\mathbf{m})$$

MIKI HIRANO AND TAKAYUKI ODA

with a scalar λ_{ι} . We call this equation (3) the Dirac-Schmid eigen-equation. Then, for each injector ι , we have the difference-differential equation

(4)
$$\sum_{M'\in G(\mathbf{m})} X_{M,M'}^{(\iota)} \phi(M') = \lambda_{\iota} \phi(M),$$

among the *M*-components $\{\phi(M)\}_{M \in G(\mathbf{m})}$ of $\phi \in Wh(\pi, \eta, \tau)^{\text{mod}}$.

3.3. Explicit integral formulas. Let $\pi = \pi(\nu, \sigma_n)$, $(\tau^*, V_{\tau^*}) = (\tau_m, V_m)$, and η be as in the previous subsection. We give two explicit integral formulas for the primary Whittaker function $\phi \in Wh(\pi, \eta, \tau)^{mod}$, in this subsection.

The Whittaker functions are determined by its A-radial parts (i.e. its restriction to A) because of the Iwasawa decomposition of G. Moreover, the values on the center Z_G of G are given by the central character of π , i.e.,

$$\phi(rug) = r^{\bar{\nu}}u^{\bar{n}}\phi(g), \quad \phi \in Wh(\pi, \eta, \tau)^{\text{mod}}, \ r \in \mathbf{R}_{>0}, \ u \in U(1), \ g \in G.$$

Therefore, we can describe them as functions of two variables with the coordinates

$$y_1 = \frac{a_1}{a_2}, \quad y_2 = \frac{a_2}{a_3},$$

for diag $(a_1, a_2, a_3) = a_3 \cdot \text{diag}(y_1y_2, y_2, 1) \in A$.

Now we can state our main result, that is, two explicit integral formulas for the primary Whittaker function with respect to the triple (π, η, τ) .

Theorem 3.1. Let $W_3(y)$ be the A-radial part of the primary Whittaker function in $Wh(\pi, \eta, \tau)^{mod}$ and $W_3(M; y) = y_1^2 y_2^2 \tilde{W}_3(M; y)$ be its M-component. Then $\tilde{W}_3(M; y)$ has the following integral expressions:

$$\begin{split} \tilde{W}_{3}(M;y) &= \frac{1}{(2\pi\sqrt{-1})^{2}} \int_{s_{1}} \int_{s_{2}} V_{3}(M;s_{1},s_{2})(\pi y_{1})^{-s_{1}}(\pi y_{2})^{-s_{2}} ds_{1} ds_{2} \\ &= 2^{4}(\pi y_{1})^{\frac{-\lambda_{3}+m_{1}-m_{3}}{2}} (\pi y_{2})^{\frac{\lambda_{3}+m_{1}-m_{3}}{2}} \\ &\times \int_{0}^{\infty} K_{A} \left(2\pi y_{1}\sqrt{1+\frac{1}{v}} \right) K_{A+\delta(M)} \left(2\pi y_{2}\sqrt{1+v} \right) v^{B}(1+v)^{C} \frac{dv}{v}. \end{split}$$

Here, in the first integral expression of Mellin-Barnes type, the paths s_i of integrations are the vertical lines from $\operatorname{Re} s_i - \sqrt{-1}\infty$ to $\operatorname{Re} s_i + \sqrt{-1}\infty$ with enough large

real part and the integrand $V_3(M; s_1, s_2)$ is defined by

$$V_3(M;s_1,s_2) = \prod_{i=1}^2 \prod_{j=1}^3 \Gamma\left(\frac{s_i + \zeta_j^{(i)}(M)}{2}\right) / \Gamma\left(\frac{s_1 + s_2 + \zeta_3^{(1)}(M) + \zeta_3^{(2)}(M)}{2}\right).$$

Also, in the second integral expression of Euler type, K_{ν} is the K-Bessel function and the parameters A, B and C are given as follows.

$$A = rac{\zeta_1^{(1)}(M) - \zeta_2^{(1)}(M)}{2}, \quad B = rac{2\zeta_3^{(1)}(M) - \zeta_1^{(1)}(M) - \zeta_2^{(1)}(M)}{4}, \quad C = rac{|\delta(M)|}{2}.$$

This theorem is obtained by solving the system of difference-differential equations (2) and (4) for the M-components of the Whittaker function in the previous subsection, explicitly.

Remark 3.2. The holonomic system of differential equations given in §3.2 has regular singularities along 2 divisors $y_1 = 0$ and $y_2 = 0$ which are of simple normal crossing at $(y_1, y_2) = (0, 0)$. The power series solutions of the system at $(y_1, y_2) = (0, 0)$ are called the secondary Whittaker functions. The secondary Whittaker functions play an important role in constructing the Poincaré series (cf. [6], [7]). Our proof of the main theorem requires the factorization theorem of the primary Whittaker functions by the secondaries.

Remark 3.3. In the explicit description of the Dirac-Scmid eigen-equations, we used the Clebsch-Gordan coefficients for the injectors $\iota : V_{\mu} \to V_{\mu} \otimes V_{(1,0,-1)}$ with respect to the GZ-basis. Our paper [2] discussed its dual, that is, the Clebsch-Gordan coefficients for the projectors from $V_{\mu} \otimes V_{(1,0,-1)}$ to V_{μ} .

4. PROPAGATION FORMULA FOR WHITTAKER FUNCTIONS

In this section, we give an expression of the primary Whittaker function on $GL(3, \mathbb{C})$ in terms of that on $GL(2, \mathbb{C})$. This is an analogue of the formula obtained by Ishii-Stade [5].

4.1. Whittaker functions on $GL(2, \mathbb{C})$. First we recall two explicit integral formulas of the principal series Whittaker functions on $GL(2, \mathbb{C})$.

Let $G' = GL(2, \mathbb{C})$ and take subgroups K' = U(2), and

$$A' = \left\{ \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \middle| a_i \in \mathbf{R}_{>0}, i = 1, 2 \right\}, \quad N' = \left\{ n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in \mathbf{C} \right\},$$

of G'. Then we have an Iwasawa decomposition G' = N'A'K' of G'. The upper triangular subgroup P' = N'A'M' of G' with the centralizer M' of A' in K' given by

$$M' = \left\{ \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} \middle| u_i \in U(1), i = 1, 2 \right\} \simeq U(1)^2,$$

is the minimal parabolic subgroup.

We can parameterize the equivalence classes of irreducible continuous representations of K' = U(2) by the set

$$\Lambda' = \{ \mu' = (\mu'_1, \mu'_2) \mid \mu' \in \mathbf{Z}^2, \mu'_1 \ge \mu'_2 \},\$$

from the highest weight theory. The representation space $V_{\mu'}$ of the representation $\tau_{\mu'}$ associated with $\mu' = (\mu'_1, \mu'_2) \in \Lambda'$ has the (normalized) GZ-basis $\{f'(M')\}_{M' \in G(\mu')}$ as in the case of U(3). Here

$$G(\mu') = \left\{ M' = \left(\begin{array}{c} \mu'_1 \ \mu'_2 \\ \alpha' \end{array} \right) \middle| \alpha' \in \mathbf{Z}, \ \mu'_1 \ge \alpha' \ge \mu'_2 \right\}.$$

A principal series representation

$$\pi' = \pi'(\nu', \sigma_{\mathbf{n}'}) = \operatorname{Ind}_{P'}^{G'}(1_{N'} \otimes e^{\nu' + \rho'} \otimes \sigma_{\mathbf{n}'}),$$

of G' with data $\nu' = (\nu'_1, \nu'_2) \in \mathbb{C}^2$ and $\mathbf{n}' = (n'_1, n'_2) \in \mathbb{Z}^2$ is defined similarly to that of $GL(3, \mathbb{C})$. Here the half-sum ρ' of the positive restricted roots is given by

$$e^{\rho'}(\operatorname{diag}(a_1, a_2)) = \frac{a_1}{a_2}, \quad \operatorname{diag}(a_1, a_2) \in A'.$$

As in the case of $GL(3, \mathbb{C})$, the central character of π' is

$$Z_{G'} = \{ ru1_2 \, | \, r \in \mathbf{R}_{>0}, u \in U(1) \} \ni ru1_2 \mapsto r^{\bar{\nu}'} u^{\bar{n}'}, \quad r \in \mathbf{R}_{>0}, \ u \in U(1),$$

with $\tilde{\nu}' = \nu'_1 + \nu'_2$ and $\tilde{n}' = n'_1 + n'_2$, and the minimal K'-type of π' is the representation $(\tau_{\mathbf{m}'}, V_{\mathbf{m}'})$ associated with the dominant permutation $\mathbf{m}' \in \Lambda'$ of \mathbf{n}' .

Also, we take a non-degenerate character η' of N' defined by

$$\eta'(n(x)) = \exp\left(2\pi\sqrt{-1}\mathrm{Im}\,(x)\right).$$

By virtue of the Iwasawa decomposition of G' and the central character of π' , the Whittaker functions can be described as functions of a variable

$$y = \frac{a_1}{a_2}$$
, for diag $(a_1, a_2) = a_2 \cdot \operatorname{diag}(y, 1) \in A'$.

Theorem 4.1. Let $\pi' = \pi'(\nu', \sigma_{\mathbf{n}'})$ be an irreducible principal series representation of G' with the minimal K'-type $(\tau_{\mathbf{m}'}, V_{\mathbf{m}'})$ associated with the dominant permutation $\mathbf{m}' = (m'_1, m'_2) = (n'_a, n'_b) \in \Lambda'$ of \mathbf{n}' , and let η' be a non-degenerate unitary character of N'. Moreover let $W_2(y) \in Wh(\pi', \eta', \tau')^{\text{mod}}$ be the (A'-radial part of) primary Whittaker function with M'-components $W_2(M'; y) = y\tilde{W}_2(M'; y)$ for each G-pattern $M' = \begin{pmatrix} m'_1 m'_2 \\ \alpha' \end{pmatrix} \in G(\mathbf{m}')$ of weight $(w'_1, w'_2) = (\alpha', m'_1 + m'_2 - \alpha')$. Then the function $\tilde{W}_2(M'; y)$ has the following expressions:

$$\tilde{W}_2(M';y) = \frac{1}{2\pi\sqrt{-1}} \int_s V_2(M';s)(\pi y)^{-s} ds = 4(\pi y)^A K_B(2\pi y).$$

Here, the path of integration is the vertical line from $\operatorname{Re} s - \sqrt{-1}\infty$ to $\operatorname{Re} s + \sqrt{-1}\infty$ with enough large real part and the integrand $V_2(M'; s)$ is defined by

$$V_2(M';s) = \Gamma\left(\frac{s+\lambda_2'+m_1'-\alpha'}{2}\right)\Gamma\left(\frac{s+\lambda_1'+\alpha'-m_2'}{2}\right)$$

$$\lambda'_1 = \nu'_b - \frac{\tilde{\nu}'}{2}, \ \lambda'_2 = \nu'_a - \frac{\tilde{\nu}'}{2},$$

and the parameters A and B are given by

$$A = rac{m_1' - m_2'}{2}, \ B = rac{\lambda_1' - \lambda_2' + w_1' - w_2'}{2}.$$

This theorem is obtained by solving a system of differential equations for the Whittaker functions, as in the case of $GL(3, \mathbb{C})$. But the required calculation is much simpler than that of $GL(3, \mathbb{C})$.

Remark 4.2. As in the case of $GL(3, \mathbb{C})$, we can show the factorization theorem of the primary Whittaker functions by the secondaries, which is essentially the expression of the K-Bessel function by the I-Bessel functions.

4.2. Some integral formulas. The modified Bessel function $K_{\nu}(z)$ of the second kind has several integral expressions. Among them, we recall two expressions: One is the integral expression of Mellin-Barnes type

$$K_{\nu}(z) = \frac{1}{4} \cdot \frac{1}{2\pi\sqrt{-1}} \int_{s} \Gamma\left(\frac{s+\nu}{2}\right) \Gamma\left(\frac{s-\nu}{2}\right) \left(\frac{z}{2}\right)^{-s} ds.$$

Here, the path of integration is the vertical line from $\operatorname{Re} s - \sqrt{-1}\infty$ to $\operatorname{Re} s + \sqrt{-1}\infty$ with enough large real part. Another is that of Euler type

$$K_{\nu}(z) = \frac{1}{2} \int_0^{\infty} \exp\left(\frac{-z(t+t^{-1})}{2}\right) t^{\nu} \frac{dt}{t},$$

which is valid only for $\operatorname{Re} z > 0$.

Also we recall the following integral formula so-called Barnes' lemma

$$\frac{1}{2\pi\sqrt{-1}}\int_{z}\Gamma(z+a)\Gamma(z+b)\Gamma(-z+c)\Gamma(-z+d)dz$$
$$=\frac{\Gamma(a+c)\Gamma(a+d)\Gamma(b+c)\Gamma(b+d)}{\Gamma(a+b+c+d)}.$$

Here the path of integration is the vertical line from $\operatorname{Re} z - \sqrt{-1}\infty$ to $\operatorname{Re} z + \sqrt{-1}\infty$ with enough large real part.

4.3. Propagation formula. Let $\pi = \pi(\nu, \sigma_n)$ be an irreducible principal series representation of $G = GL(3, \mathbb{C})$ with data $\nu = (\nu_1, \nu_2, \nu_3) \in \mathbb{C}^3$ and $\mathbf{n} = (n_1, n_2, n_3) \in \mathbb{Z}^3$ and let η be a non-degenerate unitary character of N defined in §3. For simplicity, we assume that the parameter \mathbf{n} satisfies the regularity condition

$$n_1 \ge n_2 \ge n_3.$$

Then $\mathbf{n} \in \Lambda$ and the minimal K-type of π is $(\tau_{\mathbf{m}}, V_{\mathbf{m}}) = (\tau_{\mathbf{n}}, V_{\mathbf{n}})$.

Let $W_3(y) \in Wh(\pi, \eta, \tau)^{\text{mod}}$ be the (A-radial part of) primary Whittaker function with *M*-components $W_3(M; y) = y_1^2 y_2^2 \tilde{W}_3(M; y)$. Under the regularity condition on **n**, we have the parameters $(\lambda_1, \lambda_2, \lambda_3) = \left(\nu_3 - \frac{\tilde{\nu}}{3}, \nu_1 - \frac{\tilde{\nu}}{3}, \nu_2 - \frac{\tilde{\nu}}{3}\right)$ which appear in the integrand $V_3(M; s_1, s_2)$ of the integral expression of Mellin-Barnes type for $\tilde{W}_3(M; y)$ in Theorem 3.1. **Theorem 4.3.** Let $M = \begin{pmatrix} m_1 m_2 m_3 \\ \alpha_1 \alpha_2 \\ \beta \end{pmatrix} \in G(\mathbf{m})$. Then the integrand $V_3(M; s_1, s_2)$ has the following expression.

$$\begin{split} V_3(M;s_1,s_2) &= \Gamma\left(\frac{s_1+\zeta_j^{(1)}(M)}{2}\right)\Gamma\left(\frac{s_2+\zeta_j^{(2)}(M)}{2}\right) \\ &\times \frac{1}{2\pi\sqrt{-1}}\int_z \Gamma\left(\frac{z+s_1+\mu_1}{2}\right)\Gamma\left(\frac{z+s_2+\mu_2}{2}\right)V_2(M';-z)dz, \end{split}$$

where $V_2(M'; s)$ is the integrand of the integral expression of $\tilde{W}_2(M'; y)$ in Theorem 4.1 for a triple $(\pi'(\nu', \sigma_{\mathbf{n}'}), \eta', \tau_{\mathbf{m}'})$ and a G-pattern $M' \in G(\mathbf{m}')$ and the path of integration is the vertical line from $\operatorname{Re} z - \sqrt{-1}\infty$ to $\operatorname{Re} z + \sqrt{-1}\infty$ with large enough real part. The parameters and the representations are given in the following table.

·	j	μ_1	μ_2	ν'	n′	Μ'
$\delta(M) \geq 0$	2	$-rac{\lambda_2}{2}-lpha_2+eta$	$rac{\lambda_2}{2}+m_1-lpha_1$	(u_2, u_3)	(m_2,m_3)	$\left(egin{array}{c} m_2 m_3 \ lpha_2 \end{array} ight)$
$\delta(M) \leq 0$	1	$-rac{\lambda_1}{2}+lpha_1-eta$	$\frac{\lambda_1}{2} + \alpha_2 - m_3$	(u_1, u_2)	(m_1,m_2)	$\left(egin{array}{c} m_1 m_2 \ lpha_1 \end{array} ight)$
$\delta(M)=0$	3	$-\frac{\lambda_3}{2}$	$\frac{\lambda_3}{2}$	(u_1, u_3)	(m_1,m_3)	$\left(\begin{array}{c} m_1 m_3 \\ \beta \end{array} \right)$

Proof. Assume $\delta(M) \ge 0$. Then, since $\zeta_1^{(1)}(M) + \zeta_1^{(2)}(M) = \zeta_3^{(1)}(M) + \zeta_3^{(2)}(M)$, Barnes' lemma leads the equation

$$\begin{split} V_3(M;s_1,s_2) &= \Gamma\left(\frac{s_1+\zeta_2^{(1)}(M)}{2}\right)\Gamma\left(\frac{s_2+\zeta_2^{(2)}(M)}{2}\right) \\ &\times \frac{1}{2\pi\sqrt{-1}}\int_z\Gamma\left(\frac{z+s_1+\mu_1}{2}\right)\Gamma\left(\frac{z+s_2+\mu_2}{2}\right) \\ &\times \Gamma\left(\frac{-z+\mu_3}{2}\right)\Gamma\left(\frac{-z+\mu_4}{2}\right)dz, \end{split}$$

where the parameters μ_1 and μ_2 are given in the assertion of theorem and μ_3 and μ_4 are

$$\mu_3 = \frac{-\nu_2 + \nu_3}{2} + \alpha_2 - m_3, \quad \mu_4 = \frac{\nu_2 - \nu_3}{2} - \alpha_2 + m_2.$$

Here we use the relations $\lambda_1 + \frac{\lambda_2}{2} = \frac{-\nu_2 + \nu_3}{2}$ and $\lambda_3 + \frac{\lambda_2}{2} = \frac{\nu_2 - \nu_3}{2}$. The assertion for the other cases of $\delta(M)$ can be obtained similarly. \Box

Corollary 4.4. We have the following expression of $\tilde{W}_3(M; y)$.

$$\begin{split} \tilde{W}_3(M;y) &= 4\pi^{a_1+a_2} y_1^{a_1+A_1} y_2^{a_2-A_2} \int_0^\infty \int_0^\infty \exp\left(-\pi \left(y_1^2 u_1 + \frac{1}{u_1} + y_2^2 u_2 + \frac{1}{u_2}\right)\right) \\ &\times u_1^{A_1} u_2^{-A_2} \tilde{W}_2\left(M'; \pi y_2 \sqrt{\frac{u_2}{u_1}}\right) \frac{du_1}{u_1} \frac{du_2}{u_2}. \end{split}$$

Here

$$a_{k} = \frac{1}{2} \left\{ \zeta_{j}^{(k)}(M) + \mu_{k} \right\}, \quad A_{k} = \zeta_{j}^{(k)}(M) - a_{k}, \quad k = 1, 2,$$

and the parameters and the representations are given in Theorem 4.3.

Proof. This corollary is obtained from the integral expression of Mellin-Barnes type for $\tilde{W}_3(M; y)$ in Theorem 3.1 and Theorem 4.3 by using the integral expressions of $K_{\nu}(z)$ in §4.2. \Box

References

- [1] Gelfand, I. and Zelevinsky, A., Canonical basis in irreducible representations of gl₃ and its applications, Group Theoretical Methods in Physics vol.II, VNU Science Press, 1986, 127-146.
- [2] Hirano, M., Oda, T., Integral switching engine for special Clebsch-Gordan coefficients for the representations of gl₃ with respect to Gelfand-Zelevinsky basis, preprint.
- [3] Hirano, M., Oda, T., Calculus of principal seires Whittaker functions on $GL(3, \mathbb{C})$, preprint.
- [4] Howe, R., Umeda, T., The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., **290** (1991), 565–619.
- [5] Ishii, T., Stade, E., New formulas for Whittaker functions on $GL(n, \mathbf{R})$, J. Funct. Anal., 244 (2007), 289–314.
- [6] Miatello, R., Wallach, N., Automorphic forms constructed from Whittaker vectors, J. Funct. Anal. 86 (1989), 411-487.
- [7] Oda, T., and Tsuzuki, M., Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. **39** (2003), 451–533.
- [8] Shalika, J.A., The multiplicity one theorem for GL_n , Ann. of Math. 100 (1974), 171–193.
- [9] Wallach, N., Asymptotic expansions of generalized matrix entries of representations of real reductive groups, SLN 1024 287-369.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, EHIME UNIVERSITY, 2-5 BUNKY-OCHO, MATSUYAMA, EHIME, 790-8577, JAPAN

E-mail address: hirano@math.sci.ehime-u.ac.jp

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO, TOKYO, 153-8914, JAPAN

E-mail address: takayukiQms.u-tokyo.ac.jp